
CS4423-W05-1

February 12, 2025

Table of Contents

1 Modules for this notebook

2 Example

3 Trees

3.1 Another fact about trees

4 How many trees are there?

4.1 Cayley’s Formula

4.2 Computing the Prüfer code

4.3 Making a tree from a Prüfer code

5 Random Trees

6 Graph and Tree Traversal

6.1 Depth First Search (DFS)

6.2 Breadth First Search (BFS)

6.3 Alternative Implementations (Extra: won’t do in class)

7 Exercises

CS4423-Networks: Lecture 9 [Draft]

Week 5, Lecture 2: Trees and Algorithms

Niall Madden, School of Mathematical and Statistical Sciences
University of Galway

This Jupyter notebook, and PDF and HTML versions, can be found at
https://www.niallmadden.ie/2425-CS4423/#Week05

This notebook was written by Niall Madden, adapted from notebooks by Angela Carnevale.

0.1 Modules for this notebook
Today, we’ll default to light rose-coloured nodes, with has an RGB code of #ffc5cb. For more
options, see https://matplotlib.org/stable/users/explain/colors/colors.html

1

[]: import networkx as nx
import numpy as np
opts = { "with_labels": True, "node_color": '#ffc5cb' } # show labels; rose␣

↪noodes

0.2 Example
Short discussion (again) of paths and cycles, and connected componets

[]: nodes = 'ABCDEFGHIJ'
edges = ['AB', 'CD', 'DE', 'CE', 'FG', 'FH', 'FI', 'GH', 'HI']
G2 = nx.Graph()
G2.add_nodes_from(nodes)
G2.add_edges_from(edges)
nx.draw_kamada_kawai(G2, **opts)

• A cycle in a simple graph provides, for any two nodes on that cycle, (at least) two different
paths from one to the other.

• It can be useful to provide alternative routes for connectivity in case one of the edges should
fail (e.g. in a electricity networks).

• (𝐶, 𝐷, 𝐸, 𝐶) is a 3-cycle; there are others too.
• The graph is not connected: there are 4 connected components.

0.3 Trees
• A graph is called acyclic if it does not contain any cycles.

• A tree is a (simple) graph that is connected and acyclic.

In other words, between any two vertices in a tree there is exactly one simple path.

Trees can be characterized in many different ways.

Theorem. Let 𝐺 = (𝑋, 𝐸) be a (simple) graph of order 𝑛 = |𝑋| and size 𝑚 = |𝐸|. Then the
following are equivalent:

• 𝐺 is a tree (i.e. acyclic and connected);

• 𝐺 is connected and 𝑚 = 𝑛 − 1;
• 𝐺 is a minimally connected graph (i.e., removing any edge will disconnect 𝐺);

• 𝐺 is acyclic and 𝑚 = 𝑛 − 1;
• 𝐺 is a maximally acyclic graph (i.e., adding any edge will introduce a cycle in 𝐺).

• There is a unique path between each pair of nodes in 𝐺.

0.3.1 Another fact about trees

All trees are bipartite. There are a few ways of thinking about this. One is the a graph is
bipartite if has no cycles of odd-length. Since a tree has no cycles - it must be bipartite!

2

[]: G3 = nx.Graph(["ac","bc","cd","de", "df", "dg","gh", "hi", "hj", "hk"])
top,bottom = nx.bipartite.sets(G3)
G3_colours = ['c' if node in top else 'm' for node in G3.nodes()]
nx.draw(G3, node_color=G3_colours, with_labels=True)

0.4 How many trees are there?
1. There is one tree with a single node.
2. There is also just one tree with two nodes.
3. We can easily see that there are 3 trees with 3 nodes (see notes on the board).
4. After that, it gets a little harder to count!

0.4.1 Cayley’s Formula

Theorem (Cayley’s Formula). There are exactly 𝑛𝑛−2 distinct (labelled) trees on the 𝑛-element
vertex set 𝑋 = {0, 1, 2, … , 𝑛 − 1}, if 𝑛 > 1.
We’ll later see why this is true. But let’s see what the numbers look like:

[]: domain = range(2, 10)
print(np.array([domain, [n**(n-2) for n in domain]]))

To see why this is true, we’ll learn about Prüfer Codes.

Let’s look at an example: a tree of order 𝑛 = 7

[]: T4 = nx.Graph()
T4.add_nodes_from(range(0,7))
T4.add_edges_from([(0,1),(1,2),(2,3),(2,4),(2,5),(1,6)])
nx.draw(T4, **opts)

0.4.2 Computing the Prüfer code

How to determine the Prüfer code of a tree 𝑇 (destructively):

• Start with a tree, 𝑇 with nodes labeled 0, 1, … , 𝑛 − 1, and empty list a.

1. Find the leaf 𝑥 with the smallest label (a “leaf ” is a node of degree 1. Every tree must have
at least 2).

2. Append the label of its unique neighbour, 𝑦 to the list a
3. Remove 𝑥 (and the edge 𝑥 − 𝑦) from 𝑇 .
4. Repeat Steps 1-3 until 𝑇 has only 2 nodes left. We now have the code as a list of length 𝑛−2.

So the graph above has Pruefer code {1, 2, 2, 2, 1}
We’ll write some code to compute the Prufer code of a tree.

Since the algorithm is recursive, we first write a function that does Steps 1-3: * Find the leaf x
with the smallest label * Set y to be its neighbour. * Delete x from T * Return y

One of the steps involves finding the neighbour of 𝑥. A minor technical issue is that the method
T.neighbours(x) returns a iterable. To get its one and only item, we’ll use the next() function
(there are a few other ways to do this, including converting it to a list)‘.

3

https://en.wikipedia.org/wiki/Pr%C3%BCfer_sequence

[]: # Does Steps 1-3 of the Algorithm
def pruefer_node(tree):

for x in tree: # go through nodes in order
if tree.degree(x) == 1: # first one of degree 1 (is a leaf)

y = next(tree.neighbors(x)) # y is its only neighbour
tree.remove_node(x)
return(y)

Since our function destroys the list, we’ll make a copy before we start. Also, since we know the list
has length 𝑛 − 2, we just call this function 𝑛 − 2 times, adding the value returned to the list:

[]: n = T4.order()
T = T4.copy()
a = [] # empty list
for k in range(n-2):

y = pruefer_node(T)
a+=[y]

print(a)

If you prefer list comprehension:

[]: T = T4.copy()
a = [pruefer_node(T) for k in range(n-2)]
print(a)

Let’s wrap this up as a python function

[]: def pruefer_code(tree):
return [pruefer_node(tree) for k in range(tree.order() - 2)]

Test it:

[]: T = T4.copy()
code = pruefer_code(T)
code

0.4.3 Making a tree from a Prüfer code

Maybe surprisingly, the tree can be reconstructed from its Prüfer code. This is based on the
following fact and shows that the map from trees to codes is a bijection!

Fact: The degree of node 𝑥 is 1 plus the number of entries 𝑥 in the Prüfer code of 𝑇 .

Example

[]: d = n*[1] # list of n 1's/
for k in code:

d[k] += 1
print(f"degree list: {d}")

[]: print(f'Check: {[T4.degree[x] for x in T4]}')

4

How to compute a tree from a Prüfer code a (Note that a is a list of length 𝑛 − 2, with all entries
numbers 0 to 𝑛 − 1).

1. Set G to be a graph with node list [0, 1, 2, ..., n-1] (and no edges yet).
2. Compute the list of node degrees d from the code.
3. For 𝑘 = 0, 1, … 𝑛 − 2

• Set y=a[k]
• Set x to be the node with smallest degree in d
• Add the edge (x,y) to G
• Set d[x]=d[x]-1 and d[y]=d[y]-1 (i.e., decrease the degrees of both x and y by 1).

4. Finally, connect the remaining 2 nodes of degrees 1 by an edge.

Tip: if d is a list, d.index(1) returns the index of the first entry of d that has the value 1.

[]: T4a = nx.empty_graph(T4.order())
nx.draw(T4a, **opts)

[]: code

[]: d = n*[1] # list of n 1's/
for k in code:

d[k] += 1
repeat n-2 times:
for k in range(n-2):

y = a[k]
x = d.index(1) # firsty
T4a.add_edge(x, y)
d[x] -= 1; d[y] -= 1
print(f'Degrees = {d} : adding edge {x}-{y}')

Add the final edge, by find the index to the remaining two 1’s. We can find the first with
x=d.index(1), and the second with y=d.index(1, x+1) (could also use list comprehension, of
course: see below).

[]: x = d.index(1)
y = d.index(1, x+1)
T4a.add_edge(x,y)

[]: nx.draw(T4a, **opts)

Finished here Wednesday

Turn the entire procedure into a python function:

[]: def pruefer_to_tree(code):
initialize graph and defects
n = len(code) + 2
tree = nx.empty_graph(n)
d = n*[1]
for y in code:

5

d[y] += 1

add edges
for y in code:

x = d.index(1)
tree.add_edge(x, y)
d[x]-=1; d[y]-=1;

final edge
e = [x for x in tree if d[x] == 1]
tree.add_edge(*e)
return tree

Let’s check it works:

[]: T4b = pruefer_to_tree([1,2,2])
nx.draw(T4b, **opts)

Since we have now sown that there is a bijection between labeled trees and Prüfer codes, we can
prove Cayley’s Theorem easily: * A tree with 𝑛 nodes has a Prüfer code of length 𝑛 − 2. * There
are 𝑛 choices for each entry in the code. * So there are 𝑛𝑛−2 possible codes for a tree with 𝑛 nodes
* So there are 𝑛𝑛−2 possible trees with 𝑛 nodes.

0.5 Random Trees
We can ask networkx to produce a random tree with a given number of nodes:

[]: n = 8
T5 = nx.random_tree(9)
nx.draw(T5, **opts)

However, are can also construct a random tree on 𝑛 nodes from a random Prüfer code of length
𝑛 − 2.

[]: code = np.random.randint(n, size=n-2)
print(f"code={code}")

[]: T5a = pruefer_to_tree(code)
nx.draw(T5a, **opts)

0.6 Graph and Tree Traversal
Often one has to search through a network to check properties of nodes (e.g., finding the node with
largest degree). For large unstructured networks, this could be challenging. Fortunately, there are
simple and efficient algorithms: * DFS * BFS

0.6.1 Depth First Search (DFS)

DFS works by starting at a root node, and travelling as far along one of its branches as it can, then
returning the the last unexplored branch.

6

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Breadth-first_search

The main data structure we’ll need is a stack, also called a “Last In First Out (LIFO) queue”.
It has two operations: * S.push(x): pushes x onto the top of the stack (We’ll use the extend()
method) * y=S.pop(): pops/removes the item from the top of the stack and stores it in ‘y

DFS: Given a rooted tree 𝑇 with root 𝑥, visit all nodes in the tree. Start with an empty stack, S:
* S.push(x) * while 𝑆 ≠ ∅: * y = S.pop() * visit(y) * S.push(y.children)

Let’s create a tree to try this:

[]: T6 = nx.Graph()
T6.add_nodes_from(range(10))
T6.add_edges_from([(0,1), (0,2), (2,3), (3,4), (1,5), (0,6),(0,7),(7,8),(7,9)])
nx.draw(T6, **opts)
print(f"Edges of T6 are {T6.edges()}")

Now try the algorithm

[]: T = T6.copy()
x = 0
S = [x]
while len(S) > 0:

y = S.pop()
S.extend(T[y])
T.remove_node(y)
print(y, S)

0.6.2 Breadth First Search (BFS)

BFS works by starting at a root node, and explores all the neighbouring nodes (“Level 1”) first.
Next it searches their neighbours (“Level 2”), etc.

The main data structure we’ll need is a [queue](https://en.wikipedia.org/wiki/Queue_(abstract_data_type),
also called a “First In First Out (FIFO) queue”. It has two operations: * Q.extend(l): adds the
items in the list l to the end of Q * y=S.pop(0): pops/removes the first item from queue, and
stores it in ‘y

BFS: Given a rooted tree 𝑇 with root 𝑥, visit all nodes in the tree. Start with an empty list/queue,
Q: * Q.push(x) * while 𝑄 ≠ ∅: * y = Q.pop(0) * visit(y) * Q.push(y.children)

Let’s test it:

[]: T = T6.copy()
x = 0
Q = [x]
while len(Q) > 0:

y = Q.pop(0)
Q.extend(T[y])
T.remove_node(y)
print(y, Q)

Many questions on networks concerning distance and connectivity can be answered by a versatile
strategy involving a subgraph which is a tree, and then searching that. Such a tree is called a

7

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

spanning tree of the underlying graph.

0.6.3 Alternative Implementations (Extra: won’t do in class)

Both DFS and BFS are more like strategies, rather than specific algorithms. Different problems
might require different implementations. Sometimes, the stack, or the queue don’t have to be made
explicit:

• In a recursive implementation, DFS can make use of the (python) interpreter’s function call
stack.

• BFS can take advantage of the fact that some types of lists in a (python) for loops are largely
organized as queues.

In order to keep track of which nodes have already been visited, we maintain for each node an
attribute "seen" that is initially False, and becomes True when the DFS/BFS visits the node.

In networkx, the attributes of a node x in a graph G are kept in a dictionary G.nodes[x].

[]: n = 10
T6a = nx.random_tree(n)
nx.draw(T6a, **opts)

[]: TT = T6a.copy()
for x in TT:

TT.nodes[x]['seen'] = False
TT.nodes('seen')

• DFS on a tree:

[]: def dfs(tree, x):
print(x, end=', ')
tree.nodes[x]['seen'] = True
for z in tree[x]:

if not tree.nodes[z]['seen']:
dfs(tree, z)

[]: dfs(TT, 3)

• BFS on a tree:

[]: TT = T6a.copy()
for x in TT:

TT.nodes[x]['seen'] = False

[]: Q = [3]
TT.nodes[3]['seen'] = True
for y in Q:

print(y, end=', ')
for z in TT[y]:

if not TT.nodes[z]['seen']:

8

Q.append(z)
TT.nodes[z]['seen'] = True

[]: nx.draw(TT, **opts)

0.7 Exercises
1. A tree 𝑇 uniquely determines its Prüfer code, and hence the two nodes that remain after

(destructively) computing the code. What are those two nodes, in terms of properties of 𝑇 ,
or its Prüfer code?

2. 1. What tree has Prüfer code [0, 1, 2, … , 𝑛 − 3]?
2. What tree has Prüfer code [0, 0, 0, … , 0⏟⏟⏟⏟⏟

𝑛−2 zeros

]?

3. What tree has Prüfer code [0, 1, 2, … , 𝑛 − 3]?
3. Give the Prüfer for the tree with nodes {0, 1, 2, 3, 4, 5} and edges 0 − 1, 0 − 2, 1 − 3, 1 − 4,

2 − 5

9

	Modules for this notebook
	Example
	Trees
	Another fact about trees

	How many trees are there?
	Cayley's Formula
	Computing the Prüfer code
	Making a tree from a Prüfer code

	Random Trees
	Graph and Tree Traversal
	Depth First Search (DFS)
	Breadth First Search (BFS)
	Alternative Implementations (Extra: won't do in class)

	Exercises

