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Search

Many problems can be re-cast or viewed as a search problem.

Consider designing an algorithm to solve a suduko puzzle.

In every step, we are effectively searching for a move (an action) that takes us to a
correct legal state. To complete the game, we are iteratively searching for an
action that brings us to legal board and so forth until complete.

Other Examples:

Searching for a path in a maze

Word ladders

Chess/Checkers
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Suduko

Figure: Suduko
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Formalizing the problem statement

Problem can be in various states

Start in an initial state

There are a set of actions available

Each action changes the state

Each action has an associated cost

Want to reach some goal while minimizing cost
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More formally

Set of states S

Start state s0 ∈ S

Set of actions A and action rules a(s) → s
′

A goal test g(s) → 0, 1

Cost function C(s, a, s
′
) → R

Search can be defined by the 5-tuple (S, s, a, g,C)
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Problem Statement
Find a sequence of actions a1 . . . an and corresponding states s0 . . . sn such that

s0 = s

si = ai (Si−1)

g(sn) = 1

while minimizing:
∑n

i=1 c(ai )
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Suduko

Sudoku States: all legal Sudoku boards.

Start state: a particular, partially filled-in, board.

Actions: inserting a valid number into the board.

Goal test: all cells filled and no collisions.

Cost function: 1 per move.
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We can conceptualise this search as a search tree.

A node represents a state.

The edges from a state represent the possible actions from that state. The edge
point to the new resulting state from the action.
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Important factors of a search tree

The breadth of the tree (branching factor)

The depth of the tree

The minimum solution depth

Size of the tree O(bd )

The set of unexplored nodes that are reachable from any currently explored node
is known as the frontier

Choosing which node to explore next is the key in search algorithms
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Initialise
visited = {};
frontier = {s0};
goal_found = false;

while !(goal_found)
node = frontier.next();
frontier.del(node);
if(g(node));

goal_found = true;
else

visited.add(node)
forall child in node.children

if(not visited.contains(child))
frontier.add(child)
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The manner in which we expand the node is key to how the search progresses.

The way in which we implement (frontier .next()) determines the type of search.

Otherwise the basic approach above remains unchanged.
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Uninformed Search

Nothing known (or used) about solutions in the tree.
Possible approaches?

Expand deepest node (depth-first search)
Expand closest node (breadth-first search)

Properties
Completeness
Optimality
Time Complexity (total number of nodes visited)
Space Complexity (size of frontier)
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Depth First Search

Space: O(bd)

Time: O(bd )

Completeness: Only for finite trees.

Optimality: No.
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Breadth First Search

Space: O(bm+1), where m is the depth of the solution

Time: O(bm), where m is the depth of the solution in the tree

Completeness: Yes.

Optimality: Yes (assuming constant costs)
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Introduction

DFS: good regarding memory cost; however, suboptimal solution.

BFS: optimal solution, but expensive memory cost.

Iterative Deepening Search

Iterative Deepening attempts to overcome some of the issues of both of the above.

Run DFS to a fixed depth z.

Start at d = 1 If no solution, increment d and rerun.
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Efficiency?

Low memory requirements (equal to DFS).

Not many more nodes expanded than BFS.

Note the leaf level will have more nodes than the previous layers

CT421 Artificial Intelligence 17 / 33



Uninformed Search Informed Search Adversarial Search

Let’s consider the case where the costs are not uniform; thus far we have
assumed each edge has a fixed cost.

Neither DFS or BFS are guaranteed to find the least-cost path, in the case where
action costs are not uniform.

Approach: chose the one with lowest cost?
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Order the nodes in the frontier by cost-so-far (Cost of the path from the start state
to the current node)

Explore next the node with the smallest cost-so-far

Give the optimal solution

Complete solution (given all positive costs)
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Informed Search
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So far, we have assumed we know nothing about the search space? What should
we do if we know something about the space?

We know the cost of getting to the current node

Remaining cost of finding solution: cost from current node to goal state

Total cost: Cost of getting from start to current node + cost of getting from current
node to goal state
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Approach

Use an heuristic h(s) to estimate the remaining cost

h(s) = 0 if s is a goal.

Problem specific
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A* algorithm

Let g(s) be the cost of the path so far

This algorithm expands the node s to minimise g(s) + h(s)

Manage frontier nodes as priority queue.

If h never overestimates the cost, the algorithm will find the optimal solution.
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Heuristics

Fast to compute.

Close to real costs.
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Adversarial Search
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Typical Game Setting

2 player

Alternating

Zero-sum: Gain for one loss for another.

Perfect information
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“Solved” Games

A game is solved if an optimal strategy is known.

Strong solved: all positions.

Weakly solved: some (start) positions.
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Set of possible states

Start state

Set of actions

End states (many)

Objective function

Control over actions alternates
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Minimax Algorithm

Compute value for each node, going backwards from the end-nodes.

Max (min) player: select action to maximize (minimize) return.

Assumes perfect play, worst case.

For optimal play, require the agent to evaluate the whole tree
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Issues to consider

Noise/randomness

Efficiency - size of tree

Many game trees too deep

Many game trees too broad
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Alpha Beta Pruning

A means to reduce the search space.

Can prune sibling nodes based on previously found values.

Maintain the current maximum (for player 1) and current minimum (for player 2)

Allows us to discard whole subtrees
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In reality, for many search scenarios in games, even with alpha beta pruning, the
space is much too large to get to all end states.

Instead, we use an evaluation function - effectively an heuristic to estimate the
value of a state (probability of win/loss)

Run search to fixed depth; evaluate all states at that depth

Perform look ahead from best states to another fixed depth.
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Frame Title

Horizon Effects

What if something interesting/unusual/unexpected occurs at horizon + 1?

How do you identify?

When to generate and explore more nodes?

several algorithms developed to take this into account

Deceptive problems?
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