
Uninformed Search Informed Search Adversarial Search

CT421 Artificial Intelligence

CT421 Artificial Intelligence 1 / 33



Uninformed Search Informed Search Adversarial Search

Uninformed Search

CT421 Artificial Intelligence 2 / 33



Uninformed Search Informed Search Adversarial Search

Search

Many problems can be re-cast or viewed as a search problem.

Consider designing an algorithm to solve a suduko puzzle.

In every step, we are effectively searching for a move (an action) that takes us to a
correct legal state. To complete the game, we are iteratively searching for an
action that brings us to legal board and so forth until complete.

Other Examples:

Searching for a path in a maze

Word ladders

Chess/Checkers

CT421 Artificial Intelligence 3 / 33



Uninformed Search Informed Search Adversarial Search

Suduko

Figure: Suduko

CT421 Artificial Intelligence 4 / 33



Uninformed Search Informed Search Adversarial Search

Formalizing the problem statement

Problem can be in various states

Start in an initial state

There are a set of actions available

Each action changes the state

Each action has an associated cost

Want to reach some goal while minimizing cost

CT421 Artificial Intelligence 5 / 33



Uninformed Search Informed Search Adversarial Search

More formally

Set of states S

Start state s0 ∈ S

Set of actions A and action rules a(s) → s
′

A goal test g(s) → 0, 1

Cost function C(s, a, s
′
) → R

Search can be defined by the 5-tuple (S, s, a, g,C)

CT421 Artificial Intelligence 6 / 33



Uninformed Search Informed Search Adversarial Search

Problem Statement
Find a sequence of actions a1 . . . an and corresponding states s0 . . . sn such that

s0 = s

si = ai (Si−1)

g(sn) = 1

while minimizing:
∑n

i=1 c(ai )

CT421 Artificial Intelligence 7 / 33



Uninformed Search Informed Search Adversarial Search

Suduko

Sudoku States: all legal Sudoku boards.

Start state: a particular, partially filled-in, board.

Actions: inserting a valid number into the board.

Goal test: all cells filled and no collisions.

Cost function: 1 per move.

CT421 Artificial Intelligence 8 / 33



Uninformed Search Informed Search Adversarial Search

We can conceptualise this search as a search tree.

A node represents a state.

The edges from a state represent the possible actions from that state. The edge
point to the new resulting state from the action.

CT421 Artificial Intelligence 9 / 33



Uninformed Search Informed Search Adversarial Search

Important factors of a search tree

The breadth of the tree (branching factor)

The depth of the tree

The minimum solution depth

Size of the tree O(bd )

The set of unexplored nodes that are reachable from any currently explored node
is known as the frontier

Choosing which node to explore next is the key in search algorithms

CT421 Artificial Intelligence 10 / 33



Uninformed Search Informed Search Adversarial Search

Initialise
visited = {};
frontier = {s0};
goal_found = false;

while !(goal_found)
node = frontier.next();
frontier.del(node);
if(g(node));

goal_found = true;
else

visited.add(node)
forall child in node.children

if(not visited.contains(child))
frontier.add(child)

CT421 Artificial Intelligence 11 / 33



Uninformed Search Informed Search Adversarial Search

The manner in which we expand the node is key to how the search progresses.

The way in which we implement (frontier .next()) determines the type of search.

Otherwise the basic approach above remains unchanged.

CT421 Artificial Intelligence 12 / 33



Uninformed Search Informed Search Adversarial Search

Uninformed Search

Nothing known (or used) about solutions in the tree.
Possible approaches?

Expand deepest node (depth-first search)
Expand closest node (breadth-first search)

Properties
Completeness
Optimality
Time Complexity (total number of nodes visited)
Space Complexity (size of frontier)

CT421 Artificial Intelligence 13 / 33



Uninformed Search Informed Search Adversarial Search

Depth First Search

Space: O(bd)

Time: O(bd )

Completeness: Only for finite trees.

Optimality: No.

CT421 Artificial Intelligence 14 / 33



Uninformed Search Informed Search Adversarial Search

Breadth First Search

Space: O(bm+1), where m is the depth of the solution

Time: O(bm), where m is the depth of the solution in the tree

Completeness: Yes.

Optimality: Yes (assuming constant costs)

CT421 Artificial Intelligence 15 / 33



Uninformed Search Informed Search Adversarial Search

Introduction

DFS: good regarding memory cost; however, suboptimal solution.

BFS: optimal solution, but expensive memory cost.

Iterative Deepening Search

Iterative Deepening attempts to overcome some of the issues of both of the above.

Run DFS to a fixed depth z.

Start at d = 1 If no solution, increment d and rerun.

CT421 Artificial Intelligence 16 / 33



Uninformed Search Informed Search Adversarial Search

Efficiency?

Low memory requirements (equal to DFS).

Not many more nodes expanded than BFS.

Note the leaf level will have more nodes than the previous layers

CT421 Artificial Intelligence 17 / 33



Uninformed Search Informed Search Adversarial Search

Let’s consider the case where the costs are not uniform; thus far we have
assumed each edge has a fixed cost.

Neither DFS or BFS are guaranteed to find the least-cost path, in the case where
action costs are not uniform.

Approach: chose the one with lowest cost?

CT421 Artificial Intelligence 18 / 33



Uninformed Search Informed Search Adversarial Search

Order the nodes in the frontier by cost-so-far (Cost of the path from the start state
to the current node)

Explore next the node with the smallest cost-so-far

Give the optimal solution

Complete solution (given all positive costs)

CT421 Artificial Intelligence 19 / 33



Uninformed Search Informed Search Adversarial Search

Informed Search

CT421 Artificial Intelligence 20 / 33



Uninformed Search Informed Search Adversarial Search

So far, we have assumed we know nothing about the search space? What should
we do if we know something about the space?

We know the cost of getting to the current node

Remaining cost of finding solution: cost from current node to goal state

Total cost: Cost of getting from start to current node + cost of getting from current
node to goal state

CT421 Artificial Intelligence 21 / 33



Uninformed Search Informed Search Adversarial Search

Approach

Use an heuristic h(s) to estimate the remaining cost

h(s) = 0 if s is a goal.

Problem specific

CT421 Artificial Intelligence 22 / 33



Uninformed Search Informed Search Adversarial Search

A* algorithm

Let g(s) be the cost of the path so far

This algorithm expands the node s to minimise g(s) + h(s)

Manage frontier nodes as priority queue.

If h never overestimates the cost, the algorithm will find the optimal solution.

CT421 Artificial Intelligence 23 / 33



Uninformed Search Informed Search Adversarial Search

Heuristics

Fast to compute.

Close to real costs.

CT421 Artificial Intelligence 24 / 33



Uninformed Search Informed Search Adversarial Search

Adversarial Search

CT421 Artificial Intelligence 25 / 33



Uninformed Search Informed Search Adversarial Search

Typical Game Setting

2 player

Alternating

Zero-sum: Gain for one loss for another.

Perfect information

CT421 Artificial Intelligence 26 / 33



Uninformed Search Informed Search Adversarial Search

“Solved” Games

A game is solved if an optimal strategy is known.

Strong solved: all positions.

Weakly solved: some (start) positions.

CT421 Artificial Intelligence 27 / 33



Uninformed Search Informed Search Adversarial Search

Set of possible states

Start state

Set of actions

End states (many)

Objective function

Control over actions alternates

CT421 Artificial Intelligence 28 / 33



Uninformed Search Informed Search Adversarial Search

Minimax Algorithm

Compute value for each node, going backwards from the end-nodes.

Max (min) player: select action to maximize (minimize) return.

Assumes perfect play, worst case.

For optimal play, require the agent to evaluate the whole tree

CT421 Artificial Intelligence 29 / 33



Uninformed Search Informed Search Adversarial Search

Issues to consider

Noise/randomness

Efficiency - size of tree

Many game trees too deep

Many game trees too broad

CT421 Artificial Intelligence 30 / 33



Uninformed Search Informed Search Adversarial Search

Alpha Beta Pruning

A means to reduce the search space.

Can prune sibling nodes based on previously found values.

Maintain the current maximum (for player 1) and current minimum (for player 2)

Allows us to discard whole subtrees

CT421 Artificial Intelligence 31 / 33



Uninformed Search Informed Search Adversarial Search

In reality, for many search scenarios in games, even with alpha beta pruning, the
space is much too large to get to all end states.

Instead, we use an evaluation function - effectively an heuristic to estimate the
value of a state (probability of win/loss)

Run search to fixed depth; evaluate all states at that depth

Perform look ahead from best states to another fixed depth.

CT421 Artificial Intelligence 32 / 33



Uninformed Search Informed Search Adversarial Search

Frame Title

Horizon Effects

What if something interesting/unusual/unexpected occurs at horizon + 1?

How do you identify?

When to generate and explore more nodes?

several algorithms developed to take this into account

Deceptive problems?

CT421 Artificial Intelligence 33 / 33


	Uninformed Search
	Informed Search
	Adversarial Search

