
CT3536

GAMES PROGRAMMING

Andreas Ó hAoḋa
University of Galway

2024-02-22

CONTENTS

Contents

1 Introduction 1
1.1 Lecturer Contact Information . 1
1.2 Assessment . 1
1.3 Game Engines . 1
1.4 Unity3D Game Engine . 1

1.4.1 The Game Loop . 4
1.4.2 The Unity API . 4
1.4.3 Component-Based Architecture . 4

2 Lab Session 1 5

3 Key Concepts & Classes 6
3.1 MonoBehaviour . 6
3.2 GameObjects in Unity . 6

3.2.1 Getting References to GameObjects at Runtime . 7
3.2.2 Prefabs . 7
3.2.3 Runtime Instantiation &Destruction of GameObjects . 7
3.2.4 Cameras . 8
3.2.5 Transforms . 8
3.2.6 Skyboxes . 9
3.2.7 Keyboard Input . 9
3.2.8 Static Member Variables . 9
3.2.9 Static Member Functions . 10
3.2.10 The Singleton Pattern . 10

3.3 Lab 2: Fear & Dread . 10

4 Co-ordinate Systems 10
4.1 Examples . 11
4.2 Screen Space, Viewport Space, &World Space . 12

4.2.1 Typical Space-Translation Operations . 12

5 Object Interactions with Colliders & Triggers 13
5.1 Lab 3: Asteroid Assault onMars & its Moons . 13
5.2 Triggers (Sensors) . 13
5.3 Coroutines . 13

5.3.1 Invoke& InvokeRepeating . 15
5.4 Layers . 15

6 Physics 15
6.1 Rigidbody . 15
6.2 Colliders . 16

6.2.1 Collisions . 17
6.2.2 ContactPoint Struct . 18
6.2.3 PhysicMaterial . 18

i

1 INTRODUCTION

1 Introduction

1.1 Lecturer Contact Information

• Dr. Sam Redfern (sam.redfern@nuigalway.ie)

• Discord server: https://discord.gg/nqD5JN95WT

1.2 Assessment

There will be 1-3 person projects which will begin from approximately Week 5, which will be worth 30% of the course
marks. 10% of the overall mark will be from the six graded lab assignments, and the remaining 60% will be from the
final exam.

The game project will have a demo in the final week, andwill be submitted as a document containing images, discussions,
code, etc. Marks are awarded for:

• Overall complexity.

• Code architecture & neatness.

• Game design/elegance & UX.

• Discussion.

• Graphics (if self-created).

• Audio (if self-control).

• Group size will also be taken into account.

You should start to consider your ideas byWeek 5. Discuss the idea with Dr. Redfern & the lab tutors as they can advise
on scope & difficulty. Simple 3D games are no harder to make than 2D games. “Snake” games are not allowd!’

1.3 Game Engines

Game Engines provide a powerful set of integrated sub-systems geared towards making games (and other high-
performance realtimemedia) including:

• Graphics Rendering (3D, 2D, terrain).

• Physics.

• Networking.

• Special Effects.

• 3D Audio.

• User Input.

1.4 Unity3D Game Engine

The Unity3D game engine is a closed-source games engine that is well designed & elegant to use “2nd generation”
game engine. It has excellent GUI/HUD editing & animation system, and is powerful & very popular. It has a hugely
successful Asset Store. Its core language is C#, which is very similar to Java. Unity3D deploys to iOS, Android, Web
(HTML5/WebGL), Windows, Mac OSX, Linux, Switch, & more.

1

mailto://sam.redfern@nuigalway.ie
https://discord.gg/nqD5JN95WT

1 INTRODUCTION

Figure 1: The Unity IDE

The Project Window displays your library of assets that are available to use in your project. When you import assets
into your project, they appear here.

Figure 2: The Project Window (Assets)

The Scene View allows you to visually navigate & edit your scene without running your game. The scene view can be a
3D or 2D perspective.

2

1 INTRODUCTION

Figure 3: The Scene View

TheHierarchy Window is a hierarchical nested text representation of every “game object” in the scene.

Figure 4: The Hierarchy (Scene Graph) Window

The Inspector Window allows you to view & edit all the properties of the currently selected game object.

3

1 INTRODUCTION

Figure 5: The Inspector Window

The toolbarprovides access to themost essentialworking features. On the left it contains the basic tools formanipulating
the scene view & the objects within it. In the centre are the play & pause controls. The buttons to the right give you
access to your Unity Cloud Services & your Unity Account, followed by a layer visibility menu, and finally the editor
layout menu which provides some alternate layouts for the editor windows, and allows you to save your own custom
layouts.

Figure 6: The Toolbar

1.4.1 The Game Loop

At their core, games operate a game loop, although game engines somewhat hide this from you. It operates at 60fps (or
more), deal with inputs received asynchronously via events (e.g. keyboard or network data) or polled for right now,
process game objects such as move the physics simulation (if any) forwards or move objects by physics simulation or
direct control, redraw, wait (maybe) or run at maximum obtainable speed (maybe) but don’t block the main thread.

1.4.2 The Unity API

Luckily, everything is not just drag-n-drop. We can write C# code to make the game work. Much of our code will
involve the manipulation of the Unity API classes from the UnityEngine& UnityEngine.UI namespaces. Of course,
we can also do anything else supported by the core C#/.NET library such as file handling, networking, collection classes,
etc.

1.4.3 Component-Based Architecture

2nd generation game engines such as Unity3D useComponent-Based Architecture (CBA), which suits game logic
very well. It’s different to classic OOP as it’s based on the Composition rather than Inheritance principle. Every

4

2 LAB SESSION 1

entity consists of one or more componentswhich add additional behaviour or functionality. The behaviour of an
entity can even be changed at runtime by adding or removing components. This eliminates the ambiguity problems
of inheritance class-hierarchies that are difficult to understand, maintain, & extend. Each component is essentially a
separate software object but all attached to some higher-level GameObjectwhich typically equates to an actual onscreen
character, enemy, bullet, effect, vehicle, etc.

Using composition rather than inheritance can be somewhat of a mantra, and not correct in all cases. Code re-use is
often (incorrectly) considered to be the main principle of inheritance. In fact, designing hierarchical taxonomies of
classes is the most appropriate reason to use inheritance. Composition is better when you would otherwise get tangles
up in the murky world of multiple-inheritance. Composition is excellent for code re-use.

2 Lab Session 1

Import a model of Mars (and a texture.jpg for it). Create a simple demo which rotates Mars using the built-in physics
engine. We could also take direct control of the Mars object and rotate it ourselves, a little bit on each frame, but here
we’re letting the physics engine do the work. No need to submit anything for this lab session as it’s not graded.

1 using System.Collections;

2 using System.Collections.Generic;

3 using UnityEngine;

4

5 public class GameManagerScript : MonoBehaviour {

6 public GameObject marsObject;

7 // Use this for initialization

8 void Start () {

9 Camera.main.transform.position = new Vector3 (0f, 0f, -100f);

10 Camera.main.transform.LookAt (marsObject.transform);

11 // use the physics engine to rotate Mars

12 // before this can run, you need to manually add a rigid body with 0 angular velocity and

no gravity in the UI↪→

13 marsObject.GetComponent<Rigidbody>().AddTorque (new Vector3(0f,20f,0f));

14 }

15 }

Listing 1: Lab 1 Code

1 public class GameManager : MonoBehaviour {

2 // inspector settings

3 public GameObject marsObject;

4 void Start() {

5 marsObject.transform.position = new Vector3(0,0,0);

6 Camera.main.transform.position = new Vector3(0,0,100);

7 Camera.main.transform.LookAt(marsObject.transform);

8 }

9 void Update() {

10 // programmatically rotate Mars each frame:

11 marsObject.transform.Rotate(new Vector3(0,10*Time.deltaTime,0));

12 }

13 }

Listing 2: Alternative Lab 1 Code

5

3 KEY CONCEPTS &CLASSES

3 Key Concepts & Classes

3.1 MonoBehaviour

MonoBehaviour is the base class from which Unity C# scripts normally derive. This hooks the class into the Game Loop
so that it automatically receives calls to specific methods at specific times. It also provides various other useful Unity
methods that are called by the game engine in specific situations, including but not limited to:

• Start()

• OnDestroy()

• Awake()

• Update()

• FixedUpdate()

• LateUpdate()

• OnDisable()

• OnEnabled()

• OnBecameInvisible()

• OnBecameVisible()

• OnCollisionEnter()

• OnCollisionExit()

• OnCollisionStay()

• OnTriggerEnter()

• OnTriggerExit()

• OnTriggerStay()

• OnMouseEnter()

• OnMouseExit()

• OnMouseDown()

In games, it is often useful to be able to execute code at programmer-controlled intervals (perhapsmuch less often than ev-
ery frame), or at some specified time in the future. InUnity MonoBehaviour, themethods Invoke()& StartCoroutine()

relate to this. We will elaborate on these later. MonoBehaviour also provides several important data members such as:

• enabled (Boolean).

• gameObject (GameObject).

• transform (Transform).

• name (String) (name of gameObject).

Finally, there are some more methods provided which are useful for manipulating GameObjects and their components:

• SendMessage()

• BroadcastMessage()

• SendMessageUpwards()

• GetComponent()

• GetComponentInChildren()

• GetComponentInParent()

• GetComponents()

• GetComponentsInChildren()

• GetComponentsInParent()

• GetInstanceID()

Recall that GameObjects can contain many independent scripts (components), each inheriting from MonoBehaviour.
Each script/component is an instance of a class. A GameObject is therefore composed of multiple software objects. This
is called a “component-based system” and is often seen as a superior approach to object-oriented class hierarchies –
better for code re-use & isolation of functionality.

References:

• https://docs.unity3d.com/ScriptReference/MonoBehaviour.html

• https://docs.unity3d.com/Manual/ExecutionOrder.html

3.2 GameObjects in Unity

GameObject is the base class for all entities that exist in a Unity scene. As discussed above, each GameObject has a
collection of components attached, and each component is an independent class object inheriting from MonoBehaviour.
The GameObject is a special class that all entities in the game are derived from and which you won’t have to attach as a
component. Some useful data members of GameObject include:

• activeInHierarchy (Boolean).

• transform (Transform).

6

https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

3 KEY CONCEPTS &CLASSES

• tag (Tag type as defined in the editor).

Some useful methods of GameObject include:

• AddComponet().

• SendMessage() etc. (same as the method in MonoBehaviour classes).

• GetComponent() etc. (same as the method in MonoBehaviour classes).

• SetActive().

Some useful static methods of GameObject include:

• Find().

• Destroy().

• Instantiate().

3.2.1 Getting References to GameObjects at Runtime

For a specific GameObject:

• Have it referenced as a public member of the script that needs it, and associated at design-time in the Inspector.
(This is what we did in the first lab for the Mars object, a reference to which was needed by the GameManager
class).

• Use GameObject.Find("<name>") to find it by name. This is somewhat inefficient, so don’t do this every frame.

• Use GameObject.FindGameObjectsWithTag("<tag>") to find all game objects with a specified tag. This returns
an array of GameObjects.

3.2.2 Prefabs

When you have created a GameObject in the hierarchy (at design time), added components to it, and set their various
public values, you can drag the GameObject into the Assets Window to make a prefab, essentially a template of that
exact object with its settings.

This approachmeans that you canmake MonoBehaviour scripts for monsters, guns, etc. and thenmake a separate prefab
with different settings for each actual type of monster or gun you need in your game. Prefabs are therefore useful for
creating & editing your game’s data.

3.2.3 Runtime Instantiation & Destruction of GameObjects

So far, we have created all of the GameObjects that we need in the hierarchy at design-time (i.e., before starting the game).
Often, we need to instantiate & destroy some or all of our game objects at runtime, e.g. bullets, enemies, explosions,
etc. Assuming that we have a prefab in our Assets, and that it is located in a directory called Resourceswe can do the
following. Here, prefabName is the name of our asset prefab (as a String):

1 GameObject go = Instantiate(Resources.Load(prefabName));

2

3 // later on, assuming we still have a reference to the object:

4 GameObject.Destroy(go);

5 // or

6 GameObject.DestroyImmediate(go);

Alternatively, you can instantiate an object by supplying an existing instantiated object as a template. E.g., in Lab 1 our
GameManagerScript class had a GameObjectmember called marsObject, which is instantiated in the Inspector at design
time, so you could use this to make another Mars:

7

3 KEY CONCEPTS &CLASSES

1 GameObject otherMarsObject = Instantiate(marsObject);

Another alternative, perhaps the easiest of all, is to have a public reference to a GameObject and associate this with a
prefab in the assets by dragging in the Inspector. Then you can use Instantiate() on that to instantiate a copy of the
prefab into the scene at runtime.

3.2.4 Cameras

In computer graphics,Cameras are software objects that define a viewpoint in terms of position, orientation, field-of-
view/zoom, etc. within the “virtual world”. Mathematical projections are used to calculate how the 3D world should
be displayed on the 2D camera surface. In Unity, Cameras are GameObjects which have a Camera component. Since
they’re GameObjects, you can add other components, manipulate their Transform, etc. just like any other GameObject.
The Transform component provides methods that are very useful to Cameras (as well as other non-Camera objects)
such as LookAt().

Camera.main is a static reference to the “main” Camera whose view is being displayed to the screen. This Camera
should have the tag MainCamera. Other Cameras can be used at the same time, e.g. to render to texture (e.g. mirrors,
top-downminimaps) or to render to parts of the screen (e.g., split-screen multiplayer). You might also have multiple
cameras in a scene and switch the active one during the game.

The Camera class provides methods for converting co-ordinates between Screen-space, Viewport-space, &World-space
(more on these later).

• CalculateFrustumCorners(): Given viewport coordinates, calculates the view space vectors pointing to the four
frustum corners at the specified camera depth.

• ScreenPointToRay(): Returns a ray going from camera through a screen point.

• ScreenToViewportPoint(): Transforms position from screen space into viewport space.

• ScreenToWorldPoint(): Transforms position from screen space into world space.

• ViewportPointToRay(): Returns a ray going from camera through a viewport point.

• ViewportToScreenPointTransforms(): position from viewport space into screen space.

• ViewportToWorldPointTransforms(): position from viewport space into world space.

• WorldToScreenPointTransforms(): position from world space into screen space.

• WorldToViewportPointTransforms(): position from world space into viewport space.

References:

• https://docs.unity3d.com/ScriptReference/Camera.html

• https://docs.unity3d.com/Manual/class-Camera.html

3.2.5 Transforms

ATransform defines the position, orientation, & scale of an object. Child objects have their own Transforms which
are interpreted as a nested co-ordinate system, i.e. a modification of the parent’s. This is a very powerful concept and is
fundamental to the concept of a SceneGraph/hierarchy. In Unity, the Transform class has the following key members:

• position (Vector3)

• localPosition (Vector3)

• rotation (Quaternion)

8

https://docs.unity3d.com/ScriptReference/Camera.html
https://docs.unity3d.com/Manual/class-Camera.html

3 KEY CONCEPTS &CLASSES

• localRotation (Quaternion)

• lossyScale (Vector3)

• localScale (Vector3)

• parent (Transform)

• right: positive direction on the local x axis (Vector3, normalised).

• up: positive direction on the local y axis (Vector3, normalised).

• forward: positive direction on the local z axis (Vector3, normalised).

• gameObject (GameObject)

Methods of the Transform class include:

• Rotate(): Uses “Euler angles” (x, y, z) all in degrees.

• Translate()

• TransformPoint(): Transforms position from local space to world space.

• InverseTransformPoint(): Transforms position from world space to local space.

• LookAt(): (Vector3 point) turns so that the forward direction (i.e., positive z axis) faces the specified position.

• RotateAround(): (Vector3 point, Vector3 axis, float degrees).

• SetParent()

Reference: https://docs.unity3d.com/ScriptReference/Transform.html

3.2.6 Skyboxes

Skyboxes are rendered around the whole scene in the background in order to give the impression of complex scenery at
the horizon. To implement a Skybox, create a SkyboxMaterial in your Assets. Then, add it to the scene by using the
Window→Rendering→ Lighting menu item and specifying your Skybox material as the Skybox on the Scene tab.

Reference: https://docs.unity3d.com/Manual/class-Skybox.html

3.2.7 Keyboard Input

We will revisit more details about Keyboard/Mouse/Joystick/Touchscreen input later, but for now we will just say that
Input.GetKey() returns true as long as a key is held down. E.g., this could be written in an Update()method:

1 if (Input.GetKey(KeyCode.LeftArrow)) {

2 RotateCameraAroundMarsSomehow();

3 }

References:

• https://docs.unity3d.com/ScriptReference/Input.html

• https://docs.unity3d.com/ScriptReference/Input.GetKey.html

3.2.8 Static Member Variables

By declaring a member variable static, you’re creating a single copy of the variable which is owned by the class rather
than by any specific instance object. Each instance does not have its own unique copy, they share one. A common use
case for static member variables is if you want to retain a collection of all instances of the class for quick recall.

9

https://docs.unity3d.com/ScriptReference/Transform.html
https://docs.unity3d.com/Manual/class-Skybox.html
https://docs.unity3d.com/ScriptReference/Input.html
https://docs.unity3d.com/ScriptReference/Input.GetKey.html

4 CO-ORDINATE SYSTEMS

3.2.9 Static Member Functions

By declaring a method static, you’re creating a method that is called on the class itself, not an instance of it. This is very
useful since you don not need to have a reference to an instantiated object from the class in order to call it. For obvious
reasons, a static method only has access to static member variables of the class, while a non-static method (which is
called on an actual instantiated object) has in addition, access to its own copies of non-static member variables.

3.2.10 The Singleton Pattern

A common design approach in Unity is to create single-instance singleton classes for various “management” roles,
e.g. GameManager, GUIManager, AudioManager, SaveGameManager, etc. The typical approach is to create a GameObject in
the hierarchy which holds the one-and-only instance of these components that will exist at run-time. One habit is to
attach these to the Main Camera. Using statics can make the methods of these management singletons very easy &
clean to access, e.g. consider the “instance” static member variable used here; it gives direct access to data attached to the
instantiated singleton object, from anywhere in the game, via GameManager.instance

1 public class GameManager : MonoBehaviour {

2 public static GameManager instance;

3

4 void Start () {

5 instance = this;

6 }

7 }

3.3 Lab 2: Fear & Dread

In our first lab, we attached a Rigidbody to the Mars object, applied angular velocity to it using AddTorque, and let
the game engine control the movement of it. The other way of moving game objectsis to directly manipulate their
Transform using code (this was our approach in second year Java). In Lab 2, we’ll be making Mars’ two moons (Phobos
& Deimos) orbit around it through direct manipulations of their Transforms. Your code for doing this would typically
be written in the Update()method of some script (it could either be a script attached to the GameObject itself, or perhaps
a script attached to a singleton “manager” object). It is important to consider the fact that Update() is probably not
happening at fixed time intervals. You can multiply all movement code by Time.deltaTime.

4 Co-ordinate Systems

The most important co-ordinate system distinction in Unity is between the Global (or World) co-ordinate system
and the Local co-ordinate system of each GameObject. Hence, to rotate the camera round the y-axis as perceived by the
camera (i.e., the y-axis of its Local Co-ordinate system) we can use:

1 camera.transform.RotateAround(Vector3.zero, camera.transform.up, 50f * Time.deltaTime);

Or, to rotate it around the Global y-axis:

1 camera.transform.RotateAroudn(Vector3.zero, Vector3.up, 50f * Time.deltaTime);

The first Vector3 argument defines the world point around which to rotate.

Some methods of the Transform class for translating from the local space of a transform to global space and vice-
versa include:

1 // local space to global

2 public Vector3 TransformPoint(Vector3 position);

3 public Vector3 TransformDirection(Vector3 direction);

4 public Vector3 TransformVector(Vector3 vector);

10

4 CO-ORDINATE SYSTEMS

5 // global to local

6 public Vector3 InverseTransformPoint(Vector3 position);

7 public Vector3 InverseTransformDirection(Vector3 direction);

8 public Vector3 InverseTransformVector(Vector3 vector);

4.1 Examples

To find the world-coordinate of a point which is 10 units “in front of” a spaceship (in terms of its own direction facing,
and assuming this code is located inside a script attached to the spaceship):

1 Vector3 pt = transform.TransformPoint(new Vector3(0f, 0f, 10f));

2 // another way of doing the same would be:

3 Vector3 pt = transform.position + 10f * transform.forward;

To accelerate a spaceship forwards (assuming it has a Rigidbody and we’re using physics, and we’re doing this in a
FixedUpdate()method on one of its scripts):

1 Rigidbody rigid = GetComponent<Rigidbody>();

2 rigid.AddForce(transform.forward * 200f * Time.fixedDeltaTime);

To get the direction & distance between two GameObjects:

1 GameObject go1, go2; // it's assumed that these are not nulls!

2

3 Vector3 difference, direction;

4 difference = go2.transform.position - go1.transform.position;

5 direction = difference.normalized;

6 float distance = difference.magnitude;

Iterating nested objects using foreach (Transoform t in Transform):

1 public class Area : MonoBehaviour {

2 // inspector settings

3 public Transform innerWallsGroup;

4 public Vector3 wallsPos;

5

6 private List<GameObject> innerWalls = new List<GameObject>();

7 private bool[] wallIsRaised = null;

8

9 void Start() {

10 foreach (Transform t in innerWallsGroup) {

11 innerWalls.Add(t.gameObject);

12 }

13

14 wallIsRaised = new bool[innerWalls.Count];

15

16 for (int i = 0; i < innerWalls.Coutn; i++) {

17 innerWalls[i].transform.position = wallsPos;

18 innerWalls[i].SetActive(false);

19 wallIsRaised[i] = false;

20 }

21 }

22 }

11

4 CO-ORDINATE SYSTEMS

4.2 Screen Space, Viewport Space, &World Space

Reference: https://docs.unity3d.com/ScriptReference/Camera.html

The Camera class provides methods for translating between three different “spaces”, i.e. different ways of mapping the
positions of things.

Each of these is stored as a Vector3 (which is a struct). A screen space point is defined in pixels. The bottom-
left of the screen is (0, 0); the right-top is (Camera.pixelWidth, Camera.pixelHeight) . If you’re using a Vector3 rather
than a Vector2, then the z position is inworld units in front of the Camera, rather than in screen pixels. See also the
Screen class: https://docs.unity3d.com/ScriptReference/Screen.html

A viewport space point is normalised and relative to the Camera. The bottom-left of the Camera is (0, 0); the
top-right is (1, 1). Again, the z position (if any) is in world units in front of the Camera. E.g., this is appropriate for
positioning GUI elements independent of actual pixel resolution of the screen.

A world space is defined in global co-ordinates (for example, transform.position. E.g., this is appropriate for
GameObjects in the game world. GameObjects which are nested in the Hierarchy have both transform.position &
transform.localPosition; transform.rotation& transform.localRotation, etc.

4.2.1 Typical Space-Translation Operations

Find where the mouse is in world co-ordinates to see if a GameObject is under the mouse:

1 // note that Input.mousePosition gives a Vector4 where the z component is 0

2 // the screen is 2D of course; the z component of the Vector3 supplied to ScreenToWorldPoint is a

world-coordinate distance into the world.↪→

3 Vector3 mousePosInWorld = Camera.main.ScreenToWorldPoint(Input.mousePosition);

Find a GameObject in screen-pixel coordinates to position a GUI item such as a healthbar above it:

1 GameObject targ; // assumed not to be null

2 Vector3 screenPos = Camera.main.WorldToScreenPoint(targ.transform.position);

1 // Here, we find the 3D position that's just above the enemy's head, and convert this to a

vieweort position when viewed through the player's camera.↪→

2 // Finally, this viewport position is converted to a pixel position as required by the GUI sprite.

3 public class MonsterManager : MonoBehaviour {

4 void Update () {

5 if (GameManager.gameState==GameStates.Playing) {

6 if (numMonstersAlive==1) {

7 // put the final enemy indicator (GUI object) above the final monster

8 GameObject go = GUIManager.instance.finalEnemyIndicator;

9 Monster m = allActiveMonsters[0];

10 Bounds b = m.mycollider.bounds;

11 Vector3 pos = new Vector3(b.center.x, b.max.y + 1f, b.center.z);

12 Vector3 viewPos = Player.myPlayer.fpsCamera.WorldToViewportPoint(pos);

13 if (viewPos.x<0f || viewPos.x>1f || viewPos.y<0f || viewPos.y>1f || viewPos.z<0f)

14 go.SetActive(false);

15 else {

16 go.SetActive(true);

17 go.transform.position = new Vector2(viewPos.x*Screen.width,

viewPos.y*Screen.height);↪→

18 }

12

https://docs.unity3d.com/ScriptReference/Camera.html
https://docs.unity3d.com/ScriptReference/Screen.html

5 OBJECT INTERACTIONSWITHCOLLIDERS & TRIGGERS

19 }

20 }

21 }

22 }

Listing 3: The “Final Enemy Indicator” in DemonPit

5 Object Interactions with Colliders & Triggers

Objects which have Colliders & Rigidbodys will physically respond to impacts (i.e., they’ll bounce off each other).
Objects which have Triggers but not Colliders will not physically interact.

Related to the physics engine are two sets of MonoBheaviourmethods which are called automatically when objects with
Colliders or Triggers interact:

1 // these happen for Collider-to-Collider collisions

2 OnCollisionEnter(Collision coll);

3 OnCollisionExit(Collision coll);

4 OnCollisionStay(Collision coll);

5

6 // these happen for Trigger-to-Trigger collisions

7 OnTriggerEnter(Collider coll);

8 OnTriggerExit(Collider coll);

9 OnTriggerStay(Collider coll);

The Collision argument provides information on the game object that has collided with us, as well as additional
information about the collision itself (e.g., the speed of impact). The Collider argument is simply a reference to the
Trigger component that interact with ours. OnCollision refers to an actual physics interaction between two Colliders
(e.g. BoxCollider or SphereCollider components). OnTrigger is the same thing except here the Collider has its Trigger
flag set to true. Triggers enable game-logic interaction when you don’t want physical collision responses.

Reference: https://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html

5.1 Lab 3: Asteroid Assault on Mars & its Moons

This lab builds on the work from the last two weeks; we already haveMars rotating, with Phobos &Deimos orbiting
around it, and keyboard control of the camera. This week, we will be instantiating asteroids at runtime, and setting
themmoving (using physics). Asteroid which collide with anything will be destroyed, as will be asteroids which pass
offscreen.

5.2 Triggers (Sensors)

Triggers are invisible components that are activated (triggered) when a character or other object passes inside them.
They are a very common & useful mechanism in games. In Unity, Trigger is made by using a Collider with its Trigger
property checked.

5.3 Coroutines

Coroutines are special functions that can pause their execution. They’re very useful for delayed execution, making
things happen in steps (with a defined delay between each step), or for waiting for something else to complete before
executing. Coroutines are a very useful feature provided by the MonoBehaviour class. Their usefulness is because the
code related to something occurring in the game is kept all in one place, even if that something takes a long time to
occur, or occurs in stages. Coroutines are not threads, as they run in the same thread as the main Unity process, but
they are much simpler to use than threads. In any case, most of the Unity SDK is not thread-safe. Coroutines are started

13

https://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html

5 OBJECT INTERACTIONSWITHCOLLIDERS & TRIGGERS

with a call to StartCoroutine(), and they must have the IEnumerator return type. Technically, the way that these
work is thatUnitymaintains a list of activeCoroutines and on each game loopwakes up any that are nowdue towake up.

When the coroutine is activated, it well execute until the next yield statement and then pause until it is resumed.
Various values can be supplied with the yield statement, e.g. yield return null simply waits until the next frame.

1 private void Start() {

2 Debug.Log("Start method");

3 StartCoroutine(TestCoroutine());

4 Debug.Log("Start method ends");

5 }

6

7 // this coroutine has a loop that runs as along as the calling object is active

8 private IEnumerator TestCoroutine() {

9 Debug.Log("TestCoroutine");

10 while(true)

11 {

12 Debug.Log("Here");

13 yield return null;

14 Debug.Log("There");

15 }

16 }

17

18 private void Update() {

19 Debug.Log("Update");

20 }

21

22 // Output should be:

23 /*

24 Start method

25 TestCoroutine

26 Here

27 Start method ends

28 Update

29 There

30 Here

31 Update

32 There

33 Here

34 */

Some of the most useful Coroutine yield values include:

• yield return null; – the coroutine is continued the next time that it is eligible, normally on the next frame.

• yield return new WaitForSeconds(3f); – causes the coroutine to pause for a specified time period (three
seconds in this example). Be aware of the garbage implications of this.

• yield return StartCoroutine(OtherCoroutine()); – waits until the other coroutine has run to completion
before the yielder is resumed.

• yield break; – stops the coroutine and exits (i.e., this is the equivalent of a return statement in a normal
method).

Be aware of changes during the yield time. You always have to be careful with asynchronous programming: something
important may have changed during the “down time” of a coroutine.

14

6 PHYSICS

Reference: https://unitygem.wordpress.com/coroutines/

5.3.1 Invoke& InvokeRepeating

Invoke& InvokeRepeating provide a simpler way of running a complete method some time in the future, either as a
one-off or a repeating call.

1 public class ExampleScript : MonoBehaviour

2 {

3 // Launches a projectile after 2 seconds

4

5 Rigidbody projectile;

6

7 void Start() {

8 Invoke("LaunchProjectile", 2f);

9 }

10

11 void LaunchProjectile()

12 {

13 Rigidbody instance = Instantiate(projectile);

14 instance.velocity = Random.insideUnitSphere * 5f;

15 }

16 }

To invoke repeatedly:

1 InvokeRepeating("LaunchProjectile", 2.0f, 0.3f);

5.4 Layers

Layers allow you to group game objects into categories. They are can be found at Edit→ Project Settings→ Tags and
Layers. You can then decide which layers interact with each other in the physics simulation. You can also use an object’s
Layer to decide what happens when it collides with another object. You can also apply raycasts (see later) on specific
objects only, e.g. to determine whether a monster can see a player, you would cast a ray between the position of the mon-
ster’s head and the player’s head, but only let the raycast considerwalls/floors, i.e. it would ignore any creatures in theway.

Don’t confuse Layers with Sorting Layers: the latter is for deciding the draw order of Sprites.

Reference: https://docs.unity3d.com/560/Documentation/Manual/Layers.html

6 Physics

6.1 Rigidbody

References:

• https://docs.unity3d.com/Manual/RigidbodiesOverview.html

• https://docs.unity3d.com/ScriptReference/Rigidbody.html

A Rigidbody is the main component that enables phyiscal behaviour for a GameObject; it puts the GameObject under the
control of the physics engine. The object will respond to gravity if it has a Rigidbody component attached, (provided
that the useGravity field is not set to false. If one or more Collider components are added, the GameObject is affected
by incoming collisions (from other Colliders) according to its shape, mass, momentum, linear, & angular velocities, as

15

https://unitygem.wordpress.com/coroutines/
https://docs.unity3d.com/560/Documentation/Manual/Layers.html
https://docs.unity3d.com/Manual/RigidbodiesOverview.html
https://docs.unity3d.com/ScriptReference/Rigidbody.html

6 PHYSICS

well as Physics Materials which defined bounciness & friction.

Since a Rigidbody component takes over the movement of the GameObject that it’s attached to, you normally shouldn’t
try to move it from a script by changing the Transform properties such as position & rotation; instead you should
apply forces to push the GameObject and let the physics engine calculate the results. When a Rigidbody is moving slower
than a defined minimum linear or rotational speed, the physics engine assumes that it has come to a halt. When this
happens, the GameObject does not move again until it receives a collision or force, and so it is set to “sleeping” mode.
This optimisation means that no processor time is spent updating the Rigidbody until the next time that is “awoken”,
i.e. set in motion again. Sleeping can also be useful as it removes small “jitters” that may happen due to inaccuracies
in the physics simulation. In your scripts which apply physics forces to Rigidbodies, use the FixedUpdate()method
rather than the Update()method, since FixedUpdate() is synced with the physics simulation updates.

Rigidbody properties:

• public float drag

• public float angularDrag

• public float mass

• public Vector3 velocity

• public Vector3 angularVelocity

• public Vector3 centerOfMass (offset from Transform centre).

Rigidbodymethods

• public void AddForce(Vector3 force) (force is a vector in world co-ordinates applied through the centre of
mass of the Rigidbody.

• public void AddRelativeForce(Vector3 force) (force is a vector in local co-ordinates).

• public void AddForceAtPosition(Vector3 force, Vector3 position)

6.2 Colliders

Reference: https://docs.unity3d.com/Manual/CollidersOverview.html

Collider components define the shape of an object for the purposes of physical collisions. Colliders are invisible
at runtime, and do not need to be the exact same shape as the object’s mesh; a rough approximation is of the shape
is often more efficient, and is indistinguishable in gameplay. The simplest (& least processor-intensive) colliders
are the primitive collider types, which all inherit from the superclass Collider. In 3D, these are the BoxCollider,
SphereCollider, & CapsuleCollider. In 2D, these are BoxCollider2D& CircleCollider2D. Any number of these can
be added to a single object to create composite colliders to reasonably approximate a 3Dmodel.

If you need more accuracy (at increased processor cost), use MeshColliderwhich accurately matches the 3D graphical
model (the polygonal mesh). A MeshColliderwill be unable to collide with another MeshCollider unless you mark
it as Convex in the inspector. This will generate the collider shape as a “convex hull” which is like the original mesh
with concavities filled in. The general rule is to use mesh colliders for static scene geometry (walls, ground, etc.) and to
approximate the shape of moving objects using composite primitive colliders.

16

https://docs.unity3d.com/Manual/CollidersOverview.html

6 PHYSICS

Figure 7: MeshCollider: Convex Hull vs Non-Convex

Figure 8: Composite Collider

6.2.1 Collisions

Reference: https://docs.unity3d.com/ScriptReference/Collision.html

Any object with a Collider receives messages from the physics engine when it collides with other Colliders. Any
script on the object may choose to respond by implementing the following methods:

• void OnCollisionEnter(Collision collision) (the Collision object contains information about contact
points, impact velocity, etc.)

• void OnCollisionExit(Collision collision)

• void OnCollisionStay(Collision collision)

The OnCollisionmethods receive objects of type Collision, which contain useful information such as:

• collider: The Collider object that was hit.

• contacts: The contact point(s) generated by the physics engine as an array of ContactPoint structs.

• gameObject: The GameObjectwhose collider was collided with.

• relativeVelocity: The relative linear velocity of the two colliding objects as a Vector3.

• rigidbody: The Rigidbody that was hit; this is null if the object had a collider but no Rigidbody.

17

https://docs.unity3d.com/ScriptReference/Collision.html

6 PHYSICS

6.2.2 ContactPoint Struct

Reference: https://docs.unity3d.com/ScriptReference/ContactPoint.html

Collision objects contain arrays of ContactPoint structs in their .contacts member variable. The member data
of the ContactPoint struct is as follows:

• point: The point of contact in Vector3world co-ordinates.

• normal: The surface normal at the contact point in Vector3.

• otherCollider: The other Collider in contact at the point.

• thisCollider: The first collider in contact at the point (useful if a GameObject has more than one Collider and
we need to know which one).

These fields allow us to operate on the object that we hit and to create accurate special effects etc. at the point of contact,
rotated according to the surface normal at that point.

6.2.3 PhysicMaterial

WhenColliders interact, their surfaces need to simulate the properties of thematerial that they are supposed to represent.
For example, a sheet of ice will be slippery while a rubber ball will offer a lot of friction and be very bouncy. Although
the shape of colliders is not deformed during Collisions (hence the term “rigid body physics”), their friction & bounce
can be configured using PhysicMaterials.

18

https://docs.unity3d.com/ScriptReference/ContactPoint.html

	Introduction
	Lecturer Contact Information
	Assessment
	Game Engines
	Unity3D Game Engine
	The Game Loop
	The Unity API
	Component-Based Architecture

	Lab Session 1
	Key Concepts & Classes
	MonoBehaviour
	GameObjects in Unity
	Getting References to GameObjects at Runtime
	Prefabs
	Runtime Instantiation & Destruction of GameObjects
	Cameras
	Transforms
	Skyboxes
	Keyboard Input
	Static Member Variables
	Static Member Functions
	The Singleton Pattern

	Lab 2: Fear & Dread

	Co-ordinate Systems
	Examples
	Screen Space, Viewport Space, & World Space
	Typical Space-Translation Operations

	Object Interactions with Colliders & Triggers
	Lab 3: Asteroid Assault on Mars & its Moons
	Triggers (Sensors)
	Coroutines
	Invoke & InvokeRepeating

	Layers

	Physics
	Rigidbody
	Colliders
	Collisions
	ContactPoint Struct
	PhysicMaterial

