CS4423: Assignment 2: Part 1 - Tutorial Sheet

Tutorial sheet for working on in classes

These exercises are similar Q5–Q9 on Homework Assignment 2: Part 1. They can be covered in class by the tutor. For the actual assignment, you need to answer the questions at www.niallmadden.ie/2425-CS4423/CS4423-HW2-1.pdf

Some background: The Network Laplacian

Graph Laplacian. There are many ways to represent a network as a matrix, such as the adjacency matrix. Another is the *Laplacian*, $L = (l_{ij})$. For a network G = (X, E) of order n with nodes labelled 1, 2, ..., n, L is the square $n \times n$ matrix with entries

$$\mathfrak{l}_{\mathfrak{i}\mathfrak{j}}=egin{cases} \deg(\mathfrak{i}) & \mathfrak{i}=\mathfrak{j}\ -1 & \{\mathfrak{i},\mathfrak{j}\}\in X\ 0 & ext{otherwise} \end{cases}$$

For example, if $G = K_3$, then

$$\mathsf{L} = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}$$

(a) Let G_1 be the tree on the nodes $\{0, 1, 2, \dots, 9\}$ with Laplacian matrix

	/ 1	-1	0	0	0	0	0	0	0	0 \rangle
L =	-1	2	-1	0	0	0	0	0	0	0
	0	-1	3	-1	0	-1	0	0	0	0
	0	0	-1	4	-1	0	0	-1	-1	0
	0	0	0	-1	2	0	-1	0	0	0
	0	0	-1	0	0	1	0	0	0	0
	0	0	0	0	-1	0	2	0	0	-1
	0	0	0	-1	0	0	0	1	0	0
	0	0	0	-1	0	0	0	0	1	0
	\ 0 _	0	0	0	0	0	-1	0	0	1

Sketch G_1 .

- (b) Give the Prüfer code for G_1 .
- (c) Sketch the tree, T_2 , on the nodes $\{0, 1, \ldots, 9\}$ that has as its Prüfer code [0, 5, 0, 6, 0, 7, 0, 8].
- (d) Give the order in which the nodes of T_2 would be visited if it is traversed by **Depth First Search**.
- (e) Give the order in which the nodes of T_2 would be visited if it is traversed by *Breadth First Search*.

1