
Name: AndrewHayes
Student ID: 21321503
E-mail: a.hayes18@universityofgalway.ie

ct421 2025–03–17

Project 2: Evolutionary Game Theory

1 Part 1: Evolution Against Fixed Strategies

1.1 Implementation
To implement the genetic algorithm for this assignment, I largely re-used the general framework I developed in the previous
assignment, making appropriate changes and removing unnecessary features. The genetic algorithm can be tuned by providing
command-line flags & arguments, the possible options for which can be displayed by running the program with the -h flag, i.e.,
python3 ipd.py -h, which gives the following output:

1 usage: ipd.py [-h] [-s SIZE] [-g NUM_GENERATIONS] [-a GIVE_UP_AFTER]

2 [-i NUM_ITERATIONS] [-p SELECTION_PROPORTION]

3 [-c CROSSOVER_RATE] [-m MUTATION_RATE] [-o OUTPUT_FILE]

4

5 Program to evolve strategies for the Iterated Prisoner's Dilemma

6

7 options:

8 -h, --help show this help message and exit

9 -s, --size SIZE Initial population size

10 -g, --num-generations NUM_GENERATIONS

11 Number of generations

12 -a, --give-up-after GIVE_UP_AFTER

13 Number of generations to give up after if best

14 solution has remained unchanged

15 -i, --num-iterations NUM_ITERATIONS

16 Number of iterations of the dilemma between two agents

17 -p, --selection-proportion SELECTION_PROPORTION

18 The proportion of the population to be selected

19 (survive) on each generation

20 -c, --crossover-rate CROSSOVER_RATE

21 Probability of a selected pair of solutions to

22 sexually reproduce

23 -m, --mutation-rate MUTATION_RATE

24 Probability of a selected offspring to undergo

25 mutation

26 -o, --output-file OUTPUT_FILE

27 File to write TSV results to

Listing 1: Output of python3 ipd.py -h

I chose to represent each strategy as a 3-bit string, where 0 represents defection and 1 represents co-operation; the first bit of the
string represents the strategy’s first move, the second bit represents the strategy’s reaction to a defection by its opponent, and
the third bit represents the strategy’s reaction to a co-operation by its opponent. For that reason, there are only eight possible
strategies in the search space:

• [0, 0, 0]: always defect.

• [0, 0, 1]: grim tit-for-tat.

• [0, 1, 0]: defect at first, then do opposite of what opponent did last.

• [0, 1, 1]: defect at first, then always co-operate.

• [1, 0, 0]: feint co-operation, then always defect.

• [1, 0, 1]: tit-for-tat.

• [1, 1, 0]: co-operate at first, then do opposite of what opponent did last.

1

mailto://a.hayes18@universityofgalway.ie

• [1, 1, 1]: always co-operate.

Because there are only 8 possibilities in the search space, and the recommended population size in the assignment specification
was 50 – 100, any random initialisation of the population was almost guaranteed to find not only the optimal solution, but every
possible solution in the search space (assuming there is one optimal solution out of the eight, and that we randomly initialise
100 individuals, the chances of not finding the optimal solution immediately are 7

8

100 ≈ 0.0000015878). Therefore, I took the
assignment not to focus on finding the optimal solution, but exploring how the population converges on the optimal solution
for a given fixed fitness landscape. This small search space also meant that the population converges very quickly, and quickly
sheds diversity in the population; in an attempt to to mitigate this, I set the mutation rate to be relatively high (0.1), and allowed
the number of generations to be longer than necessary so as to observe the population dynamics over time. My crossover &
mutation operators were also relatively simple to reflect this small search space: I implemented one crossover operator, that
being single-point crossover, and one mutation operator, that being a simple bit-flip mutation.

1.2 Exploring Convergence with different Fitness Evaluations
1.2.1 Equally-Proportioned Always Co-Operate, Always Defect, & Tit-for-Tat

When the fitness function consisted of an always co-operate strategy, an always defect strategy, & a tit-for-tat strategy, the
best-performing evolved strategy was [0,1,0]: defect on the first move, then do the opposite of what the opponent did last
time. It achieved a fitness of 75, narrowly outperforming its more-polite sibling of [1,1,0] (co-operate at first, then do the
opposite of what the opponent did) and [0,0,0] (always defect), both with fitnesses of 74. This surprised me at first, but it
makes sense: the strategy of doing the opposite of what the opponent last did performs poorly against Always Defect, as it will
lose each time, but exploits Always Co-Operate efficiently, allowing it to gain a high fitness score. It also does reasonably well
against Tit-for-Tat: every second iteration, it will successfully exploit Tit-for-Tat, but lose every other iteration. The strategy of
defecting then doing the opposite of the opponent out-performs its sibling co-operate then do the opposite because it doesn’t
miss the opportunity to exploit Tit-for-Tat & Always Co-Operate on its first move.

Figure 1: Fitness over generations

2

Figure 2: Diversity of the strategy population over generations

1.2.2 2× Always Defect, 1× Always Co-Operate, & 1× Tit-for-Tat

1 Best strategy: [0, 0, 0]

2 Fitness: 84

3 Generation: 0

4 [0, 0, 0]: 84

5 [0, 0, 1]: 77

6 [0, 1, 0]: 76

7 [0, 1, 1]: 63

8 [1, 0, 0]: 82

9 [1, 0, 1]: 78

10 [1, 1, 0]: 74

11 [1, 1, 1]: 60

Listing 2: Output of 2× always defect, 1× always co-operate, & 1× tit-for-tat

When a second Always Defect is added to the mix, it becomes a better strategy to also always defect: while this means it will do
poorly against Always Defect and Tit-for-Tat, it can efficiently & ruthlessly exploit the Always Co-Operate to gain a high fitness
regardless.

3

Figure 3: Fitness over generations

Figure 4: Diversity of the strategy population over generations

1.2.3 1× Always Defect, 2× Always Co-Operate, & 1× Tit-for-Tat

1 Best strategy: [0, 1, 0]

2 Fitness: 125

3 Generation: 0

4 [0, 0, 0]: 124

5 [0, 0, 1]: 99

6 [0, 1, 0]: 125

7 [0, 1, 1]: 94

4

8 [1, 0, 0]: 121

9 [1, 0, 1]: 99

10 [1, 1, 0]: 122

11 [1, 1, 1]: 90

Listing 3: 1× always defect, 2× always co-operate, & 1× tit-for-tat

When a second Always Co-Operate is added to the mix, the best strategy reverts to being defect on the first move, then do the
opposite of what the opponent did, for the same reasons as previously explored.

Figure 5: Fitness over generations

Figure 6: Diversity of the strategy population over generations

5

1.2.4 1× Always Defect, 1× Always Co-Operate, & 3× Tit-for-Tat

1 Best strategy: [1, 0, 1]

2 Fitness: 129

3 Generation: 0

4 [0, 0, 0]: 102

5 [0, 0, 1]: 117

6 [0, 1, 0]: 123

7 [0, 1, 1]: 120

8 [1, 0, 0]: 105

9 [1, 0, 1]: 129

10 [1, 1, 0]: 126

11 [1, 1, 1]: 120

Listing 4: 1× always defect, 1× always co-operate, & 3× tit-for-tat

When three Tit-for-Tats are added into the mix, we see Tit-for-Tat emerge as the dominant strategy, which is to be expected; it
achieves a steadymiddle-ground approach via co-operation, and it has enough fellow co-operators tomake up for the defection it
suffers. The defector strategies get punished frequently enough to reduce their winnings from defection, allowing co-operation
to become a dominant & winning strategy.

Figure 7: Fitness over generations

6

Figure 8: Diversity of the strategy population over generations

2 Part 2: Extension
To extend the genetic algorithm implementation, I chose to add a variable level of noise to the program, supplied via command-
line argument -n, --noise-level NOISE_LEVEL. I then re-ran the same experiments as before with varying noise levels.

2.1 NOISE_LEVEL = 0.1

The results that I got for each of the previously-attempted experiments when I set the noise level to 0.1 were as follows:

• Equally proportioned: [0,0,0].

• 2× always defect: [0,0,0].

• 2× always co-operate: [0,0,0].

• 3× tit-for-tat: [1,0,1].

2.2 NOISE_LEVEL = 0.2

The results that I got for each of the previously-attempted experiments when I set the noise level to 0.2 were as follows:

• Equally proportioned: [0,0,0].

• 2× always defect: [0,0,0].

• 2× always co-operate: [0,0,0].

• 3× tit-for-tat: [0,0,0].

2.3 NOISE_LEVEL = 0.5

The results that I got for each of the previously-attempted experiments when I set the noise level to 0.5 were as follows:

• Equally proportioned: [0,0,0].

• 2× always defect: [0,0,0].

• 2× always co-operate: [0,0,0].

• 3× tit-for-tat: [0,0,0].

7

2.4 NOISE_LEVEL = 0.8

The results that I got for each of the previously-attempted experiments when I set the noise level to 0.8 were as follows:

• Equally proportioned: [0, 0, 0].

• 2× always defect: [0,0,0].

• 2× always co-operate: [0,0,0].

• 3× tit-for-tat: [0,0,0].

As can be seen from the above outputs, the introduction of even just a little noise to each evolution immediately broke any
possibility for co-operation, the one exception being that tit-for-tat still performed well against three other tit-for-tats at the
lowest noise level, most likely because it got some co-operation in before noise disrupted the chain of co-operation. Noise makes
co-operation more difficult, and is highly detrimental to these simple strategies defined by short bitstrings: these genomes don’t
have the necessary complexity to express a level of forgiveness, so one one bit of noise can destroy all chances of co-operation for
the rest of the game. For a noisy environment, error-tolerant strategies are required, like generous tit-for-tat, which can avoid
falling into the defection loops that overly rigid and/or grudging strategies fall into.

8

	Part 1: Evolution Against Fixed Strategies
	Implementation
	Exploring Convergence with different Fitness Evaluations
	Equally-Proportioned Always Co-Operate, Always Defect, & Tit-for-Tat
	2 Always Defect, 1 Always Co-Operate, & 1 Tit-for-Tat
	1 Always Defect, 2 Always Co-Operate, & 1 Tit-for-Tat
	1 Always Defect, 1 Always Co-Operate, & 3 Tit-for-Tat

	Part 2: Extension
	NOISE_LEVEL = 0.1
	NOISE_LEVEL = 0.2
	NOISE_LEVEL = 0.5
	NOISE_LEVEL = 0.8

