
INTRODUCTION – CT 216 SOFTWARE

ENGINEERING I

Dr. Enda Barrett

Enda.Barrett@universityofgalway.ie

Module overview (subject to change)
2

 Thursday IT 101 1-3 PM

 Software Engineering (Dr. Enda Barrett) – S1 + S2

 Group project – (Dr. Enda Barrett) – S1 + S2

 Blackboard

 Notes

 Problem sheets

 Assignment submission

 Announcements

 Lab Tutors: Daniel Kelly

 Labs start in a couple of weeks – Friday 12 - 2PM IT 106

Module Details
3

 Exam at the end of the year (Summer 2023)

 No exam at the end of Semester 1

 4 questions answer 3

 Group project will account for 40% of the final

mark

 Delivery of a spec – 5% - Group

 Project Demo and Final Report (last week of term)

 Graded holistically at the end

Semester 1 goal
4

 Learn about the software engineering principles
and methods which enable the building of large
team based software systems

 Understand the importance of version control and
team based development

 Get cloud services experience and configure the
deployment environment for your group based
projects

Blackstone Launchpad
5

 Blackstone LaunchPad

Group Projects
6

 Groups of 4 people

 Web based application i.e. You will build a web application
using (HTML, CSS, JavaScript), you will build the backend in
Node.js, deploy to Firebase and utilise a data storage
component i.e. Firestore

 Past projects included

◼ Chat rooms

◼ Personal Dashboards

◼ Photo sharing application

 Some difference between groups!

 So get thinking about what you would like to do!

 I wish to keep the project groups within the class splits during the
face to face slots where possible.

Group project dates
7

 Please form your project groupings by

Friday 23rd September at 17:00

 Nominated group lead should email me
(Enda.Barrett@nuigalway.ie) the following

 Team/Group name (“The coders”),

 Names of each member,

 Group sizes of 4 work best

 Come up with an idea and mail it to me

◼ real time event app

◼ instant messenger

◼ social media tool

 If you don’t have a group I will randomly assign you

 If you opt out you will get 0!

Web applications
8

 Clear separation of concerns

 Frontend view code or UI (CSS, HTML)

◼ Look and feel, structuring content

 Frontend dynamic content (JavaScript, VueJS (potentially))

◼ GET/POST methods, handling/updating data

 Backend server side code (Node.js) – Firebase functions

◼ Returning data, developing APIs

 DB component (Firestore)

◼ Schemas, queries for document retrieval

 Basic app up and running by Christmas deployed using
Firebase.

CT216 SOFTWARE ENGINEERING 1

CLOUD COMPUTING

Dr. Enda Barrett

Enda.Barrett@universityofgalway.ie

What is cloud computing?
2

 “Cloud computing is a model for enabling

convenient, on-demand network access to a

shared pool of configurable computing

resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly

provisioned and released with minimal

management effort or service provider

interaction.” (NIST, May 2011)

What is cloud computing
3

 Back in the early 00’s there was this bookseller called Amazon,

who made their money by shipping books (and everything

else) around the world.

 To support their web app (Amazon.com) they had built up

some neat hosting infrastructure and software to manage it at

scale with a couple of data centers

 The centers were somewhat underutilised and Amazon decided

to start selling this spare capacity.

Server room
4

 At that time most businesses/organisations maintained a
server room on premises. In it they would have separate
rack mounted PCs/servers.

 Data would be stored on large Storage Networks

 Backups would be run on this data

 Multiple machines (servers) would run business critical software

 There were challenges to this

 Maintenance

 Upgrading machines

 Upfront purchasing costs

 Hire staff to manage it (Sysadmins)

What is cloud computing
5

 Started with storage

 Simple Storage Service launched on March 14 2006

marking the beginning of Amazon Web Services

 This allowed users to store documents, files, data on an

S3 bucket without having to manage, purchase,

maintain the underlying disk hardware.

What is cloud computing
6

 Then came computing

 It followed up its successful storage launch of S3 with

EC2 or Elastic Compute Cloud in August 2006

 This allowed you to have access to a remote server

accessible via the internet!

Demand was strong…
7

History of cloud computing
8

 Computing may someday be organized as a public
utility just as the telephone system is a public
utility,” Professor John McCarthy said at MIT’s
centennial celebration in 1961. “Each subscriber
needs to pay only for the capacity he actually uses,
but he has access to all programming languages
characteristic of a very large system … Certain
subscribers might offer service to other subscribers
… The computer utility could become the basis of a
new and important industry.”

https://www.technologyreview.com/2011/10/03/190237/the-

cloud-imperative/

Cloud computing growth
9

 The growth in cloud computing over the past

decade has been phenomenal.

 In April 2011, Forrester projected that it would be

worth $160bn dollars by 2020, in reality it was

27% larger at $219bn.

 In 2022 it hit over $480bn in value and is projected

to exceed $1tn by 2029.

https://www.fortunebusinessinsights.com/cloud-computing-market-102697

Where is the cloud?
10

Virginia
California

Ireland

H K/ Sing

Japan

Amazon US-East N. Virginia
11

Cloud types – Public cloud
12

 Amazon, MS Azure, Google Cloud are examples of

public clouds.

 Any member of the public can sign up and start

provisioning compute resources within minutes

 They are highly scalable and allow an organisation

to grow its infrastructure rapidly

Cloud types – Private cloud
13

 Private cloud

 Computing resources are dedicated to a single

customer and not shared with other customers.

Considered to be more secure.

 AWS do offer a virtual private cloud

 https://aws.amazon.com/vpc/

 Organisations can also host their on cloud on-prem

using software such as OpenStack.

https://aws.amazon.com/vpc/

Cloud types - Hybrid
14

 Finally a hybrid cloud is simply a mix of public

cloud resources and private resources. An

organisation may choose this option if there is a

mixture in the criticality of their data or

computational requirements.

 Data that doesn’t require heightened security can

be pushed on to the public cloud whereas that

which does can be hosted on the private cloud.

Cloud services
15

 Software as a Service (SaaS) - provides users
with—essentially—a cloud application, the
platform on which it runs, and the platform’s
underlying infrastructure.

 Platform as a Service (PaaS) - provides users with a
platform on which applications can run, as well as
all the IT infrastructure required for it to run.

 Infrastructure as a Service (IaaS) - provides users
with compute, networking, and storage resources.

Virtual Servers

 Infrastructure as a Service (IaaS)

 Amazon, Google, Microsoft

 Create virtual machines

 t1.micro, m1.small, c1.medium, m1.large…

 Customise instances and add greater amounts of storage.

 Each instance can be booted up with a different AMI, you can

even create your own!

 Xen Hypervisor (Sun, AMD, IBM, Dell, Intel)

 Storage area networks provide the storage

16

Advantages/Disadvantages of cloud

computing
17

 When compared to hosting in-house cloud
computing has a number of benefits

 Elasticity – if your application becomes very popular
you can procure new resources in minutes

 Reduced capital expenditure

 Economies of scale

 There are also some drawbacks

 Security/privacy

 Cost

 Migration issues

SOFTWARE PROCESSES

Dr. Enda Barrett

A Software Process: Who is like this?
2

Is there anyone like this?
3

Recap: Software Dev. is complex and

varied
4

• Ada

• 3 levels of

redundancy

• Different dev teams

Difference between these two?
5

vs

Good ProcessBad Process

Good EngineerBad Engineer

Building a house
6

 Plan

 Sketch the layout/structure

 Determine how the components will fit

 Construction

 Laying foundations/block laying/engineer testing

 Deployment

 Delivered to the customer who provides feedback/snag
list

The software process
7

 A structured set of activities required to develop a
software system

 Four fundamental process activities

 Specification

 Development

 Validation

 Evolution

 The foundation of software engineering is in the
process

 Goal: To efficiently and predictably deliver a product
that meets the requirements

Motivating case

8

 You’ve been hired by a local

independent retailer to build their

potato peeling system

Build and fix model…worst approach
9

Software Process Model
10

 1) Software Specification

 Talk to the customer

 Understand the problems

 Talk to any relevant stakeholders

 2) Software Development

 Map out the tasks

 Design the software

 Develop the solution

Software Process Model…
11

 3) Software validation

 Does it meet requirements

 Is it what the customer wanted

 4) Software evolution (maintenance)

 Modified to adapt

 Changes in requirements

 Customer & Market conditions

Software Engineering Practice
12

 1) Understand the problem (Communication and analysis)

 Who are the stakeholders?

 What are the unknowns?

 2) Plan the solution (Modelling and software design)

 Have we seen this problem before?

 Has a similar problem been already solved? Plagiarism

 Can sub problems be found?

 3) Carry out the plan (Write the code)

 Does the solution conform to the plan?

 Has the code been reviewed for correctness?

 4) Examine the result (Test it)

 Is each component testable?

 Does the solution produce results as defined originally?

General Software Engineering Questions

13

 What is the problem to be solved?

 Requirements definition

 What are the characteristics of the software (system) used to
solve the problem?

 Analysis

 How will the system be realised/constructed?

 Design

 How will design and construction errors be uncovered and
dealt with?

 Test

 How will the system be supported long-term?

 Maintenance

Overview of Software Engineering
14

 There are three generic phases, regardless of

paradigm:

 Definition, a focus on the What.

 Development, a focus on the How.

 Maintenance, focuses on Change

Software Engineering should…
15

 Provide a clear statement of the project mandate & objectives;

 Create effective means of communication;

 Increase user involvement & ownership;

 Provide an effective management framework to support productivity
& pragmatism;

 Establish quality assurance procedures;

 Provide sound resource estimation and allocation procedures;

 Ensure the effectiveness and durability of systems produced;

 Encourage the re-usability of code and/or solutions;

 Reduce the organisation’s vulnerability to the loss of software
development personnel (MJ);

 Reduce and support post implementation maintenance of systems;

CT216 SOFTWARE ENGINEERING 1

CLOUD COMPUTING

Dr. Enda Barrett

Enda.Barrett@universityofgalway.ie

What is cloud computing?
2

 “Cloud computing is a model for enabling

convenient, on-demand network access to a

shared pool of configurable computing

resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly

provisioned and released with minimal

management effort or service provider

interaction.” (NIST, May 2011)

What is cloud computing
3

 Back in the early 00’s there was this bookseller called Amazon,

who made their money by shipping books (and everything

else) around the world.

 To support their web app (Amazon.com) they had built up

some neat hosting infrastructure and software to manage it at

scale with a couple of data centers

 The centers were somewhat underutilised and Amazon decided

to start selling this spare capacity.

Server room
4

 At that time most businesses/organisations maintained a
server room on premises. In it they would have separate
rack mounted PCs/servers.

 Data would be stored on large Storage Networks

 Backups would be run on this data

 Multiple machines (servers) would run business critical software

 There were challenges to this

 Maintenance

 Upgrading machines

 Upfront purchasing costs

 Hire staff to manage it (Sysadmins)

What is cloud computing
5

 Started with storage

 Simple Storage Service launched on March 14 2006

marking the beginning of Amazon Web Services

 This allowed users to store documents, files, data on an

S3 bucket without having to manage, purchase,

maintain the underlying disk hardware.

What is cloud computing
6

 Then came computing

 It followed up its successful storage launch of S3 with

EC2 or Elastic Compute Cloud in August 2006

 This allowed you to have access to a remote server

accessible via the internet!

Demand was strong…
7

History of cloud computing
8

 Computing may someday be organized as a public
utility just as the telephone system is a public
utility,” Professor John McCarthy said at MIT’s
centennial celebration in 1961. “Each subscriber
needs to pay only for the capacity he actually uses,
but he has access to all programming languages
characteristic of a very large system … Certain
subscribers might offer service to other subscribers
… The computer utility could become the basis of a
new and important industry.”

https://www.technologyreview.com/2011/10/03/190237/the-

cloud-imperative/

Cloud computing growth
9

 The growth in cloud computing over the past

decade has been phenomenal.

 In April 2011, Forrester projected that it would be

worth $160bn dollars by 2020, in reality it was

27% larger at $219bn.

 In 2022 it hit over $480bn in value and is projected

to exceed $1tn by 2029.

https://www.fortunebusinessinsights.com/cloud-computing-market-102697

Where is the cloud?
10

Virginia
California

Ireland

H K/ Sing

Japan

Amazon US-East N. Virginia
11

Cloud types – Public cloud
12

 Amazon, MS Azure, Google Cloud are examples of

public clouds.

 Any member of the public can sign up and start

provisioning compute resources within minutes

 They are highly scalable and allow an organisation

to grow its infrastructure rapidly

Cloud types – Private cloud
13

 Private cloud

 Computing resources are dedicated to a single

customer and not shared with other customers.

Considered to be more secure.

 AWS do offer a virtual private cloud

 https://aws.amazon.com/vpc/

 Organisations can also host their on cloud on-prem

using software such as OpenStack.

https://aws.amazon.com/vpc/

Cloud types - Hybrid
14

 Finally a hybrid cloud is simply a mix of public

cloud resources and private resources. An

organisation may choose this option if there is a

mixture in the criticality of their data or

computational requirements.

 Data that doesn’t require heightened security can

be pushed on to the public cloud whereas that

which does can be hosted on the private cloud.

Cloud services
15

 Software as a Service (SaaS) - provides users
with—essentially—a cloud application, the
platform on which it runs, and the platform’s
underlying infrastructure.

 Platform as a Service (PaaS) - provides users with a
platform on which applications can run, as well as
all the IT infrastructure required for it to run.

 Infrastructure as a Service (IaaS) - provides users
with compute, networking, and storage resources.

Virtual Servers

 Infrastructure as a Service (IaaS)

 Amazon, Google, Microsoft

 Create virtual machines

 t1.micro, m1.small, c1.medium, m1.large…

 Customise instances and add greater amounts of storage.

 Each instance can be booted up with a different AMI, you can

even create your own!

 Xen Hypervisor (Sun, AMD, IBM, Dell, Intel)

 Storage area networks provide the storage

16

Advantages/Disadvantages of cloud

computing
17

 When compared to hosting in-house cloud
computing has a number of benefits

 Elasticity – if your application becomes very popular
you can procure new resources in minutes

 Reduced capital expenditure

 Economies of scale

 There are also some drawbacks

 Security/privacy

 Cost

 Migration issues

SCRUM – ROLES AND CEREMONIES

Dr. Enda Barrett

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Scrum Framework

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

•Product owner
•ScrumMaster
•Team

Roles

Product Owner
4

 Define the features of the product

 Tries to remove conjecture, “I know the customer wants this”
as opposed to “I believe this would be a good feature”

 Decide on release date and content

 Usually responsible for press releases

 Be responsible for the profitability of the product (ROI)

 Prioritize features according to market value

 Conduct market research, feasibility studies

 Adjust features and priority every iteration, as needed

 Accept or reject work results.

Scrum Master
5

 Represents management to the project

 Often one of the engineers

 Responsible for enacting Scrum values and practices

 Removes impediments

 Ensure that the team is fully functional and
productive

 Enable close cooperation across all roles and
functions

 Shield the team from external interferences

Scrum Team
6

 Typically 5-10 people

 Cross-functional

 QA, Programmers, UI Designers, etc.

 Members should be full-time

 May be exceptions (e.g., System Admin, etc.)

 Teams are self-organizing

 Membership can change only between sprints

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Sprints
8

 Scrum projects make progress in a series of
“sprints”

 Target duration is one month

 +/- a week or two (2 - 6 weeks max)

◼ But, a constant duration leads to a better rhythm

 Product is designed, coded, and tested during the
sprint

 The output is a build which may or may not be a
release

 Move onto the next sprint…

No changes during sprint
9

SprintInputs Tested Code

Change

▪ Plan sprint durations around how long you can
commit to keeping change out of the sprint

Sprint planning
10

Sprint planning meeting

Sprint prioritization

• Analyze and evaluate product
backlog

• Select sprint goal

Sprint planning

• Decide how to achieve sprint goal
(design)

• Create sprint backlog (tasks) from
product backlog items (user stories /
features)

• Estimate sprint backlog in hours

Sprint
goal

Sprint
backlog

Business
conditions

Team
capacity

Product
backlog

Technology

Current
product

Sprint planning
11

 Team selects items from the product backlog that

they can commit to completing

 Sprint backlog is created

 Tasks are identified and each is estimated (1-16 hrs)

 Team collaboratively does this

As a vacation planner, I want to see
photos of the hotels. Code the middle tier (8 hours)

Code the user interface (4)
Write test fixtures (4)
Code the foo class (6)
Update performance tests (4)

What is the Product Backlog
12

 A list of all desired work on the project (the
requirements)

 Usually a combination of

◼ story-based work (“let user search and replace”)

◼ task-based work (“improve exception handling”)

 List is prioritized by the Product Owner

 Typically a Product Manager, Marketing, Internal Customer,
etc.

 Priority groupings (high, medium, low … etc)

 Reprioritised at the start of each sprint

 Spreadsheet (usually)

To create a Sprint Backlog you must

have a (Sprint) goal
13

Database Application

Financial services

Life Sciences

Support features necessary for
population genetics studies.

Support more technical indicators
than company ABC with real-time,
streaming data.

Make the application run on SQL
Server in addition to Oracle.

From Sprint Goal to Sprint Backlog
14

 Scrum team takes the Sprint Goal and decides what

tasks are necessary

 Team self-organizes around how they will meet the

Sprint Goal

 Manager does not assign tasks to individuals

 Managers don’t make decisions for the team

 Sprint Backlog is created

Sprint backlogs during the sprint
15

 Changes

 Team adds new tasks whenever they need to, in order

to meet the Sprint Goal

 Team can remove unnecessary tasks

 But: Sprint Backlog can only be updated by the team

 Estimates are updated whenever there’s new

information

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Sprint review meeting
17

 Team presents what it accomplished during the sprint

 Typically takes the form of a demo of new features or
underlying architecture

 Informal

 Two hour prep time

 No slides

 Participants

 Customers

 Management

 Product Owners

 Engineering team

Sprint Retrospective meetings
18

 Typically 15–30 minutes

 Done after every sprint

 Feedback meeting – time to reflect on how things are
going…

 Many participants

 ScrumMaster

 Product owner

 Team

 Possibly customers and others

Start/Stop/Continue
19

Start doing

Stop doing

Continue doing

Whole team gathers and discusses what they’d

like to:

War room
20

Pros/Cons of Agile Methods
21

▪ Advantages
▪ Completely developed

and tested features in

short iterations

▪ Simplicity of the

process

▪ Clearly defined rules

▪ Increasing productivity

▪ Self-organizing

▪ Each team member

carries a lot of

responsibility

▪ Improved

communication

▪ Combination with

Extreme Programming

▪ Drawbacks
▪ “Undisciplined hacking”

(no written

documentation)

▪ Violation of

responsibility

▪ Current mainly carried

by the inventors

▪ Employee Burnout &

Fatigue.

SOFTWARE DEVELOPMENT PARADIGMS –AGILE

METHODS

Dr. Enda Barrett

Agile software development
2

 What is agile software development?

 Scrum – Software Project Management Methodology

 XP – Software Development Methodology

Software Development Lifecycle
3

 The software lifecycle is an abstract representation
of a software process. It defines the steps, methods,
tools, activities and deliverables of a software
development project. The following lifecycle phases
are considered:

 1. requirements analysis

 2. system design

 3. implementation

 4. integration and deployment

 5. operation and maintenance

SDLC Limitations
4

 Classical project planning methods have a lot of

disadvantages

 Huge efforts during the planning phase {Requirements

+ Design}

 Poor requirements conversion in a rapidly changing

environment

 Treatment of staff as a factor of production

Agile

Man

Agile Motivations
5

 Agile proponents argue:

 Software development processes relying on lifecycle
models are too heavyweight or cumbersome

 Too many things are done that are not directly related
to the software product being produced, i.e. design,
models, requirements docs, documentation that isn’t
shipped as part of the product

 Difficulty with incomplete or changing requirements

 Short development cycles (Mobile Apps)

 More active customer involvement needed

What is Agile?
6

❑ Agile methods focus on
❑ Individuals and interactions over processes and tools

❑ Working software over comprehensive documentation

❑ Customer collaboration over contract negotiation

❑ Responding to change over following a plan

❑ Several agile methods
❑ No single agile method

❑ Scrum

❑ XP

❑ No single definition

❑ Agile Manifesto closest to a definition
❑ Set of principles

❑ Developed by Agile Alliance (http://www.agilealliance.org/)

http://www.agilealliance.org/

Agile methods
7

 Agile methods:

 Scrum

 Extreme Programming (XP)

◼ Continuous Integration

◼ Test Driven Development (TDD)

◼ …

 Agile Alliance (www.agilealliance.org)

 A non-profit organization promotes agile development

Scrum in 100 words
8

 Scrum is an agile project management methodology
for managing product development.

 It allows us to rapidly and repeatedly inspect actual
working software (every two weeks to one month).

 The business sets the priorities. The teams self-
manage to determine the best way to deliver the
highest priority features.

 Every two weeks to a month anyone can see real
working software and decide to release it as is or
continue to enhance for another iteration.

History of Scrum
9

 1995:

 Analysis of common software development processes found that they are not suitable for
unpredictable and non-repeatable processes

 Design of a new method: Scrum by Jeff Sutherland & Ken Schwaber

 Enhancement of Scrum by Mike Beedle & combination of Scrum with Extreme Programming

 1996:

 Introduction of Scrum at the (Object-Oriented Programming, Systems, Languages &
Applications) OOPSLA conference

 2001:

 Publication “Agile Software Development with Scrum” by Ken Schwaber & Mike Beedle

 Gained in popularity steadily ever since

 Founders are members in the Agile Alliance

Characteristics of Scrum
10

 Self-organizing teams
 No need for project manager (in-theory)

 Product progresses in a series of month-long
“sprints”…could be biweekly also

 Assumes that the software cannot be well defined and
requirements will change frequently

 Requirements are captured as items in a list of “product
backlog”

 No specific engineering practices prescribed
 XP, TDD, FDD…

 Best approach is to start with Scrum and then invent your
own version using XP, TDD, FDD

Daily Scrum/Standup
11

 Parameters

 Daily

 15-minutes

 Stand-up

 Not for problem solving

 Only team members, ScrumMaster, Product Owners

should talk

 Should help to avoid additional unnecessary meetings

 Commitment in front of peers to complete tasks

Answer three questions
12

What did you do yesterday?
1

What will you do today?
2

Is anything in your way?
3

Daily SCRUM/Standup
13

 Is NOT a problem solving session

 Is NOT a way to collect information about WHO is
behind the schedule

 Is a meeting in which team members make commitments
to each other and to the Scrum Master

 Is a good way for a Scrum Master to track the progress
of the team

AGILE METHODS – EXTREME PROGRAMMING

Dr. Enda Barrett

Overview
2

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Scrum Summary
3

 Scrum is a project management methodology

Characteristics of Scrum
4

 Self-organizing teams
 No need for project manager (in-theory)

 Product progresses in a series of month-long
“sprints”…could be biweekly also

 Assumes that the software cannot be well defined and
requirements will change frequently

 Requirements are captured as items in a list of “product
backlog”

 No specific engineering practices prescribed
 XP, TDD, FDD…

 Best approach is to start with Scrum and then invent your
own version using XP, TDD, FDD

Daily Scrum/Standup
5

 Parameters

 Daily

 15-minutes

 Stand-up

 Not for problem solving

 Only team members, ScrumMaster, Product Owners

should talk

 Should help to avoid additional unnecessary meetings

 Commitment in front of peers to complete tasks

Answer three questions
6

What did you do yesterday?
1

What will you do today?
2

Is anything in your way?
3

Daily SCRUM/Standup
7

 Is NOT a problem solving session

 Is NOT a way to collect information about WHO is
behind the schedule

 Is a meeting in which team members make commitments
to each other and to the Scrum Master

 Is a good way for a Scrum Master to track the progress
of the team

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Scrum Framework

We need an Agile Development

method
9

 eXtreme Programming (XP)

 One of the most popular agile software development

methods

eXtreme Programming
10

 Pair
programming

 Refactoring

 Test Driven
Development

 Continuous
Integration

 Metaphor

 Small releases

 Simple Design

 Customer tests

Complete Agile Process
11

Scrum XP+

Overview
12

How Scrum and XP can work together

Overview
13

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Principles of XP
14

 Communication

 Software development is inherently a team sport that relies on communication to transfer knowledge from one team
member to everyone else on the team. XP stresses the importance of the appropriate kind of communication – face to
face discussion with the aid of a white board or other drawing mechanism.

 Simplicity

 Simplicity means “what is the simplest thing that will work?” The purpose of this is to avoid waste and do only absolutely
necessary things such as keep the design of the system as simple as possible so that it is easier to maintain, support, and
revise. Simplicity also means address only the requirements that you know about; don’t try to predict the future.

 Feedback

 Through constant feedback about their previous efforts, teams can identify areas for improvement and revise their
practices. Feedback also supports simple design. Your team builds something, gathers feedback on your design and
implementation, and then adjust your product going forward.

 Courage

 Kent Beck defined courage as “effective action in the face of fear” (Extreme Programming Explained P. 20). This
definition shows a preference for action based on other principles so that the results aren’t harmful to the team. You need
courage to raise organizational issues that reduce your team’s effectiveness. You need courage to stop doing something
that doesn’t work and try something else. You need courage to accept and act on feedback, even when it’s difficult to
accept.

 Respect

 The members of your team need to respect each other in order to communicate with each other, provide and accept
feedback that honors your relationship, and to work together to identify simple designs and solutions.

Source:https://www.agilealliance.org/glossary/xp

Kent Beck

post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'xp))~searchTerm~'~sort~false~sortDirection~

Practices of XP
15

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Whole Team
16

 All the contributors to an XP project sit together,

members of one team. This team must include a

business representative (Product Owner) – the

“Customer” – who provides the requirements, sets

the priorities, and steers the project.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Planning Game
17

 XP planning addresses two key questions in

software development: predicting what will be

accomplished by the due date, and determining

what to do next.

 Release Planning is a practice where the Customer

presents the desired features to the programmers,

and the programmers estimate their difficulty.

 Iteration Planning is the practice whereby the team

is given direction every couple of weeks. (Sprints)

https://ronjeffries.com/xprog/what-is-extreme-programming

Customer Tests
18

 As part of presenting each desired feature, the XP

Customer defines one or more automated

acceptance tests to show that the feature is working.

The team builds these tests and uses them to prove

to themselves, and to the customer, that the feature

is implemented correctly.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Small Releases
19

 XP teams practice small releases in two important

ways:

 First, the team releases running, tested software,

delivering business value chosen by the Customer, every

iteration.

 Second, XP teams release to their end users frequently

as well.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Practices of XP
20

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Coding standards
21

 XP teams follow a common coding standard, so that

all the code in the system looks as if it was written

by a single – very competent – individual. The

specifics of the standard are not important: what is

important is that all the code looks familiar, in

support of collective ownership.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Collective Ownership
22

 On an Extreme Programming project, any pair of

programmers can improve any code at any time.

This means that all code gets the benefit of many

people’s attention, which increases code quality and

reduces defects.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Metaphor
23

 Extreme Programming teams develop a common

vision of how the program works, which we call the

“metaphor”. At its best, the metaphor is a simple

evocative description of how the program works,

such as “this program works like a hive of bees,

going out for pollen and bringing it back to the

hive” as a description for an agent-based

information retrieval system.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Practices of XP
24

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Refactoring
25

 The refactoring process focuses on removal of

duplication (a sure sign of poor design), and on

increasing the “cohesion” of the code, while lowering

the “coupling”. High cohesion and low coupling have

been recognized as the hallmarks of well-designed

code for at least thirty years. The result is that XP

teams start with a good, simple design, and always

have a good, simple design for the software.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Simple Design
26

 XP teams build software to a simple but always

adequate design. They start simple, and

through testing and design improvement, they keep

it that way. An XP team keeps the design exactly

suited for the current functionality of the system.

There is no wasted motion, and the software is

always ready for what’s next.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Overview
27

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Pair Programming
28

“You’ll never work alone”

Not without precedent
29

Pair programming
30

 Two developers working on the same task as a

team

 One controls the keyboard one sits looking over

their shoulder

 Driver

 This person writes the code

 Navigator

 This person reviews each line as it is typed

Advantages
31

 Higher code quality

 Fewer bugs, code rewrites, integrations problems

 Expert novice pairing can help the novice to learn

about the system and best practices

 Tends to produce more design alternatives and

catches design defects earlier

Disadvantages
32

 There is a high probability of disengagement

 “Watch the master” phenomenon

 Working relationship needs to be good

 Hard sell to management

 Two people working on 1 feature

Remote pair programming
33

 Using communications technology

 Screen sharing

 IM clients, VOIP etc

Overview
34

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Test Driven Development (TDD)
35

TDD Cycle
36

 Create a test

 Each new feature requires a test

 Run all tests

 Make sure the new test fails

 Write the code

 Doesn’t have to be perfect, just pass the test

 Run all tests

 If all tests pass, requirements are met

 Refactor code

 TDD can result in duplication, this should be removed

 Repeat the process

Principles of TDD
37

 Never write new functionality without a failing test

 Continually make small incremental changes

 Keep the system running at all times

 No one can make a change that breaks the system

 Failures must be addressed immediately

Advantages
38

 Discourages “gold plating” of implementation

 Forces the developer to specify an end criteria

 Encourages loose coupling

Disadvantages
39

 Big time investment

 Complexity in writing appropriate test cases

 Design changes

 Mock code to pass tests

 Customer may not wish to get involved in creating
acceptance tests

Interesting - IBM Study
40

 Study carried out by IBM focussed on a team that

had been practising TDD for 5 years and delivered

10 releases of a software product

 Quality was the big winner, much improved, fewer

defects/bugs etc

 Productivity did decrease but not dramatically

Sanchez, J., Laurie Williams, and E. Michael Maximilien. "A Longitudinal Study of the Use of a

Test-Driven Development Practice in Industry." Proc. Agile. 2007.

Learning objectives
41

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Continuous Integration
42

Continuous Integration (CI)
43

 CI is a practice where members integrate their

changes frequently.

 Often daily

 Each integration is verified by an automated build

including tests to detect integration errors as early

as possible.

 Often upon commit, builds are run to make sure

everything is okay

Development before CI
44

 Lots of bugs

 Infrequent commits

 Difficult integration

 Infrequent releases

 Testing happens late

Benefits of CI
45

 Fail early/fast

 Detect problems as early as possible

 Facilitates continuous deployments

 Deploying every good build live to production

 Enables automated testing

 Tests are run during the build process

Overview
46

https://insights.sei.cmu.edu/devops/2015/01/continuous-integration-in-devops-1.html

Drawbacks of using CI
47

 Initial setup required

 Can take a couple of weeks to get it running properly

within an organisation

 Excellent tests must be developed

 CI will run all the automated tests but this requires

substantial up front development effort.

Popular CI software
48

SETTING UP OUR DEVELOPMENT ENVIRONMENTS

Dr. Enda Barrett – Enda.Barrett@nuigalway.ie

Getting things set up
2

 Install an IDE

 Install software (NodeJS runtime environment)

 Quick overview of Firebase

 Claim cloud credits

 Create a new Google Account using your University email address

 Create a new Firebase project

 Create a new local project

 Using the Command Line

 Install Firebase CLI

 Initialise the projects to link with the cloud

 Deploy to the cloud

WebStorm - IntelliJ
3

 Navigate to

 https://www.jetbrains.com/community/education/#students

 Fill in the form details and you will get a 1 year license

 There are lots of alternatives too if you prefer to use
something else

Click Apply

Now

https://www.jetbrains.com/community/education/#students

Download WebStorm
4

 https://www.jetbrains.com/webstorm/download/#s

ection=windows

https://www.jetbrains.com/webstorm/download/#section=windows

Install NodeJS
5

 Navigate to https://nodejs.org/en/

 Install the latest LTS (Long Term Support) version of

NodeJS

https://nodejs.org/en/

Cloud Credits
6

 Google have kindly provided each student with

$25 in cloud credits to use on their Firebase

platform

 On Blackboard under Week 2, you will see this post

 You must use your university email address when

claiming the credits

Click the link

Create a Google Account

 Perform a quick search
for Google Account
Creation

 Use your university
email address for this.
Same one you claimed
the credits with!

7

Click on use my current

email address

CREATING A NEW FIREBASE PROJECT

Dr. Enda Barrett – Enda.Barrett@nuigalway.ie

Firebase – Quick overview
9

 Originally Firebase was a (Mobile) Backend as a Service offer which is a
subset of a Platform as a Service

 Whilst an IaaS provider does help you to move away from on-prem hosting,
you do have a good bit of setup. Install a database on the virtual server,
varying software packages, even an OS! You have to keep it updated and
secure etc.

 With a PaaS offering such as Firebase you can focus on coding!

 It provides a suite of services

 Storage

 Database

 Authentication

 Machine Learning

 Functions

 Messaging

 Hosting

10

Firebase project
11

 We will need to create Firebase projects for our

apps

 Login using your Google Account created with your

university email address

 Create a new project by clicking here

12

Enter a project

name

Tick the box

to confirm

13

Optional whether

you wish to enable

Google Analytics

here

14

Choose the account to if

you selected Google

Analytics otherwise this

step won’t appear

Creating a local directory
15

 In order to write our applications we will code them

locally on our computers, save our code files and

then push them to the cloud.

 In order to work locally we need to create a folder

to store our code.

 It is best to place this on root the of your machine or

some place that is easy to access from a command

line perspective.

 In windows create a folder on C:\WebProgApps

May look something like this
16

 If you have a windows machine you can add a
folder like this.

 On a MAC you can use Finder to the same, if using
Linux you already know this!

What is the Command Line Interface
17

 A mechanism through which you can execute commands
to the OS. It’s how we used to operate computers
before their was a nice GUI.

 Depending on your OS (Windows, MAC or Linux) you
search for Command Prompt(Windows), Terminal (MAC
or Linux).

 It will look something like this

Navigate to the root
18

 Depending on the OS the default directory that the

command line will begin with once opened can be

different.

 We wish to navigate to the folder we have created

on the root to get it set up for development.

 To change directory the command

is cd

 Type cd C:\WebProgApps

and press Enter on the keyboard

Creating a directory
19

 You can avoid having to use the GUI to create a
directory and use the mkdir command instead.

 If you called your project on Firebase MyFirstProject
then we can use the same name for the local folder
which will contain the code for this project

 Type mkdir MyFirstProject

 Check the folder it should be

there using

dir (windows) or ls (MAC)

Install the Firebase CLI
20

 Firebase CLI -

https://github.com/firebase/firebase-tools

 A suite of tools for managing, visualising and

deploying Firebase projects

 Install it onto our machines and then we can use it to

configure our projects, link them to the cloud

backend and then deploy them onto the web!

 Two ways to install it, you can use the standalone

binaries which are available in the link below or

you can use npm (Node Package Manager)
https://firebase.google.com/docs/cli

https://github.com/firebase/firebase-tools

NPM – Node Package Manager
21

 Node Package Manager, is the default package
manager for the NodeJS runtime.

 https://www.npmjs.com/

 It contains thousands of Open Source projects containing
code which we call packages.

 We can install packages onto our machine by using the
NPM command. These can be executed as standalone
programs on our machines (Firebase CLI) or included in
our own programs that we write.

 When we installed NodeJS (back in Slide 4), NPM was
also included. Thus we can use it by typing the
command npm

Install Firebase
22

 Step 1 – Install the Firebase CLI
 npm install -g firebase

 npm install -g firebase-tools

 The g argument is for global – all projects on the machine will have
access to the CLI

 If you are using a MAC you will need to include sudo

◼ sudo npm install –g firebase

◼ sudo npm install –g firebase-tools

 Once you have typed in the command press Enter on the
keyboard

 Install it onto our machines and then we can use it to configure
our projects, link them to the cloud backend and then deploy
them onto the web!

Logging into Firebase
23

 In order to perform the next sequence of steps we

need to log into Firebase using the command line.

 Enter the command firebase login and hit Enter

 This will open up a web browser where you

can login using your Google Account created

with your university email address.

Initialise our project folder
24

 In order to link our local project folders with the

online cloud project we need to initialise it.

 Make sure you are in the correct directory on the

command line

 Enter the command firebase init and press Enter

Sequence of init steps
25

 If everything has worked correctly you should now
see the following

 Key in Y and pres Enter

Next step – Setup hosting
26

 Using the arrow keys move down to the highlighted

option below

 Once highlighted select it using the spacebar key

and then press Enter

Select an existing project
27

 Select use an existing project by hitting Enter

Select the project
28

 The name of the project you created on the web
console (Firebase) should appear

 Again use the arrow cursors to move down and hit Enter
to select it

Public folder
29

 Use the public folder as prompted on the command
line. This is where we will place all of frontend
code.

 Press the Enter key on your keyboard

URL rewrite
30

 The next option is a technical setting which

configures the app as a Single Page App (SPA)

where requests are directed at index.html

 Select Y here and press Enter

Automatic builds and deploys
31

 There is no need to setup automatic builds and

deploys at that this point

 Select N for this and press Enter

Firebase initialisation should be complete

32

Files in the folder
33

 If you look in your app folder on your machine you

should now see a bunch of new files have been

created, a public folder and an index.html file

within the public folder

Deploying to the cloud
34

 The final step is to deploy to the cloud.

 We haven’t written any code yet or created our first

web page, but during the init process Firebase

created a page index.html which you can find in the

public folder.

Firebase deploy
35

 The command to deploy our apps to the cloud is

 firebase deploy

Copy and paste the hosting URL

and pop it into the address bar

of your browser

It works!
36

CREATING OUR FIRST WEB PAGE WITH HYPERTEXT

MARKUP LANGUAGE (HTML)

Dr. Enda Barrett

Enda.Barrett@universityofgalway.ie

HTML
2

 Stands for Hyper Text Markup Language (HTML)

 Notation for describing document structure and

formatting

 A html file has a .html or .htm extension

 It is rendered by a browser

Simple HTML Document
3

 Document starts with: <html>

 Document ends with: </html>

 Text between <head> and </head> is header information
which is not rendered by the browser

 <title> and </title> displays the title of the document

 Everything between <body> and </body> is rendered
and displayed by the browser

 Contains actual text to display and tags defining its style,
layout etc. plus additional elements e.g. images

Open Project in WebStorm
4

 Using WebStorm (or preferred IDE)

open up the firebase project that

you created in the previous lecture.

 In WebStorm select File>Open

 This will pop up a dialog where you

can select your project

(MySampleProject)

Once opened in WebStorm
5

 You will see a view (see screenshot below) where the
project is on the left hand-side including the files and
folders

 If you expand the public folder you will see the
index.html file.

 Double click it to start editing

 This file is our first HTML page!

Exercise 1 - HTML – Hello World
6

<!DOCTYPE html>

<html>

<head>

<title>Simple Page</title>

</head>

<body>

<h1>Hello World!</h1>

</body>

</html>

• Delete all the existing

markup from

index.html

• Take the following

markup and insert it

into index.html

• Surround the “Hello

World” text with a

heading 1 tag –

(search online).

• Save the file

• Deploy it to Firebase

(firebase deploy)

command line

HTML Tags
7

 HTML contains text to display and markup tags

<h1>Hello World</h1>

 The tags tell the browser how to display the contents

of a page: colours, formats, positions, etc.

Text

Closing

Tag

Opening

Tag

HTML Tags
8

 Tags denote markup elements

 Each tag is surrounded by angle brackets < >

 Tags normally come in pairs:

 the opening tag and the closing tag

 Tags are not case sensitive

 <html> and <HTML> are functionally the same

 Recommended to use lowercase

 Text between the tags is the element content

 <h1> ... </h1> Section 1

 …

 <h6> ... </h6> Section 1.1.1.1.1.1

Tag Attributes
9

 Tags can have associated attributes (or properties)

that provide extra information to the browser

 Attributes consist of name="value" pairs

 Attributes are always added to the opening tag

 For example, to colour the text of heading 1 tag to

red:

 Set the attribute style to the value of color:red

 <h1 style="color:red"> Section 1 </h1>

Section 1

Tag Attributes cont’d
10

 Attribute values normally enclosed in quotes

 Double quotes are the most common

 style="color:red"

 Single quotes are also allowed

 style=‘color:red’

 NB: If the value contains one type of quote, then the

other type should be used to enclose the value

 name="John’s Place"

Be careful with

copy and paste

Common Tags - Text
11

 Bold

Bold Text Bold Text

 Italic

<i>Italic Text</i> Italic Text

 Paragraph

<p>Text</p> Defines a paragraph

Exercise 2
12

1. Extend your web page to include two paragraphs of dummy text

2. Italicise any words beginning with s

3. Bold any words beginning with a

 Text

 “Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi
ut aliquip ex ea commodo consequat.”

 “Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est
laborum.”

Common Tags - Continued
13

 Line Break

 Forces a line break wherever it’s placed

 Putting a carriage-return into the HTML code will not
produce a visible line break!

 <p>This
is a para
graph with line breaks</p>

 Horizontal Rule <hr>

 Can take width attribute <hr width="75%">

 Special Entities (start of a character reference)

 Ampersand &

 Copyright © ©

HTML Lists
14

 Unordered Lists

 Each List Item appears as Bullet

 Ordered Lists

 Bullets replaced with numbers or letters

 Type of order defined with type attribute

 Definition Lists <dl> </dl>

 Lists a definition term <dt> </dt>

 and the definition description <dd> </dd>

Unordered Lists
15

List Item 1

List Item 2

List Item 3

 Bullet is default type

 Other types can be specified

 "disc", "square", "circle", etc

Ordered Lists
16

<ol type="a">

List Item 1

List Item 2

List Item 3

 Numeric is default type

 Other types can be specified

◼ "1", "A", "a", "I", "i"

HTML Links (Hyperlinks)
17

 HTML Links created with Link Tags

 <a>

 Visit

Random Site.com

 Hypertext Reference attribute gives the URL

 href="http://www.randomsite.com/"

 Target attribute defines where the link opens

 target="_blank" Opens link in new window

 target="_self" Opens link in same window

 target="mywindow" Opens in a named

(possibly new) window

Exercise 3
18

1. Re-create the below simple FAQ for a fictional course

2. Use a heading 2 tag for the questions.

3. Use an ordered list for each question

4. URL for the Q1 link is https://www.universityofgalway.ie/science-

engineering/school-of-computer-science/currentstudents/timetables/

5. URL for the Q2 link is https://www.universityofgalway.ie/science-

engineering/school-of-computer-science/people/

https://www.universityofgalway.ie/science-engineering/school-of-computer-science/currentstudents/timetables/

Images in HTML
19

 Images are added with the empty tag

 requires a source (src) attribute with the

URL of the image



 Image (and other) filenames are case sensitive on

Linux and Mac servers

 .jpg != .JPG

 .png != .PNG

Absolute and Relative References
20

 URL:The path to a resource

 Any URL path in HTML can be given as either via an

Absolute or a Relative Reference

 Both types are valid, interchangeable and useful in

different situations

 e.g. “a” tags and “img” tags can use both Reference

Types

Structure of a URL (Absolute)
21

 http://www.example.com/software/index.html

 http://www.example.com:1030/software/index.ht

ml

http://www.example.com/software/index.html
http://www.example.com:1030/software/index.html

Relative Reference
22

 If you wish to reference an image in the same folder you can do it via

relative referencing

<!DOCTYPE html>

<html>

<head>

<title>Simple

Page</title>

</head>

<body>

Hello World!

<img

src="photo.jpg">

</body>

</html>

Exercise 4
23

1. Add an extra question to your FAQ page with an image of the CS building.

2. When you click on the image it opens a new tab to the CS homepage

https://cs.universityofgalway.ie/.

3. Add a picture of the CS building, by including an absolute reference to an

image already hosted online.

4. Also include an internal image of the

building but this time relatively src it.

Final page should look

something like this

CASCADING STYLE SHEETS

What is CSS?
2

 Cascading Style Sheets

 Contains the rules for the presentation of HTML

CSS Continued
3

 CSS allows the developer to define a set of styles

 These styles can be used across multiple pages

 Helps to create a uniform and consistent look across a
web application

 Makes the formatting the content much easier

 Allows for more advanced techniques using div tags

How does it work?
4

 CSS works by allowing you to associate rules to the

HTML tags

 These rules govern how these elements should be

rendered

 A rule is defined by a selector followed by a

declaration block

Syntax continued
5

 Example of styling a Heading 1 tag

 Colour it to blue

 Set the text size to 12 pixels

Syntax continued
6

h1

{

color: blue;

font-size: 12px;

}

Note:
color not colour

Braces { } separate the

selector from the

declarations

Each declaration ends in

semi-colon ;

Syntax continued
7

h1

{

color: blue;

font-size:
12px;

}

Note:

No space between

value and units (12 and

px)

No quotes for values

Sources of styles
8

 Inline styles



 Embedded style tags



 Linked styles



<h1 style="color:red">Hello World</h1>

<style>

h1 {color:blue}

</style>

<link href="/stylesheets/main.css" rel="stylesheet">

Be careful with the styles
9

 Precedence or order over the styling

 Browser default style (weakest)

 User style sheet

 Author stylesheet

 Author embedded styles

 Author inline styles (strongest)

 !important

Selecting a tag or element to style
10

 There are two main ways of doing this, class based

selector and ID based

• ID based (#)

<div id="content">

My Text Content

</div>

#content{

width: 200px;

}

<div class="content">

My Text Content

</div>

.content{

width: 200px;

}

• Class based (.)

Font related CSS
11

 https://www.w3schools.com/cssref/pr_font_font.as

p

W3Schools have great docs on

this

.p1 {
font-family: "Times New Roman";
font-weight: "600";

}

<p class="p1">

My paragraph of text

</p>

https://www.w3schools.com/cssref/pr_font_font.asp

Exercise 1 – Adding styles
12

 Step 1: Add a file to the public folder of “MySampleApp”
called styles.css

 Add the following CSS to the stylesheet styles.css

◼ A class based selector (“.”) called “links”

◼ Set the font size to 16px

◼ Set the font colour to blue

 Add this linked stylesheet to your page (see slide 4)

 Step 2: Add 3 random hyperlinks to the web page

 Associate this new class (created in Step 1) with all links on the page,
does it work?

 Step 3: Using inline styling alter the colour of one of the links to
change the font colour to green. Does it override the CSS in
Step2?

The CSS Box model
13

 All HTML elements are considered as boxes

 Paragraphs, Headings, Tables etc.

 Box Model

 A box that wraps around all the HTML elements

 Consists of Four Parts

 Content

 Padding

 Border

 Margin

CSS Box Model
14

 Content

 Padding

 Border

 Margin

 Padding, Border & Margin are ZERO by default

Content Area
15

 Content

 The HTML element concerned

 Text, Image, List, Table, etc

Content – Embedded <p> Example
16

<html>

<head>

<style>

p

{

background: #00FFFF;

}

</style>

</head>

<body>

<p>Text Goes Here!</p>

</body>

</html>

Result:

Text Goes Here!

Padding Area
17

 Padding

 Empty space surrounding the Content

 Uses the same background colour as the Content

Padding Content
18

p

{
background: #00FFFF;

padding: 0px;

}

Text Goes Here!

p

{
background: #00FFFF;

padding: 20px;

}

Text Goes Here!

Border Area
19

 Border

 The HTML element concerned

 border-style must be set for border to take effect

Bordering Content
20

p

{

background: #00FFFF;

padding: 20px;

border: 20px;

border-color: #FF0000;

}

Text Goes Here!

Missing border-style,

so no border displays

Bordering Content
21

p

{

background: #00FFFF;

padding: 20px;

border: 20px;

border-color:

#FF0000;

border-style: solid;

}

Text Goes Here!

Border-style values
22

 none No border

 dotted Dotted border

 dashed Dashed border

 solid Solid border

 double Two solid borders

 groove 3D "grooved" border (engraved)

 ridge 3D "ridged" border (emboss)

 inset 3D "inset" border (lowered)

 outset 3D "outset" border (raised)

Margin Area
23

 Margin

 Transparent area that surrounds everything else

 Used for spacing the element relative to others

Exercise 2
24

 Create a paragraph of text “Hello World”

 Add a background colour of your choosing using
Hex values

 Add padding of 10px all around it

 Add a 1px dashed border around it of a colour of
your choosing.

 Place a second paragraph below the first and style
it the same way as the first however place a 10px
margin between the two (either bottom of the first
or top of the second).

<div class="abc">

<div>

<p>

My Text Content!

</p>

</div>

</div>

Grouping and descendants
25

 Multiple selectors can be grouped in a single style

declaration

 Select elements that are descendants

p, .main{

font-weight: bold;

}

div.abc p{

font-weight: bold;

}

CSS values
26

 Text-align:center;

 Numerical values: Numerical values are usually followed
by a unit type.

font-size:12px;

 12 is the numerical value and px is the unit type in
pixels

 Absolute values :in, pc, px, cm, mm, pt

 Relative values: em, ex, %

 Color values: color:#336699

 Blue, red, green etc…

Colour Wheel [visible light]
27

 Combining different levels of RGB yields

different colours

 Wheel on the right shows colour relationships

 Yellow is made of equal parts Red and Green

 Thus, HTML Colour for Yellow:

 #FFFF00

The div tag
28

 Defines a division of a HTML page and often used as

a container for other elements.

 Block level elements such as div’s, paragraphs

headings sit on top of each other, by default.

Inline elements
29

 Inline elements such as span and img sit side by side

Visibility
30

Exercise 3 – Page styling
31

 Create two paragraphs of text

 This is a paragraph of text

 This is a paragraph of text

 Surround both paragraphs with a single div tag

 Create a style (using class-based selection) which centres the

text of the paragraphs and changes the colour to #663399.

Place the style in a separate styles.css file. Apply it to the div

element.

 Within each paragraph use a span to change the word

“paragraph” to yellow. Add the style to the styles.css file and

using class-based selection apply it to both spans.

BOOTSTRAP

https://getbootstrap.com/

What is Bootstrap?
3

 Bootstrap is a CSS framework, it is CSS classes for

structure, layout, components (buttons, navbar, modal

etc), forms, written by other developers.

 This enforces a uniform layout, look and feel on the

web application.

 Freely available to develop web sites and web

applications.

What is Bootstrap cont.
4

 JavaScript is also used in conjunction with the CSS
classes, for things like animations, transitions, popups
etc.

 The CSS within it is quite detailed, there are lots of
classes with varying levels of hierarchy.

 It’s fully customisable and the web is full of themes and
templates for apps built using it

 https://themes.getbootstrap.com/

Who developed it?
5

 It was developed by Twitter’s Mark Otto and Jacob

Thornton

 They wanted to standardise the frontend toolsets

across twitter

 It was released as open source in August 2011 on

Github

Adding Bootstrap to our web apps
6

 Two options

 Download the files, i.e. CSS, JS, place them in the app

folders

 Use a Content Delivery Network URL

 https://getbootstrap.com/

Content Delivery Networks
7

 A popular way to include frontend libraries and
technologies is to use a CDN

 Instead of having a single server, CDNs involve using a
collection of servers to serve content

 These servers are usually placed geographically close the
user base to ensure that maximum performance is achieved

 Largely designed for delivering static content, images,
videos, and web content such as text, graphics and scripts.

CDNs are popular
8

 Almost every frontend technology provider, Facebook, Google,

Twitter will provide access to their libraries via a CDN

 This is very useful from a caching perspective, as browser

caches should already have a hit for a regularly used CDN

address, such as that from Bootstrap

How to recognise it?
9

Supported by all browsers
10

Solid cross browser compatibility

All browsers have different

rendering engines, webkit, trident …

Responsive Design
11

https://www.pngfind.com/mpng/iJmbRw_bootstrap-responsive-design-laptop-tablet-

mobile-psd-hd/

What is responsive layout?
12

 Produces an optimal viewing experience for the
user independent of the device they are viewing it
on

 Bootstrap is mobile first (software that has been
developed to prioritise use on mobile platforms)

 If you view it on a mobile, tablet or larger screen it
will scale accordingly

 As the viewport size increases it can scale up to 12
columns https://www.tutorialrepublic.com/twitter-bootstrap-tutorial/bootstrap-responsive-layout.php

Get Bootstrap
13

 Navigate to https://getbootstrap.com/

 Scroll down to the Include via CDN

 Copy the CSS only link and paste it in between the

<head></head> tags at the top of the page

 Take the JavaScript and pop it in below it.

https://getbootstrap.com/

Add Bootstrap to our Web pages
14

<!DOCTYPE html>

<html>

<head>

<title> Welcome to my cool new web page </title>

<link rel='stylesheet' href='/stylesheets/style.css' />

<link rel='stylesheet' href='https://cdn.jsdelivr.net/npm/bootstrap@currversion…' />

<script src='https://cdn.jsdelivr.net/npm/bootstrap@currversion…' />

</head>

<body>

</body>

</html>

Index.html

Add the bootstrap CSS

URLs and JS URLs from

getbootstrap.com

Bootstrap container class
15

 The container class is a fundamental building block

of Bootstrap.

 They are required for the Grid system to work

 Thus it is best to ensure that all of your HTML

elements marked up with Bootstrap classes are

nested within a container

<div class="container">

…

</div>

Bootstrap Exercise 1 – Add bootstrap
16

 Add Bootstrap to your apps (see previous slide)

 Test that it works by clicking on the Docs section

(getbootstrap.com) and the choosing “Buttons” component

 Paste the button samples into your HTML page (index.html)

 Does it look like the example in the docs, if not you haven’t

included Bootstrap properly

 Add a navigation bar to your app (consider where you

might place this)

Bootstrap grid system
17

 For laying out content on your pages Bootstrap supports
a grid system which structures the page into rows and
columns

 It supports a concept of Rows and Columns, like a
spreadsheet.

 Rows contain columns, columns contain the content!

 The total number of columns is 12.

https://getbootstrap.com/

Bootstrap grid system
18

 It uses div tags and with specific classes associated

with each div.

 The rows and columns are all div tags

 It is built with Flexbox (https://developer.mozilla.org/en-

US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox)

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Flexible_Box_Layout/Basic_Concepts_of_Flexbox

How the “Grid” system works
19

 It supports six responsive breakpoints, which allows

it to adjust the views for different screen sizes,

small, medium, large etc.

 It has predefined padding and horizontal gutter

widths between columns which are customizable but

keep the content nicely spaced and uniformly

structured with each other.

How the grid system works
20

 Rows must be placed within a .container class for proper alignment
and padding.

 Use rows to create horizontal groups of columns.

 Content should be placed within columns, and only columns may be
immediate children of rows.

 Predefined grid classes like .row and .col are available for quickly
making grid layouts.

 Columns create gutters (gaps between column content) via padding.
That padding is offset in rows for the first and last column via
negative margin on .rows.

 Grid columns are created by specifying the number of twelve
available columns you wish to span. For example, three equal
columns would use three .col-4 divs.

Bootstrap column classes
21

https://getbootstrap.com/docs/

Example
22

 Lets say you want to split the screen 50/50 for
large screen devices

 On large screen sizes the columns will be placed
side by side

Remember everything is

12 columns wide

Note that this will affect

breakpoints above it also

Resize the screen
23

 When the screen is resized i.e. less than 992px it

will stack the two columns

 You can find out the pixels

by enabling the Chrome

debugger

Drag the window

to resize it, to

make it visible

Keep them 50/50 on all devices
24

 If you want to keep them 50/50 on all devices you

can specify the lowest size and it will scale

Practice it now!

Exercise 2 - Bootstrap – Grid
25

Provide the HTML and
corresponding Bootstrap classes to
split a row into two separate
sections, each sized 6 columns wide
on large and medium devices or
above. In the case of smaller
devices, the columns should stack
on top of each other.

JAVASCRIPT

Conditionals and Loops

Boolean Variables and Expressions
2

 Boolean literal may be either true or false

 let isLoggedIn = true;

 Note that true is a value not a string

 Do not enclose in quotes!

 Boolean expression is one which resolves to either true

or false

Conditional Statements
3

 if statement – execute code only if some condition is

true

 if…else statement – execute some code if the

statement is true and another piece of it is false

 if…else if… else statements – used to execute one

of many blocks of code

Conditional Statements JS
4

// If statement

if(true)

{

}

//If else statement

if(true)

{

}

else{

}

// If else if else

if(true)

{

}

else if(false){

}

else{

}

Relational operators
5

 Less than <

 Greater than >

 Less than or equal to <=

 Greater than or equal to >=

 Equal to ==

 Not equal to !=

Exercise 4: Conditional Example
6

 Write code that checks whether a given salary is
well paid or poorly paid using conditionals.

 Create a variable called salary and set it to 5000

 Create an if statement which checks if salary is greater
than 100000 and alerts “Wealthy Salary”

 If less than 10000 alert “Poor Salary”

 What happens if you input 30000?

Logical Operators
7

 AND (&&)

 Compares two Boolean values and equates to true if
they are both true

 OR (||)

 Compares two Boolean values and equates to true if
one or the other (or both) is true

 NOT(!)

 Negates the value of a Boolean value

Exercise 5: Conditional Example
8

 Extend exercise 4 to check if the salary is within

100,000 and 10,000 if so then alert “Normal

Salary”

Loops in JavaScript
9

 Repeat a block of code

 While some condition holds true

 For loops

 Execute code a specific number of times

 While loops

 Execute code an undetermined number of times

For Loop
10

 The For Loop repeats a block of code a certain

number of times

//Repeat while i is still

less than 10

for(let i=0; i<10; i++)

{

// Execute code

// i++ at the end

}

https://www.tutorialspoint.com/javascript/javascript_for_loop.htm

While Loop
11

 Executes code an undetermined number of times

 Loops while the condition remains true

 Condition must be true for code to execute

while(i<j)

{

// Execute this code

}

Break and Continue
12

 break;

 Exits a loop immediately when it is encountered

 continue;

 Stops the current execution of a loop

 Does not exit the loop

 Goes to the top of the loop for the next iteration

 Both can be used on any loop construct

Exercise 6: Loops
13

 Create a loop, either for or while, that alerts the

even numbers between 1 and 10;

INTRODUCTION TO JAVASCRIPT

Client-side JS

JavaScript
2

 Best text book for

learning JS

 Douglas Crockford

Overview
3

 Introduction to JavaScript

 Adding client side JavaScript to our web pages

 JavaScript fundamentals

 Variables

 Types

 Numbers

 Strings

 Booleans

Client side JS
4

 Client side JS

 JS code that runs locally on the users machine/device

(in the browser)

Hosting

Firebase

Returns (HTML, CSS, JS)

Call https://myapp.web.app/

Clients

Client side JS cont.
5

 It allows you to manipulate/update the HTML content
based on the users actions

 If the user clicks a button “read more”, you can expand the
content on the page. – News Blog

 If the user continues scrolling further down, you can send a
request to the server for more data. – Twitter feed

 Sections of the page can be updated without reloading the
entire page. – Dynamic Dashboards

 Brings an interactivity to what are essentially static
HTML pages

JavaScript Syntax
6

 ‘C like’ language

 Braces used to denote code blocks {} – like Java

 Semi-colons used at the end of lines

 If you leave them out it will still compile, semi-colon insertion is
automatically done during parsing so in most cases your code won’t
break if you leave them out.

 Comments as per C

 Single line comments // Single line

 Block comments /* Block comments

can span multiple lines */

 Comments in HTML

 <!-- This is my comment -->

JavaScript on HTML pages
7

 Similar to CSS we can include client-side JavaScript

on HTML pages via the script tags

<script>

window.alert("Hello World");

</script>

Inline JavaScript

Inline vs External
8

 As with CSS where we can embed the CSS within

the page or define a separate stylesheet,

JavaScript also supports this.

 You can create external JavaScript files and using

the src attribute on the script tag reference the URL

<script

src="javascripts/test.js"></script>

The Window Interface
9

 A Window Interface represents a window containing a HTML

document.

 A window object is exposed to your JavaScript code and you

can call various methods

 window.alert(“string”) //displays a popup alert box

 window.prompt(“string”) // displays a prompt where values can be

entered by the user

 window.confirm(“string”) // Confirmation box, allowing one to

figure out what the user has pressed

Activity 1: Add some JS to our apps
10

 Create a new JS file. Pop it into the JavaScripts folder
in your app (you will have to create this folder too)

 Write the following line in the JS file alert(“Hello
World”);

 Save the file as hello.js

 Include the script on the page “hello.js” to the folder
<mySampleApp>/public/javascripts

JAVASCRIPT

Variables - Numbers, Strings and Booleans

Variables (Numbers)
12

 Variables are the names you give to computer memory locations which contain data
in your computer programs

 Created using the let keyword (Let was introduced in ES6 2015)

 let age = 24;

 Variables can also be created using the var key word but this essentially makes
them globally scoped which can be problematic.

 var age = 24;

 If you don’t want the variable to change then use const

 const age = 24;

 Unlike languages such as C, variables do not need to be declared before being
assigned a value

 let age = 24;

 Variable “age” will be created if it isn’t already

 Declare multiple variables

 let age1, age2, age3;

Arithmetic in JavaScript (Numbers)
13

 Similar to C / C++ / Java etc.

 Basic Arithmetic Operators

 Addition + ans=a+7

 Subtraction - ans=a-b

 Multiplication * ans=a*b

 Division / ans=a/b

 Modulus % ans=a%b

Exercise 2: Working with numbers
14

 Declare a variable called salary and assign it a

value of 40000

 Assume that the €40k is your salary and you’ve just

been awarded a bonus of €1000, so add this to

the salary and using an alert display it on the page.

Variables (Strings)
15

 A string is a group of characters

 A string literal is a group of characters enclosed in
quotes

 “This is a string literal”

 “This is too”

 This isn’t

 A string variable is a variable that holds a string

 A String is a data type in JavaScript

 Space is a valid character in a string

String operators
16

 JavaScript supports string operators to join two

strings together

 let name = “Enda ” + “Barrett”

 Can also concatenate string variables

let first, last, full;

first = “Enda ”;

last = “Barrett”;

full = first + last;

Variable types
17

 Variables in JavaScript are not associated with any particular type
and any variable can be assigned (and re-assigned) values of all
types.

 JavaScript supports dynamic or weak typing

 This means that it will resolve the appropriate type at compile time,
based on the input values

 This does not mean that types don’t exist, they do.

 Number.

 BigInt

 String.

 Boolean.

 Null.

 Undefined.

 Symbol.

let foo = 42; // foo is now a number

foo = "bar"; // foo is now a string

foo = true; // foo is now a boolean

https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Data_structures

Exercise 3: Add string and number
18

 Create a variable salary and assign a value of 40000

 Create another variable bonus but assign it a value of
“1000”

 Create a third variable called total which adds salary
and bonus together

 Try adding 1000 euro bonus to the salary, what do you
notice?

Adding a string to a number
19

 When you try to add a string and a number

together the JavaScript JIT compiler will try to

complete automatic type conversion. In this instance

it converts the number 40000 to a string and

concatenates it to the string bonus of “1000”.

Boolean Variables and Expressions
20

 Boolean variables are a special type of variable

which can have two specific states true or false

 Declaring a Boolean variable

 let isVar = true;

 Note that true is a value not a string

 Do not enclose in quotes!

 Often pre-fixed with the naming convention “is”

Booleans
21

 Booleans are typically used in expressions, to

evaluation one thing against another.

 If you wanted to check whether one number was

larger than another number, you would place the

two numbers within an expression and the result

would be either true or false.

 Which leads to conditionals!

Variable Naming Rules
22

 Variable names known as
identifiers

 Identifiers are case sensitive

 myAge

 MyAge

 myAGe

 All different variables above

 Must begin with a letter or
underscore

 Cannot contain spaces

 Cannot use keywords

let age = 20;

JAVASCRIPT

Functions

Functions in JavaScript
2

 A JavaScript function is a block of code designed to

perform a particular task.

 The function is executed when “something” invokes it

(calls it)

 f(x) = x + 2
Function won’t

execute unless it

is invoked
function multiply(param1, param2)

{

return param1 * param2

}

Functions in JavaScript
3

 A function can be named or it can be anonymous

 The params are items of data that the function needs to

perform its task

 Not passing a required parameter will result in an error

 Can have zero parameters but still requires empty

parameters

function(param1, param2)

{

return param1 * param2

}

ES6 Arrow functions
4

(param1, param2) =>

{

return param1 * param2;

}

function(param1, param2)

{

return param1 * param2;

}

ES6

ES5

• Arrow functions are more

concise, developer can

achieve the same

functionality with fewer lines

of code.

• Support concise function

expressions

Assign function to a variable
5

let multiply = (param1, param2) =>

{

return param1 * param2;

}

multiply(3,3)

let multiply = function(param1, param2)

{

return param1 * param2;

}

multiply(3,3)

Returning from a function
6

 Functions can return values to their calling

environments

 Use the return statement to do this

function divide(numerator, denominator)

{

return numerator / denominator

}

Returning from a function
7

 The returned value from a function can be assigned

to a variable.

function incrementAge(myAge)

{

myAge++;

return myAge;

}

let incAge = incrementAge(26);

alert("Incremented age is " + incAge);

Invoking the function

and passing

arguments

Functions
8

 Functions consist of

 Unique name (cannot be keywords)

◼ If they are named!

 Parameters (again cannot be keywords)

 Don’t declare variables as parameters (let param1)

 Code block to execute

 Will only return once, but can use conditional statements

to control the execution of the code and have multiple

return statements

Invoking a function from HTML
9

<script>

function numbers() {

let sHTML = "";

sHTML += 1 + "
" + 2 + "
" + 3 + "
" + 4 + "
";

sHTML += "";

clientSideContent.innerHTML = sHTML;

}

</script>

<button onClick="numbers()">Show Some Numbers</button>

<div id="clientSideContent">Something here</div>

DOM Manipulation

Inline JS within our pages

-Note we can also link to a JS file too!

-Try and reproduce the same functionality but this

time by using a separate JS file

Exercise: Functions
10

 Copy the JS code from the previous slide and place

it into a separate JavaScript file.

 Modify the function “numbers” to accept a param

 If the argument passed in is 1 then the numbers

printed out should be 1, 2, 3, 4.

 If the argument passed in is something else, then the

numbers printed out should be 2, 4, 6, 8

JAVASCRIPT

Events

Events
12

 Actions that can be responded to by JavaScript

 Every element on a page has certain events which

can trigger some JavaScript code

 We can identify when a user clicks a button with the

onClick event

 Can then assign a function to run when the event is

identified

 Events defined as an attribute in the HTML Tag

Examples of Events
13

 A mouse click

 A web page or an image loading

 Moving the mouse over a hot spot on the web page

Other Mouse Events
14

 onClick

 Triggered when the mouse clicks an element

 onMouseDown

 Triggered when the mouse button is pressed

 onMouseUp

 Triggered when the mouse button is released.

Selecting and De-Selecting Elements
15

 All three normally used with form input elements

(text boxes, buttons etc.)

 onFocus

 Triggered when an element gets focus

 E.g. an element that is clicked is said to be in focus

 onBlur

 Triggered when an element loses focus

 onChange

 Triggered when the content of an element changes

As the mouse moves over HTML elements

16

 onMouseOver

 Triggered for an element when the mouse cursor is

moved over that element

 e.g. moving the mouse over an image (‘rollover’)

 onMouseOut

 Triggered for an element when the mouse cursor is

moved away from that element

 e.g. moving the mouse out of the image

Other Keyboard Events
17

 onKeyDown

 Triggered when a keyboard key is pressed

 onKeyUp

 Triggered when a keyboard key is released

 onKeyPress

 Triggered when a keyboard key is pressed or held

 onSelect

 Triggered when text is selected

Exercise: Multiply numbers from text input

18

 Place a text input on your web page

 Ask the user to pop in a number into the textbox using the
placeholder attribute

 Place a button underneath it called “Multiply”

 When the user clicks on the button a function is invoked which takes
the value from the text box, multiplies it by 3 and pops it back into
the same text box

 Note that if you place an ID on the input, you can access the value
the user enters via myelement.value

JAVASCRIPT OBJECTS

Objects
2

 We have seen how we can define primitives and

store information using variables

 For example:

 let num = 123;

 let str = “Enda B”;

 What if we want to represent something a little

more abstract?

How would you represent these?
3

Sales person

Smartphone

Car

Objects / User Defined Objects
4

 Sales person

 Name (String)

 Phone number (Number)

 Car

 Make (String)

 Model (String)

 Age (Number)

Object Example
5

 Objects are variables too, but contain many values

 let car = {make: “Ford”, model: “Mondeo”, age:2};

 The values are expressed in a property:value format

Accessing object properties & setting values

6

 The values can be accessed in two ways

 objName.property or objName[“property”]

 let car = {make: “Ford”, model: “Mondeo”, age:2};

 let make = car.make // make = Ford

 let anoMake = car[“make”] // anoMake = Ford

Simple example
7

<script>

function displayVehicles() {

let vehicle = {make:"Ford", model:"Mondeo", age:2};

let sHTML = "";

sHTML += vehicle.make + "
" + vehicle.model + "
" +

vehicle.age;

sHTML += "";

clientSideContent.innerHTML = sHTML;

}

</script>

<button onClick="displayVehicles();">Show a Vehicle</button>

<div id="clientSideContent">Something here</div>

Exercise: Put into table
8

 Modify the previous example (slide 8) to display

the contents of the single vehicle object in a table.

 Use Bootstrap to style it something like below

(https://getbootstrap.com/docs/5.0/content/tables/)

https://getbootstrap.com/docs/5.0/content/tables/

JAVASCRIPT ARRAYS

Arrays
10

 Arrays can store multiple values within a single

variable.

 It is a special variable that is suited for storing lists

of items.

 let array = [“Enda”, “Barrett”];

 let array = [];

 You define it using square brackets

Arrays cont.
11

 Each item within the array is known as an element

 let array = [“Enda”, “Barrett”];

 Array elements can be accessed by referencing the

correct index position

 let fullName = array[0] + “” + array[1]

Element 0 Element 1

Adding array items

• When initializing an array you can add values but

you may wish to add more throughout the program’s

execution

• This can be achieved by specifying an index position

and assigning a value to that position.

• let array = [“Enda”, “Barrett”];

• array[2] = “Peter”;

• array[3] = “Devon”;

Removing array items with splice

• let array = [“Enda”, “Barrett”];

• array[2] = “Peter”;

• array[3] = “Devon”;

• array.splice(1, 1);

Start index

position

Number of

elements to

remove

Arrays (push, pop) with Objects

• An array can also store objects

• let array = [];

• let car = {make: “Ford”, model: “Focus”, year: 2,

mileage:10000}

• array.push(car);

• array.pop()

Adds car to

the end of

the array

Removes the

last element

of the array

Exercise: Arrays
15

 Create an array of 5 objects such as vehicles etc.

 Each object has a make, model, year and mileage

property.

 Populate it with mock data

 Using a loop iterate over the array of objects and

place them in tabular form on your web page

INTRODUCTION TO NODEJS

AND SERVER-SIDE CODING

Overview
2

 Introduction to NodeJS

 Background on NodeJS

 Where do we run it?

 Server side coding

 What does the code look like?

Background
3

 V8 is an open-source JavaScript engine developed by
Google. It’s written in C++ and is used by the Google
Chrome Browser

 Short video on V8

 http://www.youtube.com/watch?v=hWhMKalEicY

 Node.js (Node) runs on the V8 engine

 It’s not a programming language – it’s a runtime environment

 Write it in JavaScript

 Most web dev’s are used to writing in JavaScript

 Good News - It’s just more JavaScript!

http://www.youtube.com/watch?v=hWhMKalEicY

Background cont.
4

 It was created by Ryan Dahl.

 Presented at JSConf 2009 – standing ovation

 You have downloaded it already!

 It is Open Source. It runs on both Linux, Mac and

Windows operating systems.

Introduction
5

 In simple terms Node.js is ‘server-side JavaScript’

 In not-so-simple words, Node.js is a high performance
network applications application, well optimised for
high concurrent environments

 In ‘Node.js’, ‘.js’ doesn’t mean that it’s solely written in
JavaScript. It is 40% JS and 60% C++.

 You can write modules for node in C++

Where do we run it?
6

 <script></script>

 It’s not for the browser

 Doesn’t run on the user’s laptop/phone or desktop
computer!

 Where does it run?

 On the server!

What’s the server?
7

Bounces through the

internet

Firebase

Request messages from

the client

Don’t we already have this?
8

 Yes but at the minute all Firebase is doing is

returning our static HTML pages

 Our current HTML, CSS, and JavaScript is static, once

we deploy it, it doesn’t change

 Things we can’t do right now

 Save some user data to a database?

 Register a user and store their username and password

 Check if a user is logged in and if so allow them access

to a restricted section of the site

Server side coding
9

 In order to add the type of functionality listed on

the previous slide we need to write “server side

code”

 Sometimes called backend code or a business logic

layer

 It’s just code that runs when the server receives a

request from a client

What does the code look like?
10

Where does it run on Firebase
11

Summary
12

 Introduction to NodeJS

 Background on NodeJS

 Where do we run it?

 Server side coding

 What does the code look like

REST APIS AND DEPLOYING TO FIREBASE FUNCTIONS

Overview
2

 Introduction to REST APIs

 Configuring Firebase functions on our apps

 Examining our first NodeJS code

 Modules in JavaScript

 Deploying our NodeJS functions to Firebase

REST API’s
3

https://www.youtube.com/watch?v=7YcW25PHnAA&t=82s

Application Programming Interface (API)

4

 An API expresses a software component in terms of its
operations, inputs, outputs and underlying types

 RESTful APIs

 REpresentational State Transfer

 Use HTTP methods (verbs), GET, POST …

 Interface is exposed and can be invoked without caring
about the underlying implementation

 Accessed via a URL

Adding Firebase Functions
5

 We are using Firebase functions to host our REST

APIS

 Thus as when we setup hosting we must now initialise

functions within our projects

 Using the command line, navigate to the directory

containing your project

 firebase init

Adding Firebase Functions cont.
6

Select functions and

hit enter

Select Yes

Adding Firebase Functions cont.
7

Select JavaScript

Adding Firebase Functions cont.
8

Select no to

ESLint

Select Yes to

installing the

dependencies

Adding Firebase Functions cont.
9

Finished installing

the dependencies

Now be a new

functions

directory

Examining the functions folder
10

Contains

dependencies

Where you will

write your

NodeJS code

and functions

Allows you to

define

dependencies

and other

config settings

Examine the code
11

const functions = require('firebase-functions’);

// // Create and Deploy Your First Cloud Functions

// // https://firebase.google.com/docs/functions/write-firebase-functions

//

// exports.helloWorld = functions.https.onRequest((request, response) => {

// functions.logger.info("Hello logs!", {structuredData: true});

// response.send("Hello from Firebase!");

// });

What is a library
12

 Libraries in programming are just blocks of code that you import so
your program can use them?

 Who writes them?

 Other Devs, yourself, could be anyone really…

 Why use them?

 You can’t use Firebase without this library.

◼ It’s like trying to control your TV without a remote

◼ It’s like trying to drive a car without a steering wheel, pedals etc.

 It’s their platform so you must use their interface!

require('firebase-functions’);

JS modules
13

 JavaScript allows the developer to package up

code and functionality into modules

 Think of them as set of packaged functions that you

wish to include in your application

JS modules
14

Driver.jshello.js

function hello()

{

return “hello”;

}

let mod = require('./hello');
module.exports.hello = hello;

let value = mod.hello();

let …

SourceTarget

Both files in the same folder

Modules
15

 Examining our first REST API (cloud function)

const functions = require('firebase-functions');

// // Create and Deploy Your First Cloud Functions

// // https://firebase.google.com/docs/functions/write-firebase-functions

//

exports.helloWorld = functions.https.onRequest((request, response) => {

functions.logger.info("Hello logs!", {structuredData: true});

response.send("Hello from Firebase!");

});

Exporting a module “helloWorld”

Deploying our first cloud function
16

 The command is the same firebase deploy!

 You will see the function URL outputted to the

console

 Paste it into the browser address bar to see if it

works…Don’t Google it! ☺

Summary
17

 Introduction to REST APIs

 Configuring Firebase functions on our apps

 Examining our first NodeJS code

 Modules in JavaScript

 Deploying our NodeJS functions to Firebase

FIREBASE FUNCTIONS, CALLBACKS, CREATING AND

TESTING OUR FIRST FUNCTIONS

Summary
2

 Firebase functions

 Callback functions

 HTTP Verbs GET and POST

 Creating a dumb function which receives data and returns it back

 Testing with POSTMAN

 JSON

 Summary

Firebase Functions
3

 It is a compute service that lets you run code
without provisioning or managing servers.

 Similar to AWS Lambda, Azure Functions… It runs
your code only when needed and scales
automatically, from a few requests per day to
thousands per second.

 You pay only for the compute time you consume -
there is no charge when your code is not running.

Containers vs VMs
4

Deploy a function what happens
5

HelloWorld

Callback functions
6

Too busy to take a call,

please leave your name

and number (function) and

I’ll call you back when I’m

finished my work (invoke

your function).

Function callbacks
7

 Examining our first REST API (cloud function)

const functions = require('firebase-functions');

// // Create and Deploy Your First Cloud Functions

// // https://firebase.google.com/docs/functions/write-firebase-functions

exports.helloWorld = functions.https.onRequest((request, response) => {

functions.logger.info("Hello logs!", {structuredData: true});

response.send("Hello from Firebase!");

});

// Callback function -- please run this code for me Firebase when a request is made

myCoolApp/functions/index.js

Exercise: Deploying a function
8

 Deploy a function onto Firebase and return a string

when it is invoked which says “Welcome to my cool

new backend function”

 Add a second function below the first one and this

time return a message saying “Not logged In!”

Passing Data - URL Query String
9

 We can encode parameters in the URL, we

generally refer to this as the query string

 E.g. If you run a google search query, look at the

URL after you search…

 http://www.mywebsite.com?data=hello

http://www.mywebsite.com/?data=

Simple function to mirror data
10

 Assume you want to create a function which parses

out data submitted per request and mirrors it back

to the requester

const functions = require('firebase-functions');

// Accept comment and return the same comment to the user

exports.echofunction = functions.https.onRequest((request, response) => {

response.send(request.query.data);

});

myCoolApp/functions/index.js

Exercise: Parsing params from QS
11

 Write a function that assumes the data passed in

the via the Query String is a number, take the value

that is submitted per request, double it and then

return it via the response.

 If the user submits a value that isn’t a number then

return a response that says “Please Enter a

Number”

HTTP Verbs (GET and POST)
12

 GET and POST are HTTP request methods to

transfer data from client to server.

 So far we have been making GET requests, GET is

designed to request data from a specified resource

 POST is designed to submit data to the specified

resource

 Both can be used to send requests and receive

responses

Request Structure
13

 All HTTP requests have a three main parts

 Request line
◼ HTTP Method (GET, POST, etc.)

◼ URL – address of the resource that is being requested

◼ HTTP version

 Headers
◼ Additional information passed between the browser and the

server, i.e. cookies, browser version, OS version, auth tokens,
content-type

 Message body
◼ Client and server use the message body to transmit data back

and forth between each other. POST request method will usually
have data in the body. GET requests leave the message data
empty

GET Method
14

 GET requests can be cached

 GET requests remain in the browser history (you can go
back!)

 GET can’t be used to send binary data, like images or
word documents to the server

 GET requests can be bookmarked

 GET requests have length restrictions

 GET requests should only be used to retrieve data

 Using GET data can be sent to the server by adding
name=value pairs at end of the URL, i.e. Querystring

 mysite.app.web…/page?id=101&name=John

POST Method
15

 POST requests are never cached

 POST requests do not remain in the browser history

 POST requests cannot be bookmarked

 POST requests have no restrictions on data length

 The POST method can be used to send ASCII as well as
binary data

POST Request Form Data
16

 Form data is often sent to the server via a POST

request
Alternative option is to

send username and

password to the server

via the QueryString –

uid=email@address.c

om

pwd=password

But is this a good idea?

mailto:uid=email@address.com

GET vs POST
17

 Use GET if you are requesting a resource

 You may need to send some data to get the correct
response back, but in general the idea is to GET a
resource

 Use POST if you want to send data to the server

 Other methods

 PUT //Update/Replace

 DELETE //Delete

 PATCH //Partial update/modify

POST data to server
18

 Assume you are building a form which posts

comments from your blog page to the server

 First step is to write a function to accept the

comment

const functions = require('firebase-functions');

// Accept comment and return the same comment to the user

exports.postcomment = functions.https.onRequest((request, response) => {

response.send(request.body);

});

myCoolApp/functions/index.js

How to test a POST request?
19

 We can create a form on a web page, then write

JavaScript to send the data via POST to the server.

 However it would be nice if there was a way to test

it first without having to go back to the frontend

Postman client
20

 When writing backend APIs such as the one we

have just completed, it’s often necessary to test it

quickly.

 You don’t want to have to write a client side request

to test each API. Sometimes you may even want to

pass in values which would take even longer to code

up.

 Postman can help!

 https://www.postman.com/downloads/

POSTMAN
21

 It’s brilliant for letting us test our APIs without having

to write client side code to make the requests.

 It will work for all request methods, i.e. GET, POST,

PUT etc.

 You can code the backend independent of the

frontend!

 How else could we test to see if postcomments is

working!

Sending data, what format?
22

 Now that we have an API available to receive data,

and we have a client (postman) willing to send the

data, we need to decide on a data format…

 Enter JavaScript Object Notation or JSON

JSON
23

 JavaScript Object Notation (JSON)

 It is an open, human and machine-readable
standard that facilitates data interchange

 Along with XML it is the main data interchange
format on the web

 Data types

 Numbers, Strings, Booleans, Arrays, Objects

 ISODate() returns a date object

 Firestore uses JSON documents to store records of
information

JSON cont.
24

 Arrays

 [“a”, “b”, “c”, “d”, “e”, “f”]

 [“apple”, 3, null, true]

 Objects

 {“Enda” : 45, “John” : 33, “Sam” : “Smith”}

 Array of Objects

 [{}]

 Use double quotes, no comma last value

POST JSON to Server
25

Pass JSON data

in the request

body

Request to our API

Response

Set POST

Exercise 3
26

 Create a function which accepts comment

information (JSON formatted) in the body of the

request i.e. {“Comment”: “This is my comment”}

 Make a request via Postman to send the data via a

POST request

 Respond with a message saying “I received your

comment, thank you”.

Summary
27

 Firebase functions

 Callback functions

 HTTP Verbs GET and POST

 Creating a dumb function which receives data and returns it back

 Testing with POSTMAN

 JSON

 Summary

PART 1: INTRODUCTION TO FIRESTORE AND

CREATING OUR FIRST DATABASE

Lecture Overview
2

 Firestore Database

 Overview of Document Driven Databases

 Creating our first database

 Connecting the database to our Firebase functions

 Writing our comment data to the database

 Reading our comment data from the database

 All will be tested using POSTMAN

Purpose of the lecture
3

 The goal is to introduce you to Firestore, from the
point of view of using it as a backend for your
applications. The majority of the discussion will be
practically focussed, with little theory concerning
more advanced database concepts such as
sharding, normalisation, concurrency, BSON, locking
writes/reads etc.

 It will be a basic introduction on how to get a
database connected to your applications.

Architecture
4

Functions

(Node.js)

Firestore (Database)

Return JSON

Firebase

Query data

Return JSON

Call API endpoint
url:api

Clients

What is Firestore?
5

 Firestore is a Document Driven Database.

 Documents follow a property:value format

 JSON

 Scalable, highly performant and document oriented.

 The databases tend to scale more easily horizontally.

Database concepts
6

 Records in Firestore are known as “Documents”

 These documents are just JSON data

 Documents are grouped into “Collections” which

are equivalent to tables in relational databases

 Queries are still queries, however there is NoSQL!

SQL to Firestore Terminology
7

Database

Table

Record/Tuple/Row

Database

Collection

Document

Column Field

Creating our first database
8

Login to the Firebase dashboard, click on Firestore

and then “Create database”

Open in production mode
9

 Start in production mode

Choosing a region
10

 The latency should be fairly low so the default

region will be fine, but if you want to place it in

Europe please select it in the dropdown and then

click enable

Database is now created
11

 You can create a collection and add documents

manually via this web interface. But the next step is

to connect to it with our functions and read/write

data.

Summary Overview
12

 Firestore Database

 Overview of Document Driven Databases

 Creating our first database

 Connecting the database to our Firebase functions

 Writing our comment data to the database

 Reading our comment data from the database

Writing data to the database
13

 To motivate data writing we will reuse the

postcomments function

 This is known as “Creating” a document

 I’ll create a new document every time the postcomments

function is called and save it in the database

 https://firebase.google.com/docs/firestore

https://firebase.google.com/docs/firestore

Firebase admin
14

 Firebase provides an admin library to allow your

server code (functions) to run in an authenticated

mode

 This means your code can connect to the database,

create docs, delete docs, update etc. all securely

const functions = require('firebase-functions');

const admin = require('firebase-admin');

admin.initializeApp();

Promise – More async hell
15

 In ES6 a new concept was added to JavaScript to
handle Callback hell

 These are called promises

 What’s the difference between callbacks and promises?

 Callback is passed as an argument

 Promise is something that is achieved or completed in the
future.

◼ Promise is an object, then() method (if promise is fulfilled) and
catch (if promise is rejected)

Code examples
16

asyncFunc(result => {

console.log(result);

});

Callback

const promise = asyncFunc(()=>{

return new Promise…
});

promise.then(result => {

console.log(result);

});

Promise

Adding a document
17

const functions = require('firebase-functions');

const admin = require('firebase-admin');

admin.initializeApp();

exports.postcomments = functions.https.onRequest((request, response) => {

// 1. Receive comment data in here from user POST request

// 2. Connect to our Firestore database

return admin.firestore().collection('comments').add(request.body).then(()=>{

response.send("Saved in the database");

});

});

myCoolApp/Functions/index.js

Using POSTMAN POST to the fn
18

Check the database to see if it saved
19

 If you check on Firebase you should now see your

comment

Reading our documents
20

myCoolApp/Functions/index.js

exports.getcomments = functions.https.onRequest((request, response) =>

{

// 1. Connect to our Firestore database

let myData = []

admin.firestore().collection('comments').get().then((snapshot) => {

if (snapshot.empty) {

console.log('No matching documents.');

response.send('No data in database');

return;

}

snapshot.forEach(doc => {

myData.push(doc.data());

});

// 2. Send data back to client

response.send(myData);

})

});

Test the function with POSTMAN
21

22

const functions = require('firebase-functions');

const admin = require('firebase-admin');

admin.initializeApp();

exports.postcomments = functions.https.onRequest((request, response) => {

// 1. Receive comment data in here from user POST request

// 2. Connect to our Firestore database

admin.firestore().collection('comments').add(request.body);

response.send("Saved in the database");

});

exports.getcomments = functions.https.onRequest((request, response) => {

// 1. Connect to our Firestore database

let myData = []

admin.firestore().collection('comments').get().then((snapshot) => {

if (snapshot.empty) {

console.log('No matching documents.');

response.send('No data in database');

return;

}

snapshot.forEach(doc => {

myData.push(doc.data());

});

// 2. Send data back to client

response.send(myData);

})

}); myCoolApp/Functions/index.js

OrderBy
23

 So far when reading comments from the database

we have not given any consideration to their order

 Perhaps it would be useful to order them by

postdate or perhaps by the number of likes etc.

 To do this we need to modify our Firebase functions

postcomments and getcomments to order the

comments

Creating comments - postcomments
24

 The Firestore database supports a timestamp field,

which we can use to store the date and time each

comment was posted.

 Once this is recorded on each document we can

return the comments to the user in order of their

post date/time.

Posting comments
25

exports.postcomment = functions.https.onRequest((request, response) => {

console.log("Request body", request.body);

// Create a timestamp to add to the comment document

const currentTime = admin.firestore.Timestamp.now();

request.body.timestamp = currentTime;

admin.firestore().collection('comments').add(request.body).then(()=>{

response.send("Saved in the database");

});

});

myCoolApp/functions/index.js

Don’t forget to hit firebase deploy

once you have made your changes

Check database
26

 When you post a comment you should now see a

timestamp beside each comment

Ordering documents by timestamp
27

 We now modify the get comments firebase function

to order the comments by timestamp

exports.getcomments = functions.https.onRequest((request, response) => {

// 1. Connect to our Firestore database

let myData = []

admin.firestore().collection('comments').orderBy('timestamp').get().then((snapshot) => {

if (snapshot.empty) {

console.log('No matching documents.');

response.send('No data in database');

return;

}

snapshot.forEach(doc => {

myData.push(doc.data());

});

// 2. Send data back to client

response.send(myData);

})

});

myCoolApp/functions/index.js

Lecture Overview
28

 Firestore Database

 Overview of Document Driven Databases

 Creating our first database

 Connecting the database to our Firebase functions

 Writing our comment data to the database

 Reading our comment data from the database

SOURCE CONTROL – CT 216 SOFTWARE

ENGINEERING I

Dr. Enda Barrett

Source control - overview
2

 Version (Source) control

 Version control software

 Why we need it?

 Git

 What is Git

 Branching

 Pull requests

Version control
3

 What is version control?

 Version control is a system that records changes to a

file or set of files over time so that you can recall

specific versions later

 Also known as revision control or source control

 Keeps track of changes, by whom and when

 Fundamental tool for developing software projects

Version control software?
4

 Subversion, GIT, VSS, CVS, Mercurial

 Revision control is actually present in a variety of

software products

Why do we need it?
5

 Backup software source

 Roll back to previous versions

 Keeping a record of who did what and when

 Know who to praise and who to fire!

 Collaborating with other people (teams)

 Troubleshooting

 Analyse the change history to figure out what caused the
problem

 Statistics

 Find out who is the most productive!

What should you commit?
6

 Web project (HTML, CSS, JavaScript, Images,
Documentation, Functions, Configuration files)

 Not the Node Modules folder

GIT Creator
7

Why was it created?
8

 For a long time Torvalds wasn’t using any version

control for the Linux Kernel (1991-2002).

 Changes were passed around as patches and

archived files.

 In 2002 they began using BitKeeper for managing

the source for the Linux Kernel

 In 2005 the relationship broke down and BitKeeper

revoked their licence.

 Initial release 7th April 2005

https://git-scm.com/book/az/v1/Ba%C5%9Flan%C4%9F%C4%B1c-A-

Short-History-of-Git

They needed something similar to BitKeeper

9

 The developers had the following objectives in mind:

 Speed

 Simple design

 Strong support for non-linear development (thousands

of parallel branches)

 Fully distributed

 Able to handle large projects like the Linux kernel

efficiently (speed and data size)

Why is everyone moving to GIT?
10

 Not all but quite a few!

 One of the most touted reasons is that of DVCS

 Works great when you have no access to the internet!

No VPN access to the SVN server…

 No single point of failure

 Even offline you can access the history, branches,

versions etc…

Feature branch workflow
11

 It encourages branching for every

feature

 No matter how big or small the

feature, a branch can easily be

created and is encouraged.

https://www.atlassian.com/git/

Distributed development
12

Each developer gets their repo

complete with history of commits

This makes GIT extremely fast

You don’t need a network

connection to

• Commit changes

• Inspect previous versions

• Perform diffs between

commits

If someone breaks the

production branch/trunk in SVN,

it blocks everyone else from

committing, with GIT you can

continue
https://www.atlassian.com/git/

Pull requests
13

 A pull request is where you ask another developer to merge

your feature into their repository

 Proj. leads can keep track of changes

 Proj. leads can merge it with their repository

https://www.atlassian.com/git/

Source control - overview
14

 Version (Source) control

 Version control software

 Why we need it?

 Git

 What is Git

 Branching

 Pull requests

USING GIT AND GITHUB IN OUR APPS – CT 216

SOFTWARE ENGINEERING I

Dr. Enda Barrett

Source control - overview
2

 Git

 Installing Git

 Adding Git to your projects

 Committing code

 GitHub

 Pushing source to remote GitHub repo

 Cloning a repository

 Pull requests

Getting GIT – Windows && Mac
3

 Install it on your machine

 Downloads available at for Windows and Mac

 https://git-scm.com/download/windows

 https://git-scm.com/download/mac

 Go with the default install options

 Set details so that every commit is logged

correctly…

➢ git config --global user.name "Enda Barrett"

➢ git config --global user.email "Enda.Barrett@nuigalway.ie"

GIT – Adding Git to your projects
4

 Once installed navigate to your app directory

(myCoolNewApp) on the command line

 Type git init from the root of that directory on the

command line

 Creates a repository in this directory

 Execute command git add -A

 Adds all files in the directory to the local repository

 Execute command git commit

 Commits everything to version control

Commit
5

 When committing you will be asked to put a

comment at the top to indicate what changes you

made. It’s important to be descriptive here so your

colleagues can understand the changes made

 Type i to begin inserting text

 When finished typing press Esc and then :wq and hit

Enter

GitHub
6

 What is GitHub?

 GitHub is a web based hosted service for Git

repositories. Git allows you to host remote Git

repositories and has a wealth of community based

services that makes it ideal for open source projects.

 It’s really three things

 A publishing tool

 Version control system

 Collaboration platform

Pushing your repository to Github
7

 Create an account on Github

 It’s free for public projects

 Create a new repository

Name it and give it a description
8

Quick setup options
9

Pushing to a remote repository
10

Execute these

commands to

push to Github

Personal Access Token
11

https://github.blog/2020-12-15-token-authentication-requirements-for-git-operations/

https://docs.github.com/en/authentication/keeping-your-account-and-data-

secure/creating-a-personal-access-token

More info

Steps involved in creating one, please follow these to create the token

Also a files on the web client Github
12

 Create new file

 Opens up an editor

Note: Be careful though, if you are working locally make sure to pull any changes that

were made via the web client

Update your repository
13

 git pull

 Will pull the latest version from the repository you

cloned.

 git fetch and merge

 Pull is actually a combination of the two and you can

run them separately

GIT – Cloning a repository
14

 Many projects don’t require you to create your own

repository, instead you clone it from a remote

location such as GitHub

 git clone <repo>

Pull requests
15

 If you make a change i.e. add a feature you can

create a pull request.

 Everyone can review the code and decide whether

or not it should be included in the master branch

 It’s a forum for discussing the changes

 Git commands https://git-scm.com/docs

https://git-scm.com/docs

Sample pull request
16

Excellent Guide
17

Practical – Creating a repo
18

Commit some changes
19

 Make some changes to your app’s codebase

 git add –A

 git commit

 git push –u origin <master>

Creating branches (locally and remotely)

20

 To list all branches (local, remote)

 git branch

 git branch –r

 Adding a branch locally

 git branch <branch_name>

 Push it to the remote repo

 git push -u origin <branch_name>

Switching to a branch and commiting
21

 Now that you’ve created a branch, we need to

check it out so that we can start committing to it

 git checkout <branch_name>

 git add –A

 git commit

 git push –u origin <branch_name>

If the branch is already remote
22

 If one of your colleagues has created a branch and

you want to work with it

 git fetch

 git checkout <branch_name>

 git add –A

 git commit

 git push –u origin <branch_name>

Pull requests
23

 You’ve completed your feature and integrate it with

the main master branch

 Best to do it using the GitHub web client

Deleting the branch
24

 Once you have finished and pulled your code into

the main master branch, you may want to delete the

branch

 git branch -d <branch_name>

 git push origin --delete <branch_name>

INTRODUCTION TO VUEJS

Overview
2

 Introduction to VueJS

 Background on VueJS

 Why do we need it?

 How do we started/resources

 Installation guide

 Getting started with Vue

 Creating a new Vue App

 Examining the main aspects

 Components

 Templates

 Props / Mustache tags

Semester 1 vs Semester 2
3

 In semester 1 we built a basic database driven web
application with a Firebase backend.

 Semester 1 could be considered the fundamentals of
Web Development

 In semester 2 we will now take this basic knowledge
of (HTML, CSS, JavaScript and Firebase) and move
into a more “advanced” web application.

 Semester 2 should be considered advanced Web
Development

Background on VueJS
4

 Vue (pronounced view) is “what is known as” a

progressive framework for building user interfaces.

 In the same way that Node.js (Node) runs our back-

end code we will use a JS framework called VueJS

for our frontend code.

 Good news again! - It’s just more JavaScript!

 If you have ever heard of Frameworks such as

ReactJS or AngularJS, Vue is the same

Why do we need it?
5

 Couldn’t we just continue with our apps from last
semester?

 The short answer is, yes. These frameworks whilst
ubiquitous in industry at the moment, are not mandatory
for building web applications.

 However, they will speed up development significantly,
enforce proper practices and good standards. They will
also enable you to avoid “boatloads” of JS code that
could prove difficult to maintain as the project
progresses.

How do we get started/resources?
6

 The VueJS web page is an excellent resource and
I’ll be using many of their examples throughout the
upcoming weeks

 https://vuejs.org/

 There are ample books on the subject. I haven’t
chosen a specific text because I don’t want to bind
the learning to a specific author’s structure.

 However, some of the most recommended texts are

 Fullstack Vue by Hassan Djirdeh

 Vue.js 3 By Example by John Au-Jeung

https://vuejs.org/

Installation
7

 There are multiple ways of installing this (4 primary ways).

 See details here

 https://vuejs.org/guide/quick-start.html

1. Import it as a CDN package on the page

2. Download the JavaScript files and host them yourself

3. Install it using npm

4. Use the official CLI to scaffold a project, which provides
batteries-included build setups for a modern frontend
workflow (e.g., hot-reload, lint-on-save, and much more)

https://vuejs.org/guide/quick-start.html

Create our first project
8

 Create a new directory called vueapps

 This is where we will create our vue apps.

 Again it’s helpful to place these on the root of your

machine, for easy command line access.

Option 4 – Installing Vue
9

 Information about it

 https://vuejs.org/guide/quick-start.html#creating-a-

vue-application

 Open up a command prompt and type the

command within the newly created vueapps folder

 npm init vue@latest

 This installs and executes create-vue the scaffolding

tool for vue.

https://vuejs.org/guide/quick-start.html#creating-a-vue-application

Creating a project
10

 The scaffolding tool allows you to create a base

project with various options.

 You can set the project features and tools to

integrate as part of the project

Creating a project cont.
11

 For our first “Hello World” type project, just use the
default options

 Note – Don’t do this in industry – in an academic
environment Linting will create too many formatting and
prog. errors amongst the group that will drain a huge
amount of time. Many of these are minor and don’t affect
the functionality.

 The other components, i.e. Router, Pinia (Vuex) etc will all
be added later

The new app should now be ready
12

 Change directory into the new app

 Type npm run dev

Goto – http://localhost:5173
13

Exercise 1 – Installation and Creation
14

 Install Vue on your local machines via the command

line – see slide 8 - 13

 Run it and test it works

Folder structure – hello-world app
15

 A bunch of config files and some folders, some of

which look familiar.

 The src folder is where we will build out our Vue

apps

Public folder
16

 Last semester we spent much of our time

developing our content within the public folder.

 This time there is only a favicon in there by

default.

index.html
17

 The index page provides the entry point in HTML.

 It provides an element for VueJS to load into

src folder
18

 This folder contains the src vue code for your app

Main.js - explained
19

 The JS file that initializes the root component into an

element on your page.

 The element is “app” see it in index.html

Main.js cont.
20

 Imports the Vue object “createApp” from the library
(located in the node modules folder – note no path
needed)

 Imports the App.vue file from the current directory and
passes it in as an argument to vue – specifying the ID of
the HTML tag that hosts the App.vue component

https://vuejs.org/guide/essentials/application.html

Components – Single File Components
21

 Any file you see with a .vue extension is a Single File

Component

 The idea is that you build reusable components for different

sections/segments of your web page which you can plugin and

reuse as often and wherever you need.

Main page

Header and Nav component

Footer component

Three primary parts to a component
22

HTML - template

JavaScript

CSS

Components are encapsulated
23

 This makes components encapsulated, where the
HTML, JS and CSS for a specific component is all
neatly present within a single file. The CSS can be
scoped to a component.

 You can reuse components throughout the app
wherever you wish.

 They need to be pre-compiled by a vue compiler,
the browser won’t recognize .vue files and know
implicitly what to do with them.

 It compiles into a standard ES module

App.vue
24

 This is the entry point or root level component. Use

this to import other components into your

application

Main.js App.vue

Component A

Component B

Component C

Templates
25

 Template tags are very useful as you can place content
within them that will remain hidden when the page loads.

 Using JavaScript it can be displayed.

 Within the opening and closing template tag you place the
HTML you would like to render for the component.

 Using the example of the hello-world vue app we have just
created. If you look under src>components>HelloWorld.vue
you will see lots of HTML, that forms the content when you
open localhost:5173

 The vue engine will dynamically load the templates required
for each page

CSS styles - component
26

 Under the style tag usually at the bottom of the Vue

SFC files you can specify styles for the component.

 Styles can be scoped so that the styles only apply

to a specific component

<style scoped>
h3 {

margin: 40px 0 0;
}
ul {

list-style-type: none;
padding: 0;

}
li {

display: inline-block;
margin: 0 10px;

}
a {

color: #42b983;
}
</style>

JavaScript – vue SFC
27

 Within the <script> tags you place the JS.

App.vue

Defining properties on

the page that are

passed in as args

<script setup>

defineProps({

msg: {

type: String,

required: true

}

})

</script>

HelloWorld.vue

Including an imported component
28

When compiling, Vue will

search for any components

and listed under the property

“components” and render them

Imported components must be

included in the template by

surrounding them in angle

brackets. Any “props” can be

treated like tag attributes

<script setup>

import HelloWorld from './components/HelloWorld.vue'

import TheWelcome from './components/TheWelcome.vue'

</script>

<template>

<header>

<img alt="Vue logo" class="logo" src="./assets/logo.svg"

width="125" height="125" />

<div class="wrapper">

<HelloWorld msg="You did it!" />

</div>

</header>

<main>

<TheWelcome />

</main>

</template>

Props
29

 You can pass data between components using

props.

 In the Hello World example we can pass data

between components using these props.

 App.vue

 HelloWorld.vue

<HelloWorld msg="You did it!" />

<script setup>

defineProps({

msg: {

type: String,

required: true

}

})

</script>

Mustache tags – data binding
30

 Vue.js uses an HTML-based template syntax that

allows you to declaratively bind the rendered DOM

to the underlying component instance's data.

 Using the mustache templating system we can bind

props to mustache tags {{ msg }}

 https://mustache.github.io/

https://vuejs.org/guide/essentials/template-syntax.html<h1 class="green">{{ msg }}</h1>

<script setup>

defineProps({

msg: {

type: String,

required: true

}

})

</script>

Hot reload
31

 Once you have the app running you can view

changes in real time as you make them in the editor.

 This is known as hot reloading

 Test this for yourself by modifying the

HelloWorld.vue component in real time

Exercise 2 – Adding a component
32

 Create a new component called footer

 Create a list of empty links – about, home etc.

 Import the new footer component into the main

App.vue component and display it on the page

VUEJS, ADDING FIREBASE AND ROUTING

Overview
2

 Ongoing issues/observations with the framework

 Adding Firebase Hosting to our Vue App

 Adding Firebase Functions to our Vue App

 Routing

 Installing Vue Router

 Client side routing

 Creating routes

 Router links

1. SFCs must start with a capital
3

 When naming Vue components (Single File

Components) they must start with a capital letter

otherwise they won’t compile properly and will

given an error.

 You don’t need to specify any JS in the SFC and it

will still work (seems to be rather flexible)

Adding Firebase to our App
4

 Good News, it’s just a matter of running the firebase init

command and associating a project with it.

 Open CMD/Terminal

 Navigate to the vueapps/myApp folder

 Execute the command firebase init

 Let’s start with hosting by selecting it and hitting spacebar

Adding Firebase hosting
5

 Since we already have a project from last semester with some functions

already written let’s associate the app with this (my-awesome-project…).

 Specify a dist folder instead of the default public

 Select Yes to configure a single-page app

 Select No for automatic builds and deploys with GitHub

 Select No to overwriting index.html

Generating a build for deployment
6

 The command npm run dev creates a local server on the machine
and deploys the application to it.

 This is fine for development, but not for production.

 In order to deploy to a cloud backend like Firebase we need to
bundle up the application so that all the files, assets, CSS etc. are in
a suitable format for deployment.

 This is known as generating a build

 Execute the command npm run build

 Once the command has finished the build will be placed in the dist
folder

dist folder
7

 VueJS packages up the application and places into

the dist folder – short for distribution

 None of the common errors, warnings will be

included in the production build. As they bloat the

application payload size.

Firebase deploy
8

 Run the command firebase deploy and your app

should now be deployed onto Firebase

Adding Firebase Functions to our App

9

 Again, it’s just a matter of executing the Firebase Init

command!

 Open CMD

 Navigate to the vueapps/myProject folder

 Execute the command firebase init

 Add functions by selecting it and hitting spacebar

Adding Firebase cont.
10

 Select JavaScript

 Select no for linting

 Install dependencies

Functions folder
11

 If it has worked correctly, you should now see a

functions folder

Exercise 1 - Deployment
12

 Add both Firebase Hosting and Firebase Functions
to your new Vue App

 Copy your existing functions index.js (from the older
project – if you still have it) into the new folder

 This file contains your functions for getComments and
postComments (see week 11)

 Deploy the app and Firebase should now be hosting
the new Vue Application

Server-side routing
13

 Routing on the server is where a client receives a

response based on the URL path that the user is

visiting.

 In a traditional web app setup (what we built last

semester), when clients requested our pages,

index.html, about.html etc. the server responded to

each request with HTML, CSS and JS for each page

and reloaded the entire page with the new content

Single Page App
14

 Client side JavaScript, intercepts the navigation (/index,
/about, /login etc), requests the data from the server
and updates the page without a full page reload.

 This typically results in a much faster user experience,
as many pages can be constructed and loaded in
memory without having to be requested from the server
at all.

 In SPAs “routing” is done on the client to load the
various web pages.

 In VueJS Single File Components are loaded based on the
path selected by the user

Routing
15

 With a Single Page App there is only one page

on the server – but it is useful to support address

bar route navigation i.e. /about-us or /login for

bookmarking and usability etc.

 A client-side router can achieve all of this by

parsing the requests on the client and displaying

the necessary content each time.

 Docs https://router.vuejs.org/

Routing cont.
16

 We can use the vue-router package written for
VueJS to enable client-side routing for specific
paths

 To the end user the application will look like a
normal multi-page server-side app, but in reality, it
will be just simply be displaying SFC components
based on the path entered.

 You will notice that it is incredibly responsive and
fast, this is because the application is not going
back to the server for each request.

Housekeeping – pages and components

17

 Having built web apps for many years I still like to

work under the convention of there being pages.

 I understand that with Single Page Apps this doesn’t

technically exist, but I think it’s an easier convention

to follow.

 I personally prefer to structure my app to have a

folder called pages (containing SFCs that represent

a logical page) and a folder called components

(containing SFCs that are shared amongst pages).

Add a “pages” directory
18

 We’re going to restructure the
app into pages. The first thing is to
create a Home.vue page.

 Add a SFC to the pages folder
call Home.vue

Home page
19

 Currently there are a number of vue components

which are imported by the main vue component

App.vue and the result is the page below

 This is available at the root URL “/”

 Let’s now import them into our new Home page

Edit Home.vue
20

 Edit the newly created Home.vue SFC and add the

following

<script setup>

import HelloWorld from '../components/HelloWorld.vue'

import TheWelcome from '../components/TheWelcome.vue'

</script>

<template>

<header>

<div class="wrapper">

<HelloWorld msg="You did it!" />

</div>

</header>

<main>

<TheWelcome />

</main>

</template>

<style scoped>

</style>

Much of this

is simply

removed

from the

current

App.vue file

Delete existing content from App.vue
21

 Modify

App.vue to

import the

new “Home”

page and test

that it works.

<script setup>

import Home from './pages/Home.vue'

</script>

<template>

<Home />

</template>

<style scoped>

header {

line-height: 1.5;

}

.logo {

display: block;

margin: 0 auto 2rem;

}

@media (min-width: 1024px) {

header {

display: flex;

place-items: center;

padding-right: calc(var(--section-gap) / 2);

}

.logo {

margin: 0 2rem 0 0;

}

header .wrapper {

display: flex;

place-items: flex-start;

flex-wrap: wrap;

}

}

</style>
App.vue

Home page
22

Adding additional pages
23

 We now have a single “home” page but what if we

wish to add additional pages?

 This is where routing comes in, we need to load the

different “pages” (which are themselves still SFCs)

depending on the path.

 We can use a client-side router within Vue to do this

for us.

Install vue-router
24

 Open up cmd and install vue-router using the following

command

 npm install --save vue-router@latest

 This will install the latest version of vue-router (v4) via NPM. It

will pop it into the node_modules folder and add an entry to

package.json for deployment

Package.json

Router-view
25

 We wish to display whatever

component is requested by the

user, based on the inputted

path.

 The <router-view> custom

component will enable this.

 Pop it into App.vue and

remove Home.vue as shown

<script setup>

</script>

<template>

<router-view></router-view>

</template>

<style scoped>

header {

line-height: 1.5;

}

.logo {

display: block;

margin: 0 auto 2rem;

}

@media (min-width: 1024px) {

header {

display: flex;

place-items: center;

padding-right: calc(var(--section-gap) / 2);

}

.logo {

margin: 0 2rem 0 0;

}

header .wrapper {

display: flex;

place-items: flex-start;

flex-wrap: wrap;

}

}

</style>App.vue

Edit main.js
26

 Import vue-router to use in

our apps

 This will configure it to use

routes defined in the file

routes.js

 Let's now add some routes

Main.js

import { createApp } from 'vue'

import App from './App.vue'

import { createRouter, createWebHistory }

from 'vue-router';

import routes from './router/routes';

import './assets/main.css'

let router = createRouter({

history: createWebHistory(),

routes: routes

});

const app = createApp(App)

app.use(router);

app.mount('#app');

Imports explained
27

 Default import

 JS supports what’s known as a default export from a JS

file

 This could be a number, a function, an object, an array…

 When importing the default export

 It doesn’t matter what name you assign to it when importing

it – when importing the default export

export default 53

File x

import x from './x';

File y

Imports explained cont.
28

 Named import

 JS also supports named exports from a JS file

 This could be a number, a function, an object, an array…

 When importing a named export

 A file may have many named exports – thus you have to
specify exactly the one you require

 It can only have one default export though!

File x

import {num} from './x';

File y

export const num = 53

Routes.js
29

 To define routes, we must

create a file called routes.js

 Create a new directory called

router to house this file

 Your app should now start to

resemble this structure

Routes.js
30

 The function “loadPage” is a
helper function to load
components from the
“pages” folder.

 This function “loadPage” just
imports the named
component at runtime.

 The file exports an array of
JS objects, which contains
the path as well as the
component to load.

String literal

specifying the

path to the page

Actual page to

render when

the path is hit

function loadPage (component) {

// '@' is aliased to src/components

return () => import(/* webpackChunkName: "[request]" */

`@/pages/${component}.vue`)}

export default [

{ path: '/', component: loadPage('Home') }

]

import { createApp } from 'vue'

import App from './App.vue'

import { createRouter, createWebHistory } from

'vue-router';

import routes from './router/routes'

import './assets/main.css'

let router = createRouter({

history: createWebHistory(),

routes: routes

});

const app = createApp(App)

app.use(router);

app.mount('#app');

The routes are passed in during init
31

 In main.js, you can see that the routes are imported

and passed into the the vue-router

Main.js

Named imports

Routes

Add a second page “Blog.vue”
32

 Let’s now create a second page called Blog.vue

 Add it to the pages directory

 Let’s keep it basic for the time being with no

imported components

<template>

<h1>Welcome to my new Blog page</h1>

<p>This is my very first blog entry</p>

</template>

<style scoped>

</style>

Blog.vue

Add an entry in router/routes.js
33

 Add an additional route to the new page

function loadPage (component) {

// '@' is aliased to src/components

return () => import(/* webpackChunkName: "[request]" */

`@/pages/${component}.vue`)}

export default [

{ path: '/', component: loadPage('Home') },

{ path: '/blog', component: loadPage('Blog') }

]

Test the new page
34

 Navigate to the URL http://localhost:5173/blog

http://localhost:5173/blog

Router Links <router-link>
35

 Vue supports a link component <router-link>

 Instead of normal <a> tags, Vue supports a custom

link component which will resolve links automatically.

<template>
<h1> This is where the links should be </h1>
<router-link to="/">Go to Home</router-link>

<router-link to="/blog">Go to Blog</router-link>

</template>

Two example links using the router

link component

Boot up a local server and test
36

 Now if you execute the command npm run serve the
pages should load up at the various paths “/” and
“/blog”

 You have successfully implemented a client side
router and programmed in routes to specific
components or pages

 If you generate a build and deploy it will also
work.

Exercise 2 – Add a nav bar
37

 Add a new component called Navigation.vue which

will contain navigation links for you application

 Place two links in navigation component -> Home, Blog

 Use router links for the two pages.

 Add an additional page called About Us

 Add a route to the page to the routes.js file with path

/about-us

 Add a link in the Navigation.vue component to the About Us

page

 Deploy to Firebase

Routing summary
38

 This was a basic introduction to routing with the vue-

router package, there is a lot more information

available on how to configure much more advanced

routing on the router information page

 https://router.vuejs.org/guide/

https://router.vuejs.org/guide/

VUEJS – INVOKING SERVERLESS FUNCTIONS

Overview
2

 Adding Bootstrap to our Vue App

 Creating a simple comment form on the blog page

 Making our first client call to post data to the server

 Client-side API for function calls

◼ Background on AJAX

 SDK setup and configuration

 Data binding in VueJS

 Methods in VueJS

 Same Origin Policy

 CORS

Adding a design framework
3

 There are a number of projects with tailored Design

Frameworks for VueJS

 One is called BootstrapVue

 https://bootstrap-vue.org/

 Also a Material Design package called Vuetify

 https://vuetifyjs.com/en/

https://bootstrap-vue.org/

Adding Bootstrap
4

 We can manually add Bootstrap to our applications

similarly to how we did last semester.

 Go to https://getbootstrap.com/docs/5.3/getting-

started/introduction/

CSS

JavaScript

https://getbootstrap.com/docs/5.3/getting-started/introduction/

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<link rel="icon" href="/favicon.ico">

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-

GLhlTQ8iRABdZLl6O3oVMWSktQOp6b7In1Zl3/Jr59b6EGGoI1aFkw7cmDA6j6gD"

crossorigin="anonymous">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha1/dist/js/bootstrap.bundle.min.js" integrity="sha384-

w76AqPfDkMBDXo30jS1Sgez6pr3x5MlQ1ZAGC+nuZB+EYdgRZgiwxhTBTkF7CX

vN" crossorigin="anonymous"></script>

<title>My Application</title>

</head>

<body>

<div id="app"></div>

<script type="module" src="/src/main.js"></script>

</body>

</html>

Where to place the URLs?
5

src/index.html

Running example – Blog comments
6

 In order to work through this weeks’ content, I’m going to
develop a simple comment form that we pop at the bottom
of the blog page. The idea being that app users can post
comments when there are new blog entries.

 This will require the saving of new comments into the
database, the requesting and displaying of existing
comments etc.

 This will teach us how to invoke our serverless functions via
the client and connect to the database, to add new
comments and read existing ones.

Add a comment form in Blog.vue
7

 First step is to add a comment form at the bottom of

the existing blog page from last week. Sample

code taken from
https://getbootstrap.com/docs/5.1/forms/form-control/

<template>
<h1>Welcome to my blog page</h1>

<p>This is my blog page for my SaaS app</p>
<div class="container">

<div class="mb-3">
<label for="exampleFormControlInput1" class="form-label">Email address</label>
<input type="email" class="form-control" id="exampleFormControlInput1"

placeholder="name@example.com">
</div>
<div class="mb-3">
<label for="exampleFormControlTextarea1" class="form-label">Comment</label>
<textarea class="form-control" id="exampleFormControlTextarea1" rows="3"></textarea>

</div>
</div>

</template>

Resulting page
8

Adjusting the styles for the Blog.vue SFC

9

 With VueJS one can alter a specific component’s

SFC styling by specifying scoped styles in the

<style> tags.

 The global text styling in App.vue specifies that the

text should be centred. This can by overridden

easily within the SFC.

<style scoped>
.container{

text-align: center;
}
</style>

Add a button to the form
10

<template>
<h1>Welcome to my blog page</h1>

<p>This is my blog page for my SaaS app</p>
<div class="container">
<div class="mb-3">

<label for="exampleFormControlInput1" class="form-label">Email
address</label>

<input type="email" class="form-control"
id="exampleFormControlInput1" placeholder="name@example.com">

</div>
<div class="mb-3">

<label for="exampleFormControlTextarea1" class="form-label">Post
Comment</label>

<textarea class="form-control" id="exampleFormControlTextarea1"
rows="3"></textarea>

</div>
<div class="mb-3 right">

<button type="button" class="btn btn-primary">Primary</button>
</div>

</div>
</template>

<style scoped>
.right{

text-align: right;
}
</style>

Simple Bootstrap

Button

Aligning the button to

the right

UI should now look like…
11

Exercise 1 – Add Bootstrap, create Form

12

 Add Bootstrap to your VueJS app (slide 5)

 Add a simple form as shown to add comments to

our fictional blog page for our fictional SaaS

 Add the Bootstrap button “Post Comment” under the

form

Firebase functions
13

 At the end of semester 1 (Weeks 10 and 11) we

looked at writing functions to write data to the

database and read data back out.

 These were tested exclusively using the POSTMAN

client

 In case you missed it or forgot it, I’m going to do a

quick recap here.

Quick recap: On the process
14

 Week 10 – Firebase functions, callbacks and creating

our first functions

 Week 11 – Firestore Database

 Topics covered

 Creating a function to add a document

 Using POSTMAN to test the function

 Creating a fn to read documents

 Testing document reads

Creating a Firestore DB
15

 Many of you are reusing the existing project from last semester

so the DB is already created.

 If you have created a new project then login to Firebase, select

your project from the console, click on Firestore and then

Create Database

Adding a document
16

functions/index.js

const functions = require("firebase-functions");

const admin = require('firebase-admin');

admin.initializeApp();

// Accept comment and return the same comment to the user

exports.postcomment = functions.https.onRequest((request,

response) => {

const currentTime = admin.firestore.Timestamp.now();

request.body.timestamp = currentTime;

return

admin.firestore().collection('comments').add(request.body).then((

)=>{

response.send("Saved in the database");

});

});

Using POSTMAN POST to the fn
17

Check the database to see if it saved
18

 If you check on Firebase you should now see your

comment

Exercise 2 – Functions
19

 Add a Firestore DB (if not already done)

 Deploy the function from last semester, “postcomment”

 The code for these (if you don’t already have it) is up
on Blackboard under Week 15.

 Test that they work via POSTMAN calls, make sure that
the comments are saving correctly in the database and
the returning comments.

Server-side API for Firebase
20

 When creating functions you use the server-side

Firebase library

Separate

node_modules located

under functions, contain

the library code

Client-side API
21

 To invoke our serverless functions “postcomment”

and “getcomments” from the VueJS client

application code we need to utilize the Firebase

client-side APIs.

 This code enables us to call (invoke) the deployed

serverless functions

Serverless

fn
Browser

URL /getcomments

{data}

HTML, CSS, JS

What is AJAX?
22

 A key driver of Web 2.0

 Normal HTTP interactions instruct the browser to
request an entire webpage at once

 http://www.example.com/

 AJAX requests instruct the browser to request small
pieces of content

 Typically, smaller parts of the webpage

 But can be any arbitrary data, not necessary marked up as
HTML

 Asynchronous update => no tangible ‘refresh’ process for
user

AJAX Requests
23

Server Browser
URL/forex

/forex

Refresh

exchange

rates
Ajax Request (What is the current rate?)

Ajax Response ({gbp_usd:1.25})

XMLHttpRequest

HTML, CSS, JS

What is AJAX?
24

 Asynchronous

 Request is made without interrupting the page

 Often user initiated by events, sometimes timed

 JavaScript

 Usually kicks in when the Response is ready, i.e. the

server returns with the data

 XML

 Language agnostic mechanism for data transport and

storage (Data Format)

However, it also supports JSON
25

 XML in the name can be somewhat misleading,

given that you can send data as plain text or JSON

etc.

 It’s simply a combination of

 XMLHttpRequest Object (browser built in)

 JavaScript to manipulate the DOM

 We will be using the JSON data format for our

data

 AJAJ!

XMLHttpRequest
26

 All modern browsers have a built in XMLHttpRequest
object

 Allows us to make a request to the server without going
through normal HTTP request process

 i.e. by popping the URL in the address bar of the browser

 Thus we can use this make calls to our Cloud Functions,
however Firebase has a separate library which we can
use instead which keeps our apps within a single
ecosystem

Install the Firebase client SDK
27

 Open a terminal or cmd window

 Navigate to the root project directory and execute

the command npm install firebase

 This will install the firebase client SDK, which will

enable us to start invoking our functions from our

client code (VueJS code)

Initialise the client code
28

 Before we can make any calls to our functions

though we must initialize the client code.

 Login to the Firebase dashboard and click the

settings Icon and then project settings under your

application.

SDK Setup and Configuration
29

 If you’ve already added web hosting the

configuration should be available, otherwise just

click on the web icon and add it

 Follow the sequence of steps (note: we already

installed firebase client library on slide 27)

SDK Setup and Configuration
30

Should now

see the

configuration

info for the

client SDK,

listed at the

bottom of the

project

settings page

Add a directory “api” under src
31

 Under the src folder create a new directory called api

 Add a new file called firebase.js

 In this file we’ll place the configuration info listed on the

firebase dashboard for your app and export it as a

module which can be imported to other files

Firebase.js
32

 Open the file firebase.js and copy the config code

from Firebase into the file

Export the app
33

 Add an additional line to the firebase.js file at the

end to export “app” as the default export for the

module

messagingSenderId: "967032066037",
appId: "1:967032066037:web:87a39050ae79282b9e9abc"

};

// Initialize Firebase
const app = initializeApp(firebaseConfig);

export default app;

Add a default export

Exercise 3
34

 Add the Firebase client SDK to our apps (slides 27-

33)

Data binding
35

 Two-way data binding in VueJS.

 Vue supports a concept known as two-way data
binding.

 Put simply when the user types into the input field,
the bound variable gets updated to match the value
in the input. Equally when you update the bound
variable, the input element's content updates to
match value.

Data binding in VueJS
36

 A directive known as v-model can be applied to

input tags, i.e. inputs, textarea’s and select elements

to create a two-way data binding

https://vuejs.org/guide/essentials/forms.html#text

Data binding in VueJS
37

 Add two properties “handle” and “comment” as v-

model attributes on the two inputs for our form

<div class="mb-3">
<label for="exampleFormControlInput1" class="form-label">Email address</label>
<input type="email" v-model= "handle" class="form-control" id="exampleFormControlInput1"

placeholder="name@example.com">
</div>
<div class="mb-3">
<label for="exampleFormControlTextarea1" class="form-label">Comment</label>
<textarea class="form-control" v-model="comment" id="exampleFormControlTextarea1"

rows="3"></textarea>
</div>
<div class="mb-3 right">
<button type="button" class="btn btn-primary">Post Comment</button>

</div>

Data option for a component
38

 In slide 36 the data entered by the user into the

text box was immediately displayed on the client.

 How do we access the data in our JS code, i.e.

between the script tags on a SFC.

<script>
export default {

data() {
return {
handle: '',
comment: ''

}
},

}
</script>

These two properties “handle” and

comment are bound to the inputs via the

v-model directive (previous slide)

As the user types into the text boxes,

these will be populated with the value in

real-time and vice versa (if we populate

via JS). This is two-way binding.

Initialised to contain no value, empty

string, i.e. two single quotes ‘’

https://vuejs.org/guide/essentials/reactivity-fundamentals.html

Methods in VueJS
39

 Vue allows for the creation of methods. Put simply

these are functions we can attach to handle events,

i.e. button clicks etc.

 If we define a method which will run when the user

clicks the “post comment” button we can then take

the data from the input form and post it to the

server!

https://v3.vuejs.org/guide/data-methods.html#methods

Method stub to post comments
40

<div class="mb-3 right">
<button type="button" @click="postComment" class="btn

btn-primary">Post Comment</button>
</div>

</div>
</template>

<script>
export default {
data() {

return {
handle: '',
comment: ''

}
},
methods : {

postComment() {
console.log(this.handle);
console.log(this.comment);

}
}

}
</script>

@click directive is equiv to onclick and

specify the method postComment that is

invoked onclick.

Define a function called postComment()

{…}, placed under methods which logs

to the console the values in handle and

comment

Once the user types into the text

boxes the values for handle and

comment get populated

The “this” keyword must be used

to reference them

Open up localhost:5137
41

 Open the developer tools tag and check the

console.

 Type into the boxes and click Post Comment

The data should

be visible here

on the console,

after you have

clicked Post

Comment

Making calls to the server
42

 At this point the Blog page has a simple form where
the user can enter their “handle” and leave a
comment.

 The data entered into the text boxes is stored in the
two member variables.

 When the user clicks on the button “Post Comment”
the method “postComment()” is called.

 The method currently just writes the values of the
variables to the console but we’d like to instead
send this data to the server!

Adding the Client SDK to the SFC
43

<script>
import app from '../api/firebase';
import { getFunctions, httpsCallable } from "firebase/functions";

export default {
name: "Blog",
data() {
return {

handle: '',
comment: ''

}
},
methods : {
postComment () {

console.log(this.handle);
console.log(this.comment);
const functions = getFunctions(app);
const postComment = httpsCallable(functions, 'postcomment');
postComment({"handle": this.handle, "comment":

this.comment})
.then((result) => {

// Read result of the Cloud Function.
/** @type {any} */
console.log(result);

});
}
}

}
</script>

Import the exported app from

api/firebase with the app config.

Import the objects getFunctions and

httpsCallable from firebase/functions

Pass in the app config as a param to

getFunctions

Using httpsCallable, pass in functions

and the name of the function you wish

to call

Pass the object as an argument to

postComment

Open localhost:5137
44

 Open up the developer tools and check the console

 Type into the boxes and click Post Comment

CORS Policy - Error

What is CORS?
45

 Firstly lets talk about SOP or Same Origin Policy

 For security reasons browsers prevent scripts from

one origin accessing resources from another origin.

 This is known as the same origin policy.

 Two URLs have the same origin if the protocol, port

(if specified), and host are the same for both.

Examples of SOP
46

https://developer.mozilla.org/en-

US/docs/Web/Security/Same-origin_policy

CORS
47

 Cross Origin Resource Sharing

 CORS allows a script executing in one domain access a
resource in a different domain

 Browsers make a “preflight” request to the server
hosting the cross-origin resource, in order to check that
the server will permit the actual request.

 In that preflight, the browser sends headers that
indicate the HTTP method and headers that will be used
in the actual request.

Hosting and Functions
48

 Our Firebase hosting and functions violate the SOP

 Lets examine the URLs to find out why

 https://my-super-cool-project-74f58.web.app:80/

 https://us-central1-my-super-cool-project-
74f58.cloudfunctions.net/postcomment

 The domain/host names are different

https://my-cool-web-app-37271.web.app:80/
https://my-super-cool-project-74f58.web.app/
https://my-cool-web-app-37271.web.app:80/
https://us-central1-my-cool-web-app-37271.cloudfunctions.net/getcomments

How do we circumvent SOP?
49

 Luckily we can enable our functions to violate the

SOP using by using CORS

 Note that there are security implications of doing

this.

 There is a NodeJS library called cors that we can

use to enable the feature

 Navigate to the functions directory within your app

on the command line and execute the command

 npm install cors

Adding CORS library to server fn
50

functions/index.js

const functions = require("firebase-functions");

const admin = require('firebase-admin’);

const cors = require('cors')({origin: true});

admin.initializeApp();

// Accept comment and return the same comment to the user

exports.postcomment = functions.https.onRequest((request, response) => {

cors(request, response, () => {

const currentTime = admin.firestore.Timestamp.now();

request.body.timestamp = currentTime;

return

admin.firestore().collection('comments').add(request.body).then(()=>{

response.send({"data":"Saved in the database"});

});

});

}); Remember to redeploy the

functions once you have made

the changes!

Communication established
51

 Now that CORS is enabled on the server we can
communicate with it from our client side JS

 Note that origin true will allow requests from any
origin. This is generally a bad idea…

 const cors =

require('cors')({origin:

true});

Check the database
52

 You will see an entry now, but the posted data is

nested within a new parent “data” property. This is

automatically added when calling via the client libs

Modify the function to remove “data” prop

53

 If you wish to remove it, you can modify the function

as follows

exports.postcomment = functions.https.onRequest((request,
response) => {

cors(request, response, () => {

const currentTime = admin.firestore.Timestamp.now();
request.body.timestamp = currentTime;
return admin.firestore().collection('comments').add({

handle: request.body.data.handle,
comment:request.body.data.comment, timestamp:

request.body.timestamp}).then(() => {
response.send({"data": "Saved in Database"});

});
});

});

functions/index.js

Exercise 4
54

 Following the slides implement the code to post a

comment from your blog page to your deployed

server function, which in turn saves the data to the

database.

CONTINUING WITH CRUD

Dr. Enda Barrett

Lecture overview
2

 Retrieving comments from our Firestore Database

via our serverless function getComments

 Serverless delete function and client code to delete

comments

 Serverless update function and client code to

update comments

Get comments and display them
3

 The getComments serverless function should already

be in place from last semester. If not you can find

the code on Blackboard under Week 15

functions/index.js

exports.getcomments = functions.https.onRequest((request,
response) => {

cors(request, response, () => {
// 1. Connect to our Firestore database
let myData = []
admin.firestore().collection('comments').orderBy("timestamp",

"desc").get().then((snapshot) => {

if (snapshot.empty) {
console.log('No matching documents.');
response.send('No data in database');
return;

}

snapshot.forEach(doc => {
myData.push(doc.data());

});

// 2. Send data back to client
response.send({data : myData});

});
});

});

Make sure cors is enabled

Data property

Create client code to display it
4

 Goal is to add some code to Blog.vue to display all

the comments.

getComments(){
const functions = getFunctions(app);
const getComments = httpsCallable(functions,

'getcomments');
getComments().then((result) => {
// Read result of the Cloud Function.
// /** @type {any} */
console.log(result);

});
}

}

Add a method under

postComment called

getComments

Blog.vue

<div class="mb-3 right">
<button type="button" @click="getComments" class="btn btn-primary">Show Comments</button>

</div>

Add a show comments

button, in the template

Click on Show Comments
5

List rendering in VueJS
6

 VueJS supports a v-for directive which allows us to

loop over an array within our Vue code and display

items.

https://vuejs.org/guide/essentials/list.html#list-rendering

List rendering of comments
7

 Add the following below the Show Comments button

 Add an empty “comments” array to the data object

<div class="mb-3">
<ul id="array-rendering">

<li v-for="comment in
comments">

{{ comment.comment }}

</div>

data(){
return {

handle:'',
comment:'',
comments:[]

}
},

Show comments
8

 When show comments is clicked a request is made

for the comment data, this is assigned to the

comments array. VueJS will render whatever data is

placed in the array, as there is a 2-way binding

established on page load

getComments(){
const functions = getFunctions(app);
const getComments = httpsCallable(functions,
'getcomments');

getComments().then((result) => {
// Read result of the Cloud Function.
// /** @type {any} */
console.log(result);
this.comments = result.data;

});
}

Mapping the response data

to the comments array

Show comments on page load

 Loading on button click

is fine, but sometimes

you may wish to show

comments on page load.

 When the SFC loads for

the first time, there is a

specific lifecycle that

occurs where a number

of functions are run in a

specific order.

9

https://stopbyte.com/t/what-are-lifecycle-hooks-in-vuejs-

and-how-do-they-work/1009

Load comments on page load

 In the current blog page,
the comments don’t load
when the page loads.
Instead, one must click
the “show comments”
button.

 However, if we utilize
the created function, we
can have the comments
display as soon as the
page loads.

10

Exercise 1: Get comments
11

 Following the steps in the previous slides 3-10, retrieve
the comments from the database by invoking the
getcomments serverless function and display them on
the client.

 Using the “created” function, invoke getcomments on
page load and display the comments when the page
loads for the first time.

 Advanced: Using the window.setInterval method
request comments every 30 seconds

Loading…
12

 When you click on the show comment or post comment
there will be a delay during the function call process.

 It would be useful to indicate to the user once they click
on the button that a request is underway, and they
should wait until it comes back before pressing the
button again.

 Functions can be very slow when they are cold! 5
second response time.

Vue-loading-overlay
13

 There are many of these but a nice one that I found

is called vue-loading-overlay

 Execute npm install vue-loading-overlay in the root

of your app folder

import { createApp } from 'vue'
import App from './App.vue'
import { createRouter, createWebHistory } from 'vue-router';
import routes from './router/routes';
import Loading from 'vue-loading-overlay';

let router = createRouter({
history: createWebHistory(),
routes: routes

});

const app = createApp(App);
app.use(router);
app.use(Loading);
app.mount('#app');

Import the component

Instruct Vue to use it

Main.js

Method getComments – Blog.vue
14

getComments(){
const functions = getFunctions(app);
if(window.location.hostname === "localhost") // Check if working

locally
connectFunctionsEmulator(functions, "localhost", 5001);

const getComments = httpsCallable(functions, 'getcomments');
let loader = this.$loading.show({
// Optional parameters
loader: 'dots',
container: this.$refs.container,
canCancel: false

});
getComments().then((result) => {
// Read result of the Cloud Function.
// /** @type {any} */
// once the response has returned hide the loader
loader.hide();
console.log(result);
if(result.data === 'No data in database')
this.comments = [{comment : "No comments posted yet"}]

else
this.comments = result.data;

});
}

Loader – Specified

dots, the container and

the set cancel to false

Hide the

loader,

once the

function

returns

Available config props
15

 https://www.npmjs.com/pack

age/vue-loading-overlay

 Info on installation and

configuration

https://www.npmjs.com/package/vue-loading-overlay

Completing CRUD
16

 Currently we have serverless functions and client code which
supports creating comments and reading (displaying) comments

 There is a concept called CRUD (Create, Read, Update and Delete)
when it comes to functionality for DB driven web applications

 The final two, “update and delete” can be implemented similarly to
create and read

 In order to do so we must create two new functions and also the
client code – let’s start with delete

1) Add new firebase function - delete
17

exports.deletecomment = functions.https.onRequest((request, response) => {

cors(request, response, () => {

// deletes a comment using the id of the document

admin.firestore().collection("comments").doc(request.query.id).delete().then(function()

{

response.send({"data", "Document successfully deleted"});

})

});

});

functions>index.js

Add this code below your existing

postcomment and getcomments functions

http://localhost…?id

Test your API works
18

2. Open the

database and get

the ID of a document

in the db

1. Deploy your newly created function

deletecomment to the cloud or alternatively

run it locally on the emulator

Postman DELETE request
19

Change request type to DELETE
Paste the id of

the document

you wish to

delete

Double check on the

firebase console to be sure

that it is gone from the

databaseURL – http://..../deletecomment?id=sposifhak

Adding a delete button on the client
20

src>Blog.vue

<div class="mb-3">
<ul id="array-rendering">

<li v-for="comment in comments">
{{ comment.comment }}
<button type="button" class="btn btn-primary">Delete

Comment</button>

</div>

Getting the document ID

21

 In order to pass the comment id to the serverless
function via a delete call, the client code needs to
have access to that id

 Currently getComments returns an array of
comments, containing the handle, timestamp and
comment itself.

 If we add the id of the document to this also, then
we can pass it back when trying to delete comments

Modify getComments
22

exports.getcomments = functions.https.onRequest((request,
response) => {

cors(request, response, () => {
// 1. Connect to our Firestore database
let myData = []
admin.firestore().collection('comments').orderBy("timestamp",

"desc").get().then((snapshot) => {

if (snapshot.empty) {
console.log('No matching documents.');
response.send({data: 'No data in database'});
return;

}

snapshot.forEach(doc => {
myData.push(Object.assign(doc.data(), {id:doc.id}));

});

// 2. Send data back to client
response.send({data : myData});

});
});

});
functions>index.js

ECMAScript 2015 (ES6)
supports an Object.assign
method when you wish to
merge two objects

doc.id contains

the id of the

document

The client view
23

 On the client, if you click on Get Comments, you will

see the following in the console…

Each object now contains the document id

Pass the id as a param
24

<div class="mb-3">
<ul id="array-rendering">

<li v-for="comment in comments">
{{ comment.comment }}
<button type="button" @click="deleteComment(comment.id)"

class="btn btn-primary">Delete Comment</button>

</div>

Modify the delete button to call a method

deleteComment when the user clicks it

Pass in the newly available

id of each comment

src>Blog.vue

Create a deleteComment method
25

deleteComment(id){
const functions = getFunctions(app);

const deleteComment = httpsCallable(functions, 'deletecomment?id='+id);
deleteComment().then((result) => {

if(result.data == "Deleted document from database")
this.getComments() // To refresh the client

})
}

Pass in the doc id

as a query

Refreshes the UI by calling

getComments() again
src>Blog.vue

Updating comments
26

exports.updatecomment = functions.https.onRequest((request, response) => {
cors(request, response, () => {

return
admin.firestore().collection('comments').doc(request.query.id).update({comment:request.body.data.comment}
).then(() => {

response.send({"data": "Updated document in database"});
});

});
});

Need the document ID

passed in via the query

Need to supply the data you

wish to update in the body of

the request

functions>index.js

Test function
27

Passing in the updated comment data

Client code - update
28

 We want to provide a mechanism to edit comments.

 They are currently displayed as raw text values

Client code - update
29

 Using conditionals, when the user clicks on the text

we’ll pop in a textbox (input) with the current value

and two buttons, one to save and one to cancel.

<div class="mb-3">
<ul id="array-rendering">

<li v-for="comment in comments">
<div v-if="!editing">

{{comment.comment}}
</div>
<div v-if="editing">

<input v-model="tempValue" class="input"/>
<button @click="disableEditing"> Cancel </button>
<button @click="save(comment.id)"> Save </button>

</div>
<button type="button" @click="deleteComment(comment.id)" class="btn btn-primary">Delete Comment</button>

</div>

src>Blog.vue

Methods
30

enableEditing(comment){
this.tempValue = comment;
this.editing = true;

},
disableEditing(){
this.tempValue = null;
this.editing = false;

},
save(id) {
const functions = getFunctions(app);

const updateComment = httpsCallable(functions,
'updatecomment?id='+id);
updateComment({"comment":

this.tempValue}).then((result) => {
this.getComments();
this.editing = false;

})

}

Sets the comment to a

tempValue and sets

the editing to true

Reverses it by clearing

tempValue and setting

editing to false

Call updatecomment

passing in the ID. This is

then passed to the function

and then getComments is

called to refresh the UI

and editing is set to False

src>Blog.vue

Data function
31

data(){
return {

handle:'',
comment:'',
comments:[],
tempValue:"",
editing:false

}
},

The data function will need to

include additional variables for

tempValue and editing

Exercise 2
32

 Implement both update and delete functionality.

 You should now have the full CRUD support.

 Modify your page to display the comments when

the page loads.

FIREBASE EMULATORS – WORKING LOCALLY AND

SAFELY

Dr. Enda Barrett

Overview
2

 In class - debugging in Web Applications

 CORS errors

 Firebase emulation

 Initialising the emulators

 Installing Java for Firestore

 Invoking local functions instead of the deployed
functions in the cloud

Firebase emulator
3

 Firebase provides an emulator which allows us to

deploy our functions locally to test if they work as

expected prior to deployment.

 Realistically we should only deploy once we are

happy that our code is working as expected!

 Enter emulators!

Firebase emulator
4

 The emulator allows you to mimic the deployment

environment on your laptop or PC where you can

safely code features without worrying about

breaking anything.

 Once you are happy you can deploy onto the cloud

(Firebase) and users from around the globe can

access your updates/changes to your site.

Emulating, hosting, functions and db
5

 Up until now when running the command npm run serve a
local hosting server has been spun up, accessible on
http://localhost:8080

 As you coded the frontend in real time, you were able to
inspect your changes instantly without having to wait until
everything uploaded to the cloud.

 This dramatically speeds up development, but now we wish
to include firebase functions and firestore db to the local
dev environment. This means we can work much faster only
deploying when we are happy with the build.

http://localhost:5000/

Initialise the emulators
6

 Firstly, we want to initialise the emulators we need

 We only need to additionally include Firestore for the

moment. Functions is automatically created (or at least

it was on my setup).

 Open up a cmd/terminal window and enter the

following command at the root folder of your

project, i.e. hello-world

 firebase init emulators

Select Firestore Emulator
7

 Choose Firestore Emulator

 Hit Enter to choose the default 5001 port for

functions

Functions emulator

should already be

installed

Choose a different port Firestore
8

 The next step is to choose the port for Firestore, the

default is 8080 but this is also the default port for

many web servers and can conflict.

 Change the port to 5002 and hit enter

 Select Y to enable to emulator UI and choose any

available port

Download the emulators
9

 Select Y to download the emulators

 This will download the jar file. The emulator

platform is written in Java.

Java must be installed
10

 The firestore emulator runs on Java. Since all of you are doing java
most of you should have java already installed, if not then please get
it

 https://openjdk.java.net/install/

 You can test that Java is installed by executing the command

 java --version

 Note that the npm run command just opens up the package.json
command and searches for a serve property and substitutes whatever
command it finds and executes it.

 In our case that is simply firebase emulators:start

You should see this if Java

is installed

https://openjdk.java.net/install/

localhost:4000
11

Summary
12

 Firebase emulation is a great way to code safely

offline.

 It’s much quicker, make a small change in your

functions they are instantly deployed

 Once you are happy with your fixes, features

offline then you can push it to production, by

deploying it.

Exercise 1 – Get the local env working
13

 First challenge is to get the local dev environment

working properly

 Set up emulation for Firestore

 If Functions is not set up then set it up

 You don’t need to set up hosting because we will be

using the default VueJS bootstrapped server to run our

apps via npm run serve

Calling our functions - localhost
14

 If you examine the VusJS client code, we currently

have a “httpsCallable” defined to allow us to post

comments.

 We’d like to work locally, instead of calling the cloud

deployed functions “https://us-central1-my-super-

cool-project-74f58.cloudfunctions.net/postcomment”

instead we’d like to invoke

“http://localhost:5001/my-super-cool-project-

74f58/us-central1/postcomment”

Recap: Blog.vue from 3 weeks ago
15

<script>
import app from '../api/firebase';
import { getFunctions, httpsCallable } from "firebase/functions";

export default {
name: "Blog",
data() {
return {

handle: '',
comment: ''

}
},
methods : {
postComment () {

console.log(this.handle);
console.log(this.comment);
const functions = getFunctions(app);
const postComment = httpsCallable(functions, 'postcomment');
postComment({"handle": this.handle, "comment":

this.comment})
.then((result) => {

// Read result of the Cloud Function.
/** @type {any} */
console.log(result);

});
}
}

}
</script>

Import the exported app from

api/firebase with the app config.

Import the objects getFunctions and

httpsCallable from firebase/functions

Pass in the app config as a param to

getFunctions

Using httpsCallable, pass in functions

and the name of the function you wish

to call

Pass the object as an argument to

postComment

Modify our VueJS code
16

 In order to hit our local functions we can simply do a

location check within our code. If the current location

of the client request is “localhost” then use the local

function emulators, if it’s not, i.e. in production (on

Firebase) then use the Firebase functions and save

the data to the remote Firestore database instead

of the local one.

 document.window.hostname in JS will give us the

host name from the URL

Blog.vue
17

import app from '../api/firebase';
import { getFunctions, httpsCallable, connectFunctionsEmulator } from
"firebase/functions";

export default {
name: "Blog",
data(){
return {

handle:'',
comment:''

}
},
methods: {
postComment(){

console.log(this.handle);
console.log(this.comment);

const functions = getFunctions(app);
if(window.location.hostname === 'localhost') // Check if working locally
connectFunctionsEmulator(functions, "localhost", 5001);

const postComment = httpsCallable(functions, 'postcomment');
postComment({"handle": this.handle, "comment": this.comment}).then((result) => {
// Read result of the Cloud Function.
// /** @type {any} */
console.log(result);

});
}

}
}

Import

connectFunctionsEmulator

Check for localhost, if it

is then connect to the

local function emulator

Open up two terminals/cmd
18

 We need to have two terminal/cmd windows open,

one which runs the emulator and one for the local

VueJS server

firebase emulators:start npm run serve

Test it locally
19

 If you try and post a comment from the /blog page

 Local functions will be invoked and the data saved

in a Firestore database (see next slide)

Firestore DB emulator
20

 The data should now be visible only in the local db

http://localhost:4000/firestore

Be careful!
21

 The database is ephemeral – once you shutdown

the emulators, i.e. cancel it using Ctrl + C on the

cmd window, the database will be purged.

 If you are working on functions that read data from

the data (such as getcomments) then make sure

there is data present within the database.

Deploy and Test
22

 Execute the command npm run build

 This will create a production build

 Once complete, execute the command firebase deploy

 When you navigate to the cloud url i.e. https://my-

super-cool-project-askf.web.app/ it should work and

the data you post via the comment form should save in

the Cloud Firestore database and not the local one

https://my-super-cool-project-askf.web.app/
https://my-super-cool-project-askf.web.app/

Exercise
23

 Modify your serverless functions to work with local

emulation

 Test it works both locally and when deployed on the

cloud

SOFTWARE TESTING THEORY– CT 216 SOFTWARE

ENGINEERING I

Dr. Enda Barrett

Lecture overview
2

 Software Testing

 Importance of testing

 Testing techniques

 Black box testing

 White box testing

 Code coverage

 Integration Testing

 Test Automation

Importance of testing
3

 Adding tests to your application code serves two
purposes

 Ensure that the code you have written behaves as
expected

 Ensure that future changes by you or another member
of your team don’t result in an undesired output

 Testing in NodeJS adds a little more complexity as
you need to be able to handle, synchronous,
asynchronous and RESTful functionality

Why do we test software?
4

 To ensure the delivered software is high quality we

must test frequently

 Quality control is about finding variations in a work

or end product compared with a given specification

 The purpose of quality control is to subject the

software to frequent tests in order to eliminate

problems as early as possible.

Testing techniques

5

 There are many possible testing techniques which

can be intermingled to provide the best possible

testing coverage.

 No matter how extensive the testing is, it cannot be

exhaustive and guarantee program correctness.

 There will always be bugs!

Lecture overview
6

 Software Testing

 Importance of testing

 Testing techniques

 Black box testing

 White box testing

 Code coverage

 Integration Testing

 Test Automation

At a high level : Black box testing
7

 Assumption that the tester doesn’t know the internal

workings of the program under test.

 The unit is considered a black box whereby certain

inputs are provided and specific outputs are

expected

 Also known as testing to specs.

Black box testing cont.
8

 Because no implementation knowledge is needed

this form of testing can be completed by the users

themselves.

 This is the main technique for acceptance testing

 Black box testing tends to search for missing

functionality, i.e. an expected functional requirement

has not been implemented in the software

White box testing (Glass box)
9

 As you can imagine white box testing is the opposite

of black box testing.

 The program under test is considered fully

observable i.e. a transparent glass box that one

can see inside.

 The tester must study the code and define tests that

exercise selected execution paths in the code.

Lecture overview
10

 Software Testing

 Importance of testing

 Testing techniques

 Black box testing

 White box testing

 Code coverage

 Integration Testing

 Test Automation

Code coverage
11

 What is it?

 You hear a lot about code coverage these days, it’s
essentially the amount of your code that is “covered” by a
test

 As a metric it can help you determine what % of code is not
covered

 Usually aim for 80-90%

 Generally two main types:
◼ Statement/line coverage – is each executable line of code

covered by a test?

◼ Branch coverage – is each conditional branch covered by a test

 In JavaScript one of the most popular is Istanbul

 https://istanbul.js.org/

Statement/Line coverage
12

 Statement or line coverage is simply a measure of

the number of lines of your codebase that are

“covered” by a test.

 If we were testing a particular function such as the

retirement calculator, a test that invoked the function

with a valid age parameter such as 40, would

ensure 100% code coverage

function retire(age)
{

var added = 68-age;
return 2020+added;

}

Branch (conditional) coverage
13

 Let’s assume that the government allows those currently over
40 to retire at 65 and those under 40 must work until 68.
Our retirement calculator now looks like this

 In order to have 100% coverage, we will need two tests one
where the age is 40+ and one where the age is less than
40. If we only have a single test for either case, then the
coverage will only be 50%.

function retire(age)
{

var added = 0;
if(age > 40)

added = 65-age;
else

added = 68-age;

return 2020+added;
}

Lecture overview
14

 Software Testing

 Importance of testing

 Testing techniques

 Black box testing

 White box testing

 Code coverage

 Integration Testing

 Test Automation

Naïve test : Testing with Postman
15

 Throughout our development effort on the backend most
of us have experimented with the Postman client to
ensure that our backend APIs operate as they are
supposed to.

 This testing however was most likely naïve, passing in
expected parameters and observing expected
outcomes

 What about testing

 A POST request with different/unexpected data in the body

 A delete request with an unusual id or no id?

 A get request with no id…

Postman relies on manual testing
16

 Remember that each request you create in Postman
has to be manually run each time. It will prove
difficult to remember to run each test for every
REST endpoint.

 A moderately sized application such as an
ecommerce site could easily contain hundreds of
REST endpoints, handling user data, shopping carts,
wishlists, shipping details, order details…

 Do you want to examine the results of 100s of
requests each time you wish to test the system?

Integration Testing
17

 An integration test is performed to make sure that
different bits of the application work together.
Making a HTTP request to a REST API such as
/getComments, involves a database call. If
authentication is also required to view comments
then that could also be verified.

 A well designed integration test will help the
developer to keep track of changes to the system.

 It’s a more convincing test, to ensure that the system
behaves as expected.

Integration testing contd.
18

 In reality integration testing is a logical extension of

unit testing.

 It tests the interfaces between units

 When you combine/integrate multiple units, the

interfaces/boundaries between these become

crucial pain points in the wider software

development effort.

Lecture overview
19

 Software Testing

 Importance of testing

 Testing techniques

 Black box testing

 White box testing

 Code coverage

 Integration Testing

 Test Automation

Test Automation
20

 What is it?

 During the build process, pre-scripted automated tests

are executed to ensure that quality is maintained prior

to deployment

 Usually this happens when you commit your code to

source/version control. A Continuous Integration

server generates a build.

Summary
21

 Software Testing

 Importance of testing

 Testing techniques

 Black box testing

 White box testing

 Code coverage

 Integration Testing

 Test Automation

TESTING OUR CODE – CT 216 SOFTWARE

ENGINEERING I

Dr. Enda Barrett

Lecture overview
2

 Mocha (a JS test framework)

 Installation

 Testing our (backend) Firebase functions

 Chai assertion library

 Creating our first test

 Running our tests

Mocha
3

 Mocha is one of the more popular testing

frameworks for JavaScript, allowing you to test

backend NodeJS code as well as client code in the

browser.

 Mocha will allow us to create a suite of tests,

describe the function of each test, generate reports

etc

https://mochajs.org/

Mocha terms
4

 describe

 describe method creates a suite of test cases

 it’s merely for grouping tests only, allows you to give a

high level description

 You can next them also, i.e. groups within groups

 it

 it method implements a specific test case

Install mocha
5

 Probably best to install mocha globally on your

machine because we’ll be testing both client and

server side

 npm install -g mocha

Note: Remember to put sudo in front of the

command if running on a mac

Testing our functions - Add a test folder
6

 Let us start with testing our functions

 Create a test folder inside the functions folder

Create a new file and add it to test
7

 Create a new file inside in the functions folder and

call it index.test.js

 Modify the package.json file located under the

functions folder and add the following

"scripts": {
"test": "mocha --reporter spec"

}

Creating our first test
8

 At this point we haven’t created any specific tests

yet, so lets now create one.

 The premise is that our functions are HTTP functions,

i.e. you invoke them through HTTP calls and they

respond. If you send in some test data and they

respond with the correct response you know they

are working as they should be

Chai assertion library
9

 In our tests, we would like to be able to check or

assert that certain conditions are upheld or the

request body contains certain content.

 Chai is an assertion library, which allows for speedy

checking of our response data

 Note: Check the API docs online for the full suite of

assertions available

http://chaijs.com/

Testing HTTP Functions
10

 The functions written to date, such as getcomments

or postcomments, are invoked through HTTP

requests. We would like write tests to ensure that no

poor developer breaks our wonderful code!

 npm install chai

 npm install chai-http

Unit Testing
11

 One of the very first tests often encountered is the unit
test.

 A unit test is written by the programmer to verify that a
small piece of functionality behaves as it should.

 It is usually narrow in scope, should be easy to write
and run.

 Heavy reliance on mocking data is often associated
with unit testing.

 A unit test should not have dependencies outside the
unit, i.e. connection to a data, call to a 3rd party API,
should not form part of a unit test.

const chai = require('chai');

const chaiHttp = require('chai-http');

chai.use(chaiHttp);

const expect = chai.expect;

describe('Testing posting comments', function () {

this.timeout(100000);

it('Tests if the db can save comments successfully', async () => {

const result = await chai.request('https://us-central1-my-awesome-project-86da3.cloudfunctions.net')

.post('/postcomment')

.set('content-type', 'application/json')

.send({ data : {handle: 'TestEnda', comment: 'Test comment from Enda'} });

});

});

index.test.js
12

 Create test that writes a comment to the db
Function address

functions/test/index.test.js

Unit Test

Run our first test
13

Change to Functions

Directory

Execute command

Check database
14

index.test.js
15

 Add additional test to index.test.js

const chai = require('chai');

const chaiHttp = require('chai-http');

chai.use(chaiHttp);

const expect = chai.expect;

describe('Testing posting comments', function () {

this.timeout(100000);

it('Tests if the db can save comments successfully', async () => {

const result = await chai.request('https://us-central1-my-awesome-project-86da3.cloudfunctions.net')

.post('/postcomment')

.set('content-type', 'application/json')

.send({ data : {handle: 'TestEnda', comment: 'Test comment from Enda'} });

});

});

describe('Tests Get Comments', function () {

this.timeout(100000);

it('Tests if there are comments', async () => {

const result = await chai.request('https://us-central1-my-awesome-project-

86da3.cloudfunctions.net').get('/getcomments');

expect(result.statusCode).to.equal(200);

expect(result.body.data).to.be.an('Array');

});

});

Run our tests again
16

More important assertions
17

 Whilst checking for MIME types, HTTP response codes and
other header related content is important, these alone whilst
possibly causing some unexpected behaviour may not break
your system.

 Changes to field names, missing data or expected params
can have detrimental effects on your application.

 Another colleague (or you!) may have made these
modifications, and it would be nice to ensure that any
modifications to the schema, or invalid data will throw an
error

This is important
18

Array index

If the response was modified to return a string instead of an array, it would break our

client code

for (var i = 0; i < data.length; i++) {
sHTML += "<p> Handle: " + data[i].handle + "</p>";
sHTML += "<p> Comment: " + data[i].comment + "</p>";
sHTML += "<button onclick=deletecomment(" + "'" +

data[i].id + "'" + ")>Delete Comment</button>";
comments.innerHTML = sHTML;

}

Ensure a property exists
19

 We know that our client code will break if we don’t

have any comment field – so create a test!

Remember it’s an array

so you must query an

object by index

position

describe('Tests Get Comments', function () {

this.timeout(100000);

it('Tests if there are comments', async () => {

const result = await chai.request('https://us-central1-my-

awesome-project-86da3.cloudfunctions.net').get('/getcomments');

expect(result.statusCode).to.equal(200);

expect(result.body.data).to.be.an('Array');

expect(result.body.data[0].data).haveOwnProperty('comment');

});

});

Lecture summary
20

 Mocha (a JS test framework)

 Installation

 Testing our (backend) Firebase functions

 Chai assertion library

 Creating our first test

 Running our tests

FIREBASE AUTHENTICATION

Dr. Enda Barrett

Lecture Overview
2

 Firebase Authentication Framework

 Creating separate pages (SFCs) for Registration and Login

 Using the Firebase Auth client libraries to register users and login

 Creating a Secure.vue SFC

 Routing using Navigation Guards

 Creating a secure serverless function

 Theory on Authentication - Tokens, hashing,

Firebase Auth

 Firebase provides an Auth
framework which allows us to
create users, login users for
our apps.

 Login into the firebase
console, click the
Authentication tab and then
select Get Started

 We are going to enable
email/password
authentication

3

Enable email/password

 Click save

4

Successfully enabled you

should see this

Firebase client libraries
5

 Firebase provides us with client JavaScript libraries
that we can use to create accounts, log user’s in etc.

 Should already be installed in node_modules folder

 In order to use them on a webpage we must import
them, the same we import any other JS library.

 Details of the auth framework and samples are
available here

 https://firebase.google.com/docs/auth

Create a registration page
6

 Add a SFC page (under the pages folder) to our

apps called Registration.vue

 Pop in input fields for an email address and

password and a button for Create Account

 See code on next slide for Registration.vue

7

<div class="container">
<div class="form-group">
<label for="exampleInputEmail1">Email address</label>
<input type="email" v-model="email" class="form-control" id="exampleInputEmail1"

aria-describedby="emailHelp" placeholder="Enter email">
<small id="emailHelp" class="form-text text-muted">We'll never share your email with

anyone else.</small></div>
<div class="form-group">

<label for="exampleInputPassword1">Password</label>
<input type="password" v-model="password" class="form-control"

id="exampleInputPassword1" placeholder="Password">
</div>
<button @click="register" class="btn btn-primary">Create Account</button>
</div>

2-way binding on email

and password – v-model

attributes

A register method must also be

defined

components>Registration.vue

Add the firebase client libraries
8

 Next step is to add the Firebase client libraries to

the register web page and the event handler for

registration

 Instructions and docs available at this URL

 https://firebase.google.com/docs/auth/web/start

 This is a great source for finding more information

about the SDKs

9

<script>

import app from "../api/firebase"
import { getAuth, createUserWithEmailAndPassword } from "firebase/auth";

export default {
name: "Registration",
data(){

return {
email: "",
password:""

}
},
methods : {

register(){
const auth = getAuth(app);
createUserWithEmailAndPassword(auth, this.email, this.password)

.then((userCredential) => {
// Signed in
const user = userCredential.user;
console.log(user)
// ...

})
.catch((error) => {

const errorCode = error.code;
const errorMessage = error.message;

console.log(errorCode)
console.log(errorMessage)
// ..

});
}

}
}

</script>

src/pages/Register.vue

Import the config details from

api/firebase as well as the objs

from firebase/auth

Create a register method. Pass in

the app init as a parameter to the

getAuth constructor.

Pass the returned “auth” object,

with the email and password to the

createUserWithEmailAndPassword

method which will create a user on

the app.

Log everything to the console

initially to test if everything

works

Add a route to the Registration SFC
10

 In order to render the page we need to route to it.

 Pop a link to the page on the nav

function loadPage (component) {
// '@' is aliased to src/components
return () => import(/* webpackChunkName: "[request]" */ `@/pages/${component}.vue`)
}
export default [

{ path: '/', component: loadPage('HelloWorld')},
{ path: '/blog', component: loadPage('Blog') },
{ path: '/about-us', component: loadPage('AboutUs')},
{ path: '/registration', component: loadPage('Registration')}

]

components>Navigation.vue

router>routes.js

<template>

<router-link to="/">Home</router-link>

<router-link to="/blog">Blog</router-link>

<router-link to="/registration">Sign Up</router-link>

</template>

Open up a browser and create a user
11

 Now it’s time to test whether the account creation

component that we have just built actually works

Run the app and create a new user
12

 You should see the user listed in the browser console

and you should also be able to see it listed on

Firebase under Authentication

 Well done you’ve created your first user

Exercise 1
13

 Create a registration page in your apps using the

code from slide 7

 Using the code in Slide 9, create your very first user

account, that users will be able to use to login

 Include a route to your new page

Login page
14

 The next step is to create a login page to allow
users who are registered to login using their
accounts

 The login page is just going to be largely the same
as the Registration.vue page, with an email and
password field and also a login button

 Add a new SFC under the pages folder called
Login.vue and pop in the HTML on the next slide

Login.vue is similar to Registration.vue
15

<template>
<div class="container">
<div class="form-group">

<label for="exampleInputEmail1">Email address</label>
<input type="email" v-model="email" class="form-control" id="exampleInputEmail1" aria-describedby="emailHelp" placeholder="Enter email">
<small id="emailHelp" class="form-text text-muted">We'll never share your email with anyone else.</small></div>

<div class="form-group">
<label for="exampleInputPassword1">Password</label>
<input type="password" v-model="password" class="form-control" id="exampleInputPassword1" placeholder="Password">

</div>
<button @click="login" class="btn btn-primary">Login</button>

</div>
</template>
<script>
export default {

name: "Login",
data(){
return {

email: "",
password:""

}
},
methods : {
login(){

}
}

}
</script>
<style scoped>
</style>

Add the js to Login.vue
16

https://firebase.google.com/docs/auth/web/password-auth

<script>
import app from "../api/firebase"
import { getAuth, signInWithEmailAndPassword } from "firebase/auth";

export default {
name: "Login",
data(){
return {

email: "",
password:""

}
},
methods : {
login(){

const auth = getAuth(app);
signInWithEmailAndPassword(auth, this.email, this.password).then((userCredential) => {
// Signed in
let user = userCredential.user;
console.log(user);

}).catch((error) => {
let errorCode = error.code;
let errorMessage = error.message;
console.log(errorCode)
console.log(errorMessage)
});

}
}

}
</script>

pages>Login.vue

Add a route to the Login SFC
17

 In order to render the page we need to route to it.

 Pop a link to the page on the nav

function loadPage (component) {
// '@' is aliased to src/components
return () => import(/* webpackChunkName: "[request]" */ `@/pages/${component}.vue`)
}
export default [

{ path: '/', component: loadPage('HelloWorld')},
{ path: '/blog', component: loadPage('Blog') },
{ path: '/about-us', component: loadPage('AboutUs')},
{ path: '/registration', component: loadPage('Registration')},
{ path: '/login', component: loadPage('Login')}

]

components>Navigation.vue

router>routes.js

<template>

<router-link to="/">Home</router-link>

<router-link to="/blog">Blog</router-link>

<router-link to="/registration">Sign Up</router-link>

<router-link to="/login">Sign In</router-link>

</template>

Test an account
18

Using an existing account

Exercise 2
19

 Add a login page using the code from slides 15

and 16.

 Take an existing account that you have already

created and attempt to log in.

 You should see in the browser console the user

account returned by the auth framework

Securing our apps
20

 Securing access to individual pages (only an

authenticated user can access a page)

 Securing access to serverless functions (only an

authenticated user can invoke the function)

 Updating the UI based on Login status

Adding a secure section of the site
21

 Once your users have registered for the first time or

if they have just logged in, you would like to direct

users to a secure section of the web page

 The first thing is to add a new SFC called

Secure.vue which will be our page that only logged

in users can access

 Add a route to it routes.js

Programmatic Navigation
22

 VueJS provides a method to navigate

programmatically to pages via the JS code

 When the user has logged in successfully we can use

this to load up the secure page

https://router.vuejs.org/guide/essentials/navigation.html

methods: {

login() {

const auth = getAuth(app);

signInWithEmailAndPassword(auth, this.email, this.password).then((userCredential) => {

// Signed in

let user = userCredential.user;

console.log(user);

this.$router.push({path: '/secure'})

}).catch((error) => {

let errorCode = error.code;

let errorMessage = error.message;

console.log(errorCode)

console.log(errorMessage)

});

}

Page still not secure
23

 All users can still access the page /secure whether

they are logged in or not because access is not

restricted just yet.

 The next step is to add a navigation guard to

protect the route and only load the page for

logged in users

https://router.vuejs.org/guide/advanced/navigation-guards.html

Routes.js
24

import { getAuth, onAuthStateChanged } from "firebase/auth";

import app from "../api/firebase";

function isAuth(to, from, next){

console.log("Checking auth");

const auth = getAuth(app);

onAuthStateChanged(auth, (user) => {

if (user) {

console.log(user);

// User is signed in so continue to desired page

return next();

// ...

} else {

// User is signed out

// Send them back to the home page or maybe the login

page

return next({path : '/'});

}

});

}

Add the following to

routes.js

onAuthStateChanged

gets fired everytime a

user logs in or out. By

listening to this event we

can check the login

status on the user.

The isAuth function is a

navigation guard, to

provides details on the

path the user is going to,

from is where they came

from and next is

optional and provides a

method called to

continue navigation

src>router>routes.js

Routes.js cont.
25

function loadPage (component) {

// '@' is aliased to src/components

return () => import(/* webpackChunkName: "[request]" */ `@/pages/${component}.vue`)}

export default [

{ path: '/', component: loadPage('Home') },

{ path: '/blog', component: loadPage('Blog') },

{ path: '/registration', component: loadPage('Registration') },

{ path: '/login', component: loadPage('Login') },

{ path: '/secure', component: loadPage('Secure'), beforeEnter: isAuth }

]

src>router>routes.js

Before the page is entered check that

the user is logged in!

Logout
26

 It’s important to enable users to log out of your

application.

 The good news is that the framework provides a

mechanism to handle this.

 We will place a logout link in the Navigation SFC

signOut().then(() => {
// Sign-out

successful.
}).catch((error) => {

// An error happened.
});

Navigation
27

 It’s good to place the logout code in the Navigation

SFC

 This allows us to show certain links such as Sign Up

or Login if the user is not logged in or Logout if they

are.

Navigation.vue
28

<template>

<!-- Navigation-->

<nav class="navbar navbar-expand-lg bg-secondary text-uppercase fixed-top" id="mainNav">

<div class="container">

<router-link class="navbar-brand" to="/">My Application</router-link>

<button class="navbar-toggler text-uppercase font-weight-bold bg-primary text-white rounded" type="button" data-bs-toggle="collapse" data-bs-

target="#navbarResponsive" aria-controls="navbarResponsive" aria-expanded="false" aria-label="Toggle navigation">

Menu

<i class="fas fa-bars"></i>

</button>

<div class="collapse navbar-collapse" id="navbarResponsive">

<ul class="navbar-nav ms-auto">

<li class="nav-item mx-0 mx-lg-1"><router-link class="nav-link py-3 px-0 px-lg-3 rounded" to="/blog">Blog</router-link>

<li v-if="!isLoggedIn" class="nav-item mx-0 mx-lg-1"><router-link class="nav-link py-3 px-0 px-lg-3 rounded" to="/registration">Sign Up</router-

link>

<li v-if="!isLoggedIn" class="nav-item mx-0 mx-lg-1"><router-link class="nav-link py-3 px-0 px-lg-3 rounded" to="/login">Sign In</router-

link>

<li v-if="isLoggedIn" class="nav-item mx-0 mx-lg-1"><router-link class="nav-link py-3 px-0 px-lg-3 rounded" to="/secure">Secure</router-

link>

<li v-if="isLoggedIn" class="nav-item mx-0 mx-lg-1"><router-link @click="logout" class="nav-link py-3 px-0 px-lg-3 rounded"

to="/">Logout</router-link>

</div>

</div>

</nav>

</template>

<script>

Depending on logged in status, display

the correct links

On logout click invoke the

logout method

Navigation.vue
29

<script>

import app from "../api/firebase";

import {getAuth, onAuthStateChanged, signOut} from "firebase/auth";

export default {

name: "Navigation",

data() {

return {

isLoggedIn : false

}

},

created (){

// Check if the user is logged in

const auth = getAuth(app);

onAuthStateChanged(auth, (user) => {

if (user) {

console.log(user);

this.isLoggedIn = true;

} else {

this.isLoggedIn = false;

}

});

},

methods : {

logout(){

signOut(getAuth(app)).then(() => {

// Send them back to the home page!

this.$router.push("/");

});

}

}

}

</script>

On page created check if

the user is logged in, if so

then set the isLoggedIn to

true

Create a logout method to

log users out and redirect

them to the home page

Exercise 3
30

 Add a secure page and enable navigation guards

to check the status.

 Edit Navigation.vue to check for logged in status

and enable logout functionality and display the

secure link if the user is logged in

Securing serverless function
31

 If the secure page requests a function to display
some data, if we don’t secure it, a malicious
attacker could simply grab the URL and start
making requests using Postman to get your data.

 Remember that the navigation guards are client-
side protection but in reality it “should be” easy for
an attacker to still access the “Secure” page.

 Thus it is best to make sure that all sensitive data
delivered to that page is from a secure serverless
function

HTTPS onRequest vs onCall
32

 Up until now we have been using the onRequest

serverless function with Firebase

 These don’t “out of the box” support authentication

 Another method onCall can instead be used which

does

exports.getcomments =

functions.https.onRequest((request, response) => {

exports.securefunction = functions.https.onCall

onCall
33

exports.securefunction =

functions.https.onCall((data, context) => {

// context.auth contains information about the

user, if they are logged in etc.

if(typeof context.auth === undefined)

{

// request is made from user that is logged in

return "User is logged in"

}

else

{

return "User is not logged in"

}

});

https://firebase.google.com/docs/functions/callable
functions>index.js

Data contains data that is

passed with the call from

the client

Context contains the user

information.

If context.auth is present

then the request came

from a logged in user

You can then return

sensitive data to the page

Testing with Postman
34

 It’s more challenging to test these functions with

Postman as they require more headers to be set

and authentication tokens to the passed for

authenticated users

 The documentation is available here if you wish to

do it

https://firebase.google.com/docs/functions/callabl

e-reference

https://firebase.google.com/docs/functions/callable-reference
https://firebase.google.com/docs/functions/callable-reference

onCall – Secure SFC
35

import app from '../api/firebase';

import { getFunctions, httpsCallable, connectFunctionsEmulator }

from "firebase/functions";

export default {

name: "Secure",

created(){

// Call secure function and load some data

const functions = getFunctions(app);

if(window.location.hostname === 'localhost') // Checks if working

locally

connectFunctionsEmulator(functions, "localhost", 5001);

const secureFunction = httpsCallable(functions, 'securefunction');

secureFunction()

.then((result) => {

// Read result of the Cloud Function.

/** @type {any} */

console.log(result);

});

}

}

Using the same

httpsCallable import when

we invoke our function from

the client as a logged in

user, the user data, i.e.

userID, tokens etc. is all

passed to the server.

If the user is logged out or

unauthenticated then it no

user info will be passed and

the server can check for this.

Exercise 4
36

 Create a secure serverless function using the onCall

method. Implement the function on slide 33.

 Invoke it from the client when logged in as well as

logged out, to see the responses. In order to do it

when logged out you will need to relax the

navigation guard on routes.js to allow

unauthenticated users to access the Secure.vue page

JWT
37

 Understanding tokens, JWT

 Understanding the Authentication flow

 Storing the access tokens in the cookie jar

 Registration.vue

 Login.vue

 Creating a utility function for access the cookie

Welcome to tokens!
38

 When you pay in to a concert or nightclub and

you’ve shown your ID or ticket – you’ve

authenticated

 You will often get a wristband, determining what

areas you can access

In a similar way…
39

 Once a user authenticates successfully, they should

be issued with a token.

 Every time they try to access an area of our site

they present their token and which determines

whether or not to give them access to the resource

Access tokens
40

 Once a client has authenticated with Firebase,

Firebase issues an access token.

 This token contains the security credentials for the

login session, identifies the user, possible groups etc.

Where does FB store this on the

browser?
41

IndexedDB is a low-level API for client-side
storage of significant amounts of structured
data, including files/blobs. This API uses
indexes to enable high-performance searches
of this data. While Web Storage is useful for
storing smaller amounts of data, it is less
useful for storing larger amounts of structured
data.

https://developer.mozilla.org/en-

US/docs/Web/API/IndexedDB_API

https://i.stack.imgur.com/iroAK.png

Aside: Storing passwords
42

 Sony hack

 Storing passwords in plain text

 Ashley Madison

 Cupid media

 Why is it such a bad idea?

 Firebase handles this for us with industry leading
practices!

Overview: Cryptographic hashing
43

 Hashing is the transformation of a string of

characters into a fixed length value or key that

represents the original string.

 One way hashing function is used to protect

passwords.

hash("enda") = 2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1f

hash("enca") = 58756879c05c68dfac9866712fad6a93f8146f3366

hash("barr") = c0e817943844911616560b120fda8e90f383853542

A small change results in a

completely different set of

characters

Access token - JSON Web Tokens
44

 JWT consists of three parts:

 Header, containing the type of the token and the

hashing algorithm

 Payload, containing the claims

 Signature, bcrypt hashed token:

 This means that a token looks like the following

xxxxx.yyyyy.zzzzz

Bcrypt
45

 Bcrypt is a password hashing function based on the

blowfish cipher designed by Niels Provos and David

Mazières.

 It is the default password hashing function for a

number of Linux distributions such as OpenBSD or

SUSE

The generated JWT
46

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX

25hbWUiOiJiYXJyZXR0ZW5kYUBlbWFpbC5jb20iLCJpYXQ

iOjE1MTAwNjgzMzEsImV4cCI6MTUxMDkzMjMzMSwiaXNzI

joiTXlzZWxmIn0.E63o90XX-

f6jDjxPmzfpjjeqZI1DDTh6tqksobLToq4

This is an example of a signed JWT.

Firebase will be generating these when the user logs in

or registers and sending to the client in the user object.

xxxxx.yyyyy.zzzzz

Note the format of header, payload and signature

Authentication Flow
47

Check the browser console when

logged in
48

 Expand the user object in the browser console

 The field at the top accessToken contains the access

token!

USE CASE MODELING

Dr. Enda Barrett

What is a use case?
2

“Represents an interaction between a user and
a computer system, from the users perspective”

 It allows for the capturing of functional requirements

 Online shopping example:

 User login

 User registration

 User adds items to a cart

 User pays for item

Main benefits of creating Use Cases
3

 Gives an insight/understanding of how the user will
interact with the system and the requirements which
must be included to ensure this happens

 Give the developers an insight as to problems that may
arise

 Gives a good overview of the entire system at a
high/abstract level

 New team member wishing to understand various parts of
the application, could start with the use case diagram.

Elements of a Use Case Model
4

 Actors

 People or things that use
a computer system

 Can be external computer
systems

 Use cases

 A meaningful piece of
functionality

 Relationships

 Links between actors and
use cases

Login

Login

Use Case Model
5

 Direction of
initiation

 One use case
“includes” another
(always)

 One use case
“extends” another
(sometimes)

Use Case Model
6

 Important to remember that a Use Case Model
comprises the Use Case Diagram and the Use Case
Descriptions

Generating Use Cases
7

 From these steps in the business process

 Primary

◼ Sequence of steps that achieves the use case’s goal

 Alternative

◼ An alternative flow is a step or sequence of steps that

achieves the use case’s goal following different steps than

described in the main success scenario

 Exception

◼ An exception is anything that leads to NOT achieving the

use case’s goal.

Use cases to support an ATM system
8

Uml-diagrams.org

Customer Authentication use case
9

https://www.uml-diagrams.org/bank-atm-uml-use-case-diagram-example.html?context=uc-

examples

https://www.uml-diagrams.org/bank-atm-uml-use-case-diagram-example.html?context=uc-examples
https://www.uml-diagrams.org/bank-atm-uml-use-case-diagram-example.html?context=uc-examples

Benefits of a Use Case driven process
10

 Use cases are concise, simple and understandable by a
wide range of stakeholders

 End users, developers and acquirers understand functional
requirements of the system

 Use cases drive numerous activities in the process

 Creation and validation of the design model

 Definition of test cases and procedures of the test model

 Planning of iterations

 Creation of user documentation

 System deployment

 Use cases help synchronise the content of different
models

Template for a use case description
11

Authenticate User
12

Use Case no.: 1 Use case name: User Authentication

Goal: Ensure that a user is valid before other functions can be executed

Brief description:

Actors:

Frequency of execution:

Scalability:

Criticality:

…

DATA OWNERSHIP, STATE MANAGEMENT

Dr. Enda Barrett

Lecture overview
2

 Using Serverless functions to assign ownership to

documents

 Creating and Deleting documents owned by a

particular user

 State management

 Technical examples and discussion

Logged in users posting comments
3

 Up until now posting comments on our application

was anonymous, any user could log in and post a

comment simply be specifying their handle, typing

their comment and submitting it to the server.

 Since we now have authentication enabled, we can

automatically the handle with the users email

address and assign using their UID we can assign

ownership of that document to a particular user

Comment data structure
4

Current data structure/schema

Adding the UID to the document allows us to denote ownership

Document ownership
5

 Goal: Ensure that the logged in user who creates a
comment has their UID associated with that
document, that only they can edit and delete their
comment.

 There are two approaches to doing this

 First approach is to convert our CRUD (postcomment
etc.) functions to onCall serverless functions and check
the user auth each time.

 Let us examine this approach first

Posting user comments
6

 Switching postcomment to oncall from onrequest

allows us to check the context object for a logged in

user.

 If found then create the document but make sure to

include the UID in the document also.

 Let’s alter the client code on Blog.vue to check for

loggedIn status

Add a user property
7

export default {

data() {

return {

handle: '',

comment: '',

commentsArray:[],

editing:false,

tempValue:null,

user:null

}

},

Add a user property to the

page which will hold the user

object of logged in users. At

anytime we can check if a

user is logged in just by

checking if this value is null.

pages/Blog.vue

Update the created method
8

created(){

// Check for logged in user

const auth = getAuth(app);

onAuthStateChanged(auth, (user) => {

this.user = user; // set the user object to the user prop

if (user) {

console.log("User", user);

// User is signed in

} else {

console.log("No user found")

// User is not signed in

}

});

this.getComments();

//window.setInterval(this.getComments, 1000);

},

pages/Blog.vue

postusercomment
9

functions/index.js

Irrespective of whether

the request is made from

a logged in user or an

anonymous user a

document is written to the

comments collection

The uid is added to

the documents for

requests originating

from logged in

users

exports.postusercomment = functions.https.onCall((data, context) => {

// context.auth contains information about the user, if they are logged in

etc.

const currentTime = admin.firestore.Timestamp.now();

data.timestamp = currentTime;

if(typeof context.auth === 'undefined')

{

// request is made from an anonymous user

return admin.firestore().collection('comments').add({data:

data}).then(() => {

return "Data saved in Firestore"

});

}

else

{

data.uid = context.auth.uid;

return admin.firestore().collection('comments').add({data:

data}).then(() => {

return "Data saved in Firestore"

});

}

});

postComment
10

methods : {

postComment() {

let loader = this.$loading.show({ // Optional parameters

loader: 'dots',

container: this.$refs.container,

canCancel: false

});

const functions = getFunctions(app);

// Uncomment this code if your local emulators are running and you

wish to test locally

//if(window.location.hostname === 'localhost') // Checks if working

locally

//connectFunctionsEmulator(functions, "localhost", 5001);

const postComment = httpsCallable(functions, 'postusercomment');

postComment({"handle": this.handle, "comment":

this.comment}).then((result) => {

// Read result of the Cloud Function.

// /** @type {any} */

loader.hide();

this.getComments();

});

},
pages/Blog.vue

postComment is

modified to invoke the

new postusercomment

function different

function

Check the Firestore DB
11

 Test the application by submitting a comment as a

logged in user and an anonymous user and see the

different documents in the database

Auto populate handle
12

created(){

// Check for logged in user

const auth = getAuth(app);

onAuthStateChanged(auth, (user) => {

this.user = user;

if (user) {

console.log("User", user);

this.handle = user.email;

// User is signed in

} else {

console.log("No user found")

// User is not signed in

}

});

this.getComments();

//window.setInterval(this.getComments,

1000);

},

pages/Blog.vue

If the user has an account and is

logged in, then we can set the

handle to their email address

when the page loads.

However the user can still edit

this on the client if they wish!

Exercise 1
13

 Modify postcomment to include the uid in each

document created for each new comment. If the user

is not logged in then no uid field needs to be set.

 Note that the uid is set server side, could we have

set this on the client and sent it along with the data

request const postComment = httpsCallable(functions,

'postusercomment');

postComment({"handle": this.handle, “uid": user.uid,

"comment": this.comment}).then((result) => {

// Read result of the Cloud Function.

// /** @type {any} */

loader.hide();

this.getComments();

});

Deleting comments
14

All users can now delete

comments but that isn’t a

really great idea. Only

logged in users should be

able to delete their own

comments.

The same could also be

said for editing etc.

deleteusercomment
15

exports.deleteusercomment = functions.https.onCall((data, context) => {

if(typeof context.auth === 'undefined')

{

// request is made from an anonymous user

throw new functions.https.HttpsError('permission-denied', 'Anonymous users cannot delete

comments');

}

else

{

return admin.firestore().collection('comments').doc(data.id).get().then((doc) => {

if (!doc.exists) {

// 1. Check if the document exists, throw error if not

throw new functions.https.HttpsError('not-found', 'No comment found matching the

id');

} else if (doc.data().data.uid != context.auth.uid) {

// 2. Check if the user owns the document, otherwise throw error

throw new functions.https.HttpsError('permission-denied', 'You do not have sufficient

permissions to delete this comment');

} else {

// 3. If the user created the document then delete it

return doc.ref.delete().then(() => {

return 'Document successfully deleted'

});

}

});

}

});

Check the user id

to make sure the

request is coming

from a logged in

user.

Only allow those

that created a

particular

comment to delete

it.

functions/index.js

Delete comment on Blog.vue
16

deleteComment(id){

const functions = getFunctions(app);

// Uncomment this section if your local emulators are running

and you wish to test locally

//if(window.location.hostname === 'localhost') // Checks if

working locally

//connectFunctionsEmulator(functions, "localhost", 5001);

const deleteComment = httpsCallable(functions,

'deleteusercomment');

deleteComment({id:id}).then((result) => {

console.log(result.data);

if(result.data == "Document successfully deleted")

this.getComments();

}); // To refresh the client

},

Change the function

name to point the call to

our new function.

Pass the id to the

serverless function

pages/Blog.vue

Exercise 2: Deleting comments
17

 Implement the delete comments functionality, where

a user can only delete those comments that are

owned by them.

 Disable the deleted buttons for all anon users.

 Display the deleted button beside only those

comments owned by a particular user.

State management
18

 Sometimes it is very useful to have a mechanism through which
multiple SFCs can share data. Often this is known as sharing “state”.

 It’s also very useful to store information client side. For example,
once you have made a request to the server for data (such as
comments) wouldn’t it be nice to be able to keep that data
“somewhere” on the client

 This is sometimes called a “store pattern”

 The most recent state mgmt. solution they support is called Pinia

 https://pinia.vuejs.org/

Simple store pattern
19

 Sharing information between views

 Because everyone is building different apps, it is

difficult to define a use case for this to suit all apps

 Some ideas could be to share a handle between

pages, share data, UI preferences etc.

 In the past, I’ve used them exclusively as a sync’d data

layer which keeps in sync with the database. Mutations

are automatically propagated back to DB and method

calls will return data from the store rather than making

DB calls.

https://vuejs.org/guide/scaling-up/state-management.html

Generic counter example
20

 Imagine you wished to increment a shared counter
from two UIs. I’m not creative enough to understand
why you would do this, but it’s the default example
often given on the doc pages for frameworks like
React, Angular and VueJS.

 The store pattern is an ideal solution for this.

 It relies on a specific API provided by VueJS known
as the “Reactivity API” which creates a reactive
object that can be shared amongst multiple SFCs

Create new directory “store”
21

 Under the src directory, create a new directory

called store

https://vuejs.org/guide/scaling-up/state-management.html#what-is-

state-management

Import the reactive API
22

 A store can be created by passing an object as an

argument to the constructor of the reactive API

 In this case we have simple count

https://vuejs.org/guide/scaling-up/state-

management.html#what-is-state-management

src>store>store.js
import { reactive } from 'vue'

export const store = reactive({
count: 0,
increment() {

this.count++
}

})

Method to

increment the

counter

Import the store to our first SFC
23

 Let’s add a click counter onto the bottom of our

Blog.vue page.

 Start by importing the store

import {store} from '../store/store';

export default {
name: "Blog",
data(){
return {
handle:'',
comment:'',
comments:[],
tempValue:"",
editing:false,
store

}
},

pages>Blog.vue

Add a

reference to it

<div>
Counter {{store.count}}
<button type="button" @click="store.increment()" class="btn btn-primary">Click Counter {{store.count}}</button>

</div>

Utilise the counter in Blog.vue
24

Method to increment the

counter

Display the store

count

pages>Blog.vue

Create a new SFC – Blog2.vue
25

In order to test the

reactivity, one can

create a separate

SFC called Blog2.vue

<template>
<div>

Counter {{store.count}}
<button type="button"

@click="store.increment()" class="btn btn-
primary">Click Counter</button>

</div>
</template>

<script>
import {store} from '../store/store';

export default {
name: "Blog2",
data(){

return {
store

}
}

}
</script>

<style scoped>

</style>

Add the component to the page
26

<div>
<Blog2 />

</div>

Add to the template

<script>
import Blog2 from "./Blog2";

Import component

,
components: {
Blog2
},

Reference it in order to

render it on the Blog

page

pages>Blog.vue

Things you could use the store for
27

 User details. Once a user has signed in you could

pop the user object into the store and then access it

on any page that needs it.

 Comment data. If you need to use comments on

multiple pages you can store the comments in the

store and make local calls to retrieve them.

SOFTWARE DEVELOPMENT PARADIGMS

Dr. Enda Barrett

Software Development Paradigms
2

 Paradigms of software development

 Software life cycle

 A few flavours of the waterfall model

 Traditional Waterfall

 Waterfall with feedback

 Waterfall with feedback and overlaps

 Prototyping

SDLC
3

Development

Maintenance

Strategy/

Survey

Require-

ments

analysis

Project

planning

Adaptation

Enhan-

cement

Correction

Cons-

truction

Testing

Software

design

What is required..?

How to implement..?

Changes...

Definition

Software Development Lifecycle
4

 The software lifecycle is an abstract representation
of a software process. It defines the steps, methods,
tools, activities and deliverables of a software
development project. The following lifecycle phases
are considered:

 1. requirements analysis

 2. system design

 3. implementation

 4. integration and deployment

 5. operation and maintenance

1. Requirements Analysis
5

 User requirements are statements in natural language plus diagrams
of what services the system is expected to provide and the
constraints under which it must operate (Sommerville 2001)

 Activity of determining and specifying requirements

 Interview users, try to make communication clear

 Questionnaires to users

 Observations of users performing their tasks

 Study existing system documents

 Study similar software systems to learn about domain knowledge

 Prototypes to confirm requirements

 Output is a requirements document

2. System Design
6

 A software design is a description of the structure of the
software to be implemented, the data which is part of the
system, the interfaces between the system components and
the algorithms used (Sommerville 2001)

 Algorithms are not always concretely defined in this phase as it is
necessary to give some freedom to the developers.

 Design begins where analysis ends.

 Theoretically : Analysis is modelling unconstrained by any
hardware/software considerations

 Design is modelling that takes into consideration the platform
upon which it is to be deployed.

 The output of this phase should be a design document

3. Implementation
7

 Implementation is mostly, programming, testing

 A programmer is a “component engineer”

 The programmer will attempt to re-use code where ever
they can. However, it can often require quite a bit of
modification to suit the specific needs.

 Expand upon the design, i.e. algorithms will only be
partially specified, engineers will have to thrash out the
specifics of the design.

 Turn this design into code

 Debugging

 Testing

 Output is code

4. Integration and Deployment
8

 Integration assembles the application from the set of
components previously implemented and tested.

 Deployment is the handing over of the system to the
customer for production use.

 Integration can be sometimes difficult to disassociate
from the implementation phase nowadays, especially
with continuous integration tooling so readily used. But
still a stage in it own right.

 Software is deployed in releases i.e. version 1.0, 1.1 …

 Deployment releases

 Alpha

 Beta

5. Operation and Maintenance
9

 The new software product is used in day-to-day operations while the
previous system is phased out.

 Often systems will be run in parallel during the phase out

 Maintenance (Maciaszek)

 Corrective – fixing defects and errors discovered in operation (patches)

 Adaptive – modifying the software in response to changes in the
computing and business environment (new release 7.6 to 7.7)

 Perfective – evolving the product by adding new features (depending on
the features but maybe a whole new release i.e. go from 7.6 to 8.0)

 Finally the system only becomes a legacy system and are only
retired when it is not technically possible to support them anymore

 Enterprises will flog them till their death

Waterfall model
10

 When these phases are all linearly placed, we get the
traditional waterfall model

 Came out in the 70’s as a solution monolithic type
business applications (Cobol), fixed number of
subroutines

 The completion of each phase results in some
deliverable.

 Today it is used much less frequently as trying to
maintain strictly within the phases is difficult

 May take a long time to see the final product

Traditional Waterfall model
11

Requirements
Analysis

System Design

Implementation

Integration and
Deployment

Operation and
Maintenance

Product

release

User

Waterfall model
12

 Advantages

 Documentation is produced at each phase

 It fits in with other engineering process models

 Easier to project manage

 Sign-off phase clarifies legal position

 Disadvantages

 Inflexible partitioning of the project into distinct phases

 Difficult to adjust to changes in requirements

 Delivered project may need re-work

 Documentation can give false sense of the progress

Waterfall model
13

 An organisation may elect to use a particular lifecycle
model to develop its software.

 However specifics of the lifecycle model i.e. how the
work is done varies from org to org, from project to
project.

 Remember a software product is not manufactured, it’s
“developed”

 Every time you repeat the process you could easily get
different results

 This is why there are still so many engineering jobs and will
continue to be for the foreseeable future ☺

Waterfall model
14

 Disadvantages

 Inflexible partitioning of the project into distinct phases

 Difficult to adjust to changes in requirements

 Delivered project may need re-work

 Documentation can give false sense of the progress

 Simplest way of addressing these two

disadvantages is to introduce feedback paths

to the development process

Waterfall model with feedback
15

Requirements
Analysis

System Design

Implementation

Integration and
Deployment

Operation and
Maintenance

Product

release

User

Likely to generate multiple different

versions of the various artefacts produced.

Needs to be managed

Waterfall model with feedback and

overlaps
16

Requirements
Analysis

System Design

Implementation

Integration and
Deployment

Operation and
Maintenance

Product

release

User

Deliverables from the SDLC
17

Limitations of the SDLC
18

• Rarely delivers what is wanted
• Difficult to execute -- e.g. freezing
specs.
• It takes too long
• Too much documentation

“The water isn’t flowing....”:

Phase 2

Phase 1

Objective
2nd. year

Objective
1st. year

“It is done..!”

Prototyping
19

An alternative approach to requirements definition is to capture
an initial set of needs and to implement quickly those needs with
the stated intent of iteratively expanding and refining them as mutual
user/developer understanding of the system grows.

Definition of the system grows through gradual and evolutionary
discovery as opposed to omniscient foresight.

Waterfall model with prototyping
20

Requirements
Analysis

System Design

Implementation

Integration and
Deployment

Operation and
Maintenance

Product

release

User

Prototyping

EXAM PREP

Dr. Enda Barrett

Exam Information
2

 Two hours in duration

 Answer any 3 questions out of 4, with all questions of
equal marks

 Question 1: Software Engineering topics include testing.
Weeks 1, 2, 3, 4, 19, 23.

 Question 2: HTML, CSS, Bootstrap. Weeks 6, 7.

 Question 3: Client-side JS and VueJS. Weeks
8,9,13,14,15,16

 Question 4: Server-side JS (NodeJS). Weeks 10, 11,
18, 20.

	Slide 1: Introduction to Vuejs
	Slide 2: Overview
	Slide 3: Semester 1 vs Semester 2
	Slide 4: Background on VueJS
	Slide 5: Why do we need it?
	Slide 6: How do we get started/resources?
	Slide 7: Installation
	Slide 8: Create our first project
	Slide 9: Option 4 – Installing Vue
	Slide 10: Creating a project
	Slide 11: Creating a project cont.
	Slide 12: The new app should now be ready
	Slide 13: Goto – http://localhost:5173
	Slide 14: Exercise 1 – Installation and Creation
	Slide 15: Folder structure – hello-world app
	Slide 16: Public folder
	Slide 17: index.html
	Slide 18: src folder
	Slide 19: Main.js - explained
	Slide 20: Main.js cont.
	Slide 21: Components – Single File Components
	Slide 22: Three primary parts to a component
	Slide 23: Components are encapsulated
	Slide 24: App.vue
	Slide 25: Templates
	Slide 26: CSS styles - component
	Slide 27: JavaScript – vue SFC
	Slide 28: Including an imported component
	Slide 29: Props
	Slide 30: Mustache tags – data binding
	Slide 31: Hot reload
	Slide 32: Exercise 2 – Adding a component
	Slide 1: Vuejs, Adding Firebase and Routing
	Slide 2: Overview
	Slide 3: 1. SFCs must start with a capital
	Slide 4: Adding Firebase to our App
	Slide 5: Adding Firebase hosting
	Slide 6: Generating a build for deployment
	Slide 7: dist folder
	Slide 8: Firebase deploy
	Slide 9: Adding Firebase Functions to our App
	Slide 10: Adding Firebase cont.
	Slide 11: Functions folder
	Slide 12: Exercise 1 - Deployment
	Slide 13: Server-side routing
	Slide 14: Single Page App
	Slide 15: Routing
	Slide 16: Routing cont.
	Slide 17: Housekeeping – pages and components
	Slide 18: Add a “pages” directory
	Slide 19: Home page
	Slide 20: Edit Home.vue
	Slide 21: Delete existing content from App.vue
	Slide 22: Home page
	Slide 23: Adding additional pages
	Slide 24: Install vue-router
	Slide 25: Router-view
	Slide 26: Edit main.js
	Slide 27: Imports explained
	Slide 28: Imports explained cont.
	Slide 29: Routes.js
	Slide 30: Routes.js
	Slide 31: The routes are passed in during init
	Slide 32: Add a second page “Blog.vue”
	Slide 33: Add an entry in router/routes.js
	Slide 34: Test the new page
	Slide 35: Router Links <router-link>
	Slide 36: Boot up a local server and test
	Slide 37: Exercise 2 – Add a nav bar
	Slide 38: Routing summary
	Slide 1: Vuejs – Invoking Serverless Functions
	Slide 2: Overview
	Slide 3: Adding a design framework
	Slide 4: Adding Bootstrap
	Slide 5: Where to place the URLs?
	Slide 6: Running example – Blog comments
	Slide 7: Add a comment form in Blog.vue
	Slide 8: Resulting page
	Slide 9: Adjusting the styles for the Blog.vue SFC
	Slide 10: Add a button to the form
	Slide 11: UI should now look like…
	Slide 12: Exercise 1 – Add Bootstrap, create Form
	Slide 13: Firebase functions
	Slide 14: Quick recap: On the process
	Slide 15: Creating a Firestore DB
	Slide 16: Adding a document
	Slide 17: Using POSTMAN POST to the fn
	Slide 18: Check the database to see if it saved
	Slide 19: Exercise 2 – Functions
	Slide 20: Server-side API for Firebase
	Slide 21: Client-side API
	Slide 22: What is AJAX?
	Slide 23: AJAX Requests
	Slide 24: What is AJAX?
	Slide 25: However, it also supports JSON
	Slide 26: XMLHttpRequest
	Slide 27: Install the Firebase client SDK
	Slide 28: Initialise the client code
	Slide 29: SDK Setup and Configuration
	Slide 30: SDK Setup and Configuration
	Slide 31: Add a directory “api” under src
	Slide 32: Firebase.js
	Slide 33: Export the app
	Slide 34: Exercise 3
	Slide 35: Data binding
	Slide 36: Data binding in VueJS
	Slide 37: Data binding in VueJS
	Slide 38: Data option for a component
	Slide 39: Methods in VueJS
	Slide 40: Method stub to post comments
	Slide 41: Open up localhost:5137
	Slide 42: Making calls to the server
	Slide 43: Adding the Client SDK to the SFC
	Slide 44: Open localhost:5137
	Slide 45: What is CORS?
	Slide 46: Examples of SOP
	Slide 47: CORS
	Slide 48: Hosting and Functions
	Slide 49: How do we circumvent SOP?
	Slide 50: Adding CORS library to server fn
	Slide 51: Communication established
	Slide 52: Check the database
	Slide 53: Modify the function to remove “data” prop
	Slide 54: Exercise 4
	Slide 1: Continuing with CRUD
	Slide 2: Lecture overview
	Slide 3: Get comments and display them
	Slide 4: Create client code to display it
	Slide 5: Click on Show Comments
	Slide 6: List rendering in VueJS
	Slide 7: List rendering of comments
	Slide 8: Show comments
	Slide 9: Show comments on page load
	Slide 10: Load comments on page load
	Slide 11: Exercise 1: Get comments
	Slide 12: Loading…
	Slide 13: Vue-loading-overlay
	Slide 14: Method getComments – Blog.vue
	Slide 15: Available config props
	Slide 16: Completing CRUD
	Slide 17: 1) Add new firebase function - delete
	Slide 18: Test your API works
	Slide 19: Postman DELETE request
	Slide 20: Adding a delete button on the client
	Slide 21: Getting the document ID
	Slide 22: Modify getComments
	Slide 23: The client view
	Slide 24: Pass the id as a param
	Slide 25: Create a deleteComment method
	Slide 26: Updating comments
	Slide 27: Test function
	Slide 28: Client code - update
	Slide 29: Client code - update
	Slide 30: Methods
	Slide 31: Data function
	Slide 32: Exercise 2
	Slide 1: Firebase Emulators – Working locally and Safely
	Slide 2: Overview
	Slide 3: Firebase emulator
	Slide 4: Firebase emulator
	Slide 5: Emulating, hosting, functions and db
	Slide 6: Initialise the emulators
	Slide 7: Select Firestore Emulator
	Slide 8: Choose a different port Firestore
	Slide 9: Download the emulators
	Slide 10: Java must be installed
	Slide 11: localhost:4000
	Slide 12: Summary
	Slide 13: Exercise 1 – Get the local env working
	Slide 14: Calling our functions - localhost
	Slide 15: Recap: Blog.vue from 3 weeks ago
	Slide 16: Modify our VueJS code
	Slide 17: Blog.vue
	Slide 18: Open up two terminals/cmd
	Slide 19: Test it locally
	Slide 20: Firestore DB emulator
	Slide 21: Be careful!
	Slide 22: Deploy and Test
	Slide 23: Exercise
	Slide 1: Software Testing Theory– CT 216 Software Engineering I
	Slide 2: Lecture overview
	Slide 3: Importance of testing
	Slide 4: Why do we test software?
	Slide 5: Testing techniques
	Slide 6: Lecture overview
	Slide 7: At a high level : Black box testing
	Slide 8: Black box testing cont.
	Slide 9: White box testing (Glass box)
	Slide 10: Lecture overview
	Slide 11: Code coverage
	Slide 12: Statement/Line coverage
	Slide 13: Branch (conditional) coverage
	Slide 14: Lecture overview
	Slide 15: Naïve test : Testing with Postman
	Slide 16: Postman relies on manual testing
	Slide 17: Integration Testing
	Slide 18: Integration testing contd.
	Slide 19: Lecture overview
	Slide 20: Test Automation
	Slide 21: Summary
	Slide 1: Testing our code – CT 216 Software Engineering I
	Slide 2: Lecture overview
	Slide 3: Mocha
	Slide 4: Mocha terms
	Slide 5: Install mocha
	Slide 6: Testing our functions - Add a test folder
	Slide 7: Create a new file and add it to test
	Slide 8: Creating our first test
	Slide 9: Chai assertion library
	Slide 10: Testing HTTP Functions
	Slide 11: Unit Testing
	Slide 12: index.test.js
	Slide 13: Run our first test
	Slide 14: Check database
	Slide 15: index.test.js
	Slide 16: Run our tests again
	Slide 17: More important assertions
	Slide 18: This is important
	Slide 19: Ensure a property exists
	Slide 20: Lecture summary
	Slide 1: Firebase Authentication
	Slide 2: Lecture Overview
	Slide 3: Firebase Auth
	Slide 4: Enable email/password
	Slide 5: Firebase client libraries
	Slide 6: Create a registration page
	Slide 7
	Slide 8: Add the firebase client libraries
	Slide 9
	Slide 10: Add a route to the Registration SFC
	Slide 11: Open up a browser and create a user
	Slide 12: Run the app and create a new user
	Slide 13: Exercise 1
	Slide 14: Login page
	Slide 15: Login.vue is similar to Registration.vue
	Slide 16: Add the js to Login.vue
	Slide 17: Add a route to the Login SFC
	Slide 18: Test an account
	Slide 19: Exercise 2
	Slide 20: Securing our apps
	Slide 21: Adding a secure section of the site
	Slide 22: Programmatic Navigation
	Slide 23: Page still not secure
	Slide 24: Routes.js
	Slide 25: Routes.js cont.
	Slide 26: Logout
	Slide 27: Navigation
	Slide 28: Navigation.vue
	Slide 29: Navigation.vue
	Slide 30: Exercise 3
	Slide 31: Securing serverless function
	Slide 32: HTTPS onRequest vs onCall
	Slide 33: onCall
	Slide 34: Testing with Postman
	Slide 35: onCall – Secure SFC
	Slide 36: Exercise 4
	Slide 37: JWT
	Slide 38: Welcome to tokens!
	Slide 39: In a similar way…
	Slide 40: Access tokens
	Slide 41: Where does FB store this on the browser?
	Slide 42: Aside: Storing passwords
	Slide 43: Overview: Cryptographic hashing
	Slide 44: Access token - JSON Web Tokens
	Slide 45: Bcrypt
	Slide 46: The generated JWT
	Slide 47: Authentication Flow
	Slide 48: Check the browser console when logged in
	Slide 1: Use case Modeling
	Slide 2: What is a use case?
	Slide 3: Main benefits of creating Use Cases
	Slide 4: Elements of a Use Case Model
	Slide 5: Use Case Model
	Slide 6: Use Case Model
	Slide 7: Generating Use Cases
	Slide 8: Use cases to support an ATM system
	Slide 9: Customer Authentication use case
	Slide 10: Benefits of a Use Case driven process
	Slide 11: Template for a use case description
	Slide 12: Authenticate User
	Slide 1: Data Ownership, State Management
	Slide 2: Lecture overview
	Slide 3: Logged in users posting comments
	Slide 4: Comment data structure
	Slide 5: Document ownership
	Slide 6: Posting user comments
	Slide 7: Add a user property
	Slide 8: Update the created method
	Slide 9: postusercomment
	Slide 10: postComment
	Slide 11: Check the Firestore DB
	Slide 12: Auto populate handle
	Slide 13: Exercise 1
	Slide 14: Deleting comments
	Slide 15: deleteusercomment
	Slide 16: Delete comment on Blog.vue
	Slide 17: Exercise 2: Deleting comments
	Slide 18: State management
	Slide 19: Simple store pattern
	Slide 20: Generic counter example
	Slide 21: Create new directory “store”
	Slide 22: Import the reactive API
	Slide 23: Import the store to our first SFC
	Slide 24: Utilise the counter in Blog.vue
	Slide 25: Create a new SFC – Blog2.vue
	Slide 26: Add the component to the page
	Slide 27: Things you could use the store for
	Slide 1: software Development Paradigms
	Slide 2: Software Development Paradigms
	Slide 3: SDLC
	Slide 4: Software Development Lifecycle
	Slide 5: 1. Requirements Analysis
	Slide 6: 2. System Design
	Slide 7: 3. Implementation
	Slide 8: 4. Integration and Deployment
	Slide 9: 5. Operation and Maintenance
	Slide 10: Waterfall model
	Slide 11: Traditional Waterfall model
	Slide 12: Waterfall model
	Slide 13: Waterfall model
	Slide 14: Waterfall model
	Slide 15: Waterfall model with feedback
	Slide 16: Waterfall model with feedback and overlaps
	Slide 17: Deliverables from the SDLC
	Slide 18: Limitations of the SDLC
	Slide 19: Prototyping
	Slide 20: Waterfall model with prototyping
	Slide 1: Exam Prep
	Slide 2: Exam Information

