CT5106 SOFTWARE ENGINEERING I

Java Enterprise Edition Architecture

Client Tier b Middle Tier : Entesprise [nformation |
b: A | System (EIS) Tier

(]
|
L
1 T
i
. i
i 1
i
i i
i 1
1
"
i '
i
(]
1
] I
i g ¥ l_.‘-I"- s
i a® y
i d .
' ey T,
1 i ':1?.
i -' X el
i 1 ol | i
i i
¥ o
[. 1
i i i,
i -2 L]
4 i
i
1

Typical process in a Servlet

Regardless of the application, servlets usually carry
out the following routine:

Read any data sent by the user
Capture data submitted by an HTML form.

Look up any HTTP information

Determine the browser version, host name of client, cookies,
etc.

Process the submitted data & Generate the Results

Connect to databases, connect to legacy applications, efc.

E.g. LoginServlet might get username and password from a
form, check the data against the username /password in the
database, and return result or forward the user to the next

page

Life of a Servlet (cont.)

Format the Results
Generate HTML on the fly

Set the Appropriate HTTP headers

Tell the browser the type of document being
returned or set any cookies.

Send the document back to the client

What can you build with Servlets?

Search Engines
Personalization Systems
E-Commerce Applications
Shopping Carts

Product Catalogs
Intranet Applications

Groupware Applications: bulletin boards, file sharing, etc.

Joec.yr Database
-

MLy Legacy Application

-

— " RMI _
4‘;—» Java Application
S0AP PP

%] ““1. Web Service
Client {End User) Web Seruer “‘1
(Servlets/JSP)

Servlet

Receive request from client (normally a Get or Post
request)

Read the data sent by the client
Process data and generate results
Compose response

Send response (explicit and implicit) to client

Servlets - Introduction
—

o A Java Servlet is a Java g N\
object that responds to Java Web Server and
HTTP requests. It runs Browser Serviet Container
inside a Servlet container ~_ HTTP

. Request

1 The servlet container
initialises the servlet, from A < HTTP
when it is available for = Response
processing requests (GET,

POST)

1 Can be used to
dynamically generate
HTML to return to browser

0 Simple building block of
Java web applications

Servlet lifecycle

The servlet life cycle is managed by the servlet
container. The steps are:

Load Servlet Class.

Create Instance of Servlet.

Call the servlets init() method.
Call the servlets service() method.
Call the servlets destroy() method.

Step 1, 2 and 3 are executed only once, when the
servlet is initially loaded.

By default the servlet is not loaded until the first
request is received for it.

Step 4 is executed multiple times - once for every
HTTP request to the servlet.

Step 5 is executed when the servlet container
unloads the servlet.

/ Servlet Container

~

-

Web
App.

-

Senvlet

1. Load Senvlet
Class

2. Create Senvlet
Instance

3. Call init()

B B T N

4. Call semvice()

6. Call destroy()

R

A\ N

vy

J

Useful interfaces used in servlets
N

I T

HttpSession Allows state to be stored for a user across
one or more HTTP requests

Cookie Obiject used to store small amounts of
information on the client browser

ServletContext Provides methods to communicate with the
servlet container

Filter Provides means to intercept and pre-
process / post-process requests and
responses

Simple first servlet in NetBeans

Choose File Type

Project: &) mavenproject5-1.0-SNAPSHOT

Q4 Filter:

Categories:

Web

lavaServer Faces
Bean Validation
Struts

Spring Frarmework

Im

ile Types:
I5p

IS5F Paie

Filter

Web Application Listener
WebSocket Endpoint
HTML

KHTML

Cascading Style Sheet
JavaScript File

ison =1

Enterprise JavaBeans
Contexts and Dependency Inj
lava

JavaBeans Objects

cESEEEEEEERE

Description:

Creates a new servlet class. A servlet is a server-side lava class which runs within a web
SEMVET,

Finish Cancel Help

Specify name for servlet and package

to put it in
-—

Steps

1. ChooseFile Type
2. Name and Location
3. Configure Servlet

Deployment Project mavenprojectS-1.0-SNAPSHOT

Location: | Source Packages

Package: | servlets

Created File: | ents\MetBeansProjects\mavenproject3isrchmain'javatserviets\MewServlet.java |

< Back Net¢> | Finish = Cancel | Help

Don’t need to use web.xml since JEE/

Configure Serviet Deployment

Choose File Type
Mame and Location

Configure Serviet
Deployment

Register the Servlet with the application by giving the Servlet an internal name (Servlet Mame).
Then specify patterns that identify the URLs that invoke the Servlet. Separate multiple patterns
with commas.

D Add infermation to deployment descriptor (web.xml)

Class Mame: senvlets. MewSservlet

Servlet Name: | MewServlet

URL Pattern(s): /NewServlet

Initialization Parameters:

Mame

Finish | Cancel = Help

Donel

You’ve now created a Java class which implements

the servlet methods, and which is mapped to the
URL pattern you specified

EWebServlet (name = "HNewSerwvlet"™, urlPatterns = {"/HewServ]

=]
T -
' b L L fs

i

—__rl:_:l
clazs NewServlet extends HttpServlet

Run servlet — right click and “Run File”

e
1 Just click OK here

Select servlet execution URI, optionally add some request parameters :
e.g. fflowerServiet?flower=roseficolor=red

fMewServiet | >]

You can change the execution URI later via Tools = Set Servlet Execution URL

oK | Cancel

Browser displays the response from the

servlet
.

1 The servlet creates a default html page which is
sent back to the browser

1 You should try changing it to print something else

- o
@ Servlet NewServiet x +

& @ @ localhost:8080/mavenprojects/New... 1= & @ © % = 0O o m
_.:h Login ER Schoaol of Compute... @ Lagin E fip - direct - Lundi... a Videa Conferencing...

Servlet NewServlet at /mavenprojectd

Basics

Servlets typically extend HttpServlet and override doGet or doPost, depending
on whether the data is being sent by GET or by POST.

If you want a servlet to take the same action for both GET and POST requests,
simply have doGet call doPost, or vice versa.

In NetBeans, this is done for us — both doGet and doPost are redirected to
processRequest by default (you can of course change this if you want)

Expand doGet and doPost code to see the redirection

Request / Response

Both doGet and doPost take two arguments: an
HttpServletRequest and an HttpServletResponse.

The HttpServletRequest lets you get at all of the incoming data; the class has
methods by which you can find out about information such as form (query)
data, HTTP request headers, and the client’s hostname.

The HttpServletResponse lets you specify outgoing information such as HTTP

status codes (200, 404, etc.) and response headers (Content-Type, Set-Cookie,
etc.).

Most importantly, HttpServletResponse lets you obtain a
PrintWriter that you use to send document content back
to the client. For simple servlets, most of the effort is
spent in println statements that generate the desired

page.

The HttpRequest object

Provides methods to access different parts of the
request, e.g.
Request URI
Parameters
Passed from client to server

Attributes

Can be added to request by server for passing on to next
object that processes this request

Session

Plus headers, request body via getlnputStream() , info
on remote host etc.

Servlet That Generates HTML

Most servlets generate HTML. To generate HTML, you
add three steps to the process just shown:

Tell the browser that you’re sending it HTML.
Modify the println statements to build a legal Web page.

You accomplish the first step by setting the HTTP
Content-Type response header to text/html.

The way to designate HTML is with a type of text/html,
so the code would look like this:

response.setContentType(text/html");

Dynamic HTML output
N

o1 Just building the response in HTML

1 Can also append to the response using getWriter().append()

protected woid processRequest (HottpServletBRequest request, HttpServletResponse response)
throws ServletException, IQException {

response.setContentType ("text/html ;charsec=UTF-2") ;

try (| PrintWriter out = response.getWriter()) {
J/* TODD output your page here. You may use following sample code. */
out.println ("< !DOCTYFE html>"):
out.println ("<html>"}) ;
cut.println {("<head>") ;
out.println ("<title>Servliet TestServliet<,/titles>");
out.println("</head>");
cut.println {"<body>=") :
out.println ("<hl>Servlet TestServlet at " 4+ request.getContextPath()| + "</ /hl>");

out.println("<hZ>REequest TURI: " 4+ request.getBRequestURI() + "</ /ha>"):
cut.println("<h2> Remote Rddr: " + regquest.getRemotelddr () + "</h2>");
out.println("<h2> Query String: " + request.getQueryString() 4+ "</ h3"):

regponse .getWriter () .append ("<h3>Thi=s al=so works<,/h3i>");
out .println ("< /body>") ;
out.println("</html>") ;

Sample output

@ Servlet TestServlet

& 5 @ @ localhost:8080/mavenproject5/Tests... 122 v O © N = O o

m Login a School of Compute... @ Lagin H fip - direct - Lundi... o Videa Conferencing... »

Servlet TestServlet at /mavenprojectd

Request URI: /mavenprojectS/TestServlet
Remote Addr: 0:0:0:0:0:0:0:1

Query String: someParam=paramValue

This also works

GET vs POST

.
The GET Method

Note that query strings (name/value pairs) is sent in the URL of
a GET request:

/test/demo_form.asp?namel=valuel&name2=value2
Some other notes on GET requests:

GET requests can be cached

GET requests remain in the browser history

GET requests can be bookmarked

GET requests should never be used when dealing with sensitive data
GET requests have length restrictions

GET requests should be used only to retrieve data

GET vs POST

.
The POST Method

Note that query strings (name/value pairs) is sent in the
HTTP message body of a POST request:

POST /test/demo_form.asp HTTP/1.1
Host: w3schools.com
namel=valuel&name2=value2

Some other notes on POST requests:

POST requests are never cached

POST requests do not remain in the browser history
POST requests cannot be bookmarked

POST requests have no restrictions on data length

Using query string to send parameters

You can send request parameters (e.g. from HTML
form) in the URL (GET) or in the body (POST)

To use the GET method, right click in the body of the
servlet code

You can then add parameters in the URL, e.g.

LI Set Servlet Execution LRI E

Select servlet execution URI, optionally add some request parameters :
e.g. fflowerServlet?flower=roseficolor=red

fMewServlet?param1=238¶m2= helln¶m3:12.5| e

You can change the execution URI later via Tools = Set Servlet Execution URL

Cancel

Retrieving request parameters
N

response . setContentType ("text,/html ; charset=UIF-8") ;

String paraml = request.getParameter ("paraml"):

String param? = request.getParameter ("param2™) ;

String param3 = request.getParameter ("param3"):

try (| PrintWriter ocut = response.getWriter())

{
A% TODD output yvour page here. You mav use following sample code. */
cut.println ("<!DOCTYPE html>");
out.println("<html>");
cut.println ("<head>"):
out.println("<title>Servliet HewServlet</title>");
out.println ("</head>") ;
out..println ("<body>"):
out.println ("<hl>Eequest Farameters</hl>");
out.println("<tables><trr<th>Parameter</th><th>Value</th></cr>") ;
out.println("<trr><td>paraml</td><td>" 4+ paraml + "</tdr</tr>"):;
out.println ("<tr><tdrparamZ</td><cd>" + param? + "</tdy»</tr:>"):
out.println("<trr»<tdrparami</td»<td>»>" 4+ param3 + "</tdy</tr»");
out.println("<table>") ;
out.println ("< /body=") ;
out.println("</html>") ;

Browser displays response from the servlet

& Servlet NewServiet

&€ > C @ localhost8080/mavenproj.. 1= Y ©O © % = 0O o m

m Lagin & School of Compute... @ Lagin o] fip - direct - Lundi... a Video Conferencing...

Request Parameters

Parameter Value
paraml 23
param2 hello
param3 12.5

Sending request from a form

& Login
&€ > C @ localhost8080/mavenproj.. 1= Y ©O © % = 0O o m

m Lagin & School of Compute... @ Lagin . fip - direct - Lundi... a Video Conferencing...

Login

Username |rtbaker r12022456)

Submit

HTML form

<body>
<hl>Login</hl>
<form action="LoginServlet"™ method="post">
<fieldset>
<label>Username<;/label>
<input type="text" name="username™:>
<label>Password</label>
<input type="text" name="password":>
<input type="submit"™ wvalue="Submit">
</fieldset>
</form>
< /body>

The servlet code
S

response . setContentType ("text/html ;charset=UTF-8") ;

String username = request.getParameter ("username™) ;
String pwd = regquest.getParameter ("password™) ;

try (PrintWriter out = response.getWriter())

{
S TODD output your page here. You may use following sample code. */F
out.println ("< !DOCTYPE html>") ;
out.println("<html>");
out.println ("<head>") ;
out.println("<title>Servliet LoginServlet</titlex");
out.println("</head>") ;
out.println {("<body>")
out.println("<hl>Username:" + username + "</ hl>");
out.println ("<hl>Password:"™ + pwd|+ mefhlx")
out.println ("< /body>") ;
out.println("</html>") ;

@ Servlet LoginServiet

& > @ @ localhost8080/mavenproj... 12 ww 0 & ¥ = 0O o m

m Login a School of Compute... @ Lagin [&] fip - direct - Lundi... a Videa Conferencing...

Username:rtbaker

Password:rt2022456

Dynamic => need changing data

Normally we build the web pages dynamically
using data, typically just simple POJO’s / Java
Bean classes which carry data back from the
persistence layer to our View layer

Servlets often used as the routers, forwarding
requests to the appropriate business logic (session
beans), and to the view layer (e.g. Java Server
Pages)

e.g. add new user object
N

0 Starting with form which calls a servlet to create a
new user

<form action="Createlser" method="post">
<fieldset>
<label>email</label> bl
<input tyvpe="text" name="email"> Rengter New User
<label>name<,/label>
<input tyvpe="text"™ name="name">
<label>password«/label>

<input type="text" name="pwd"> emaﬂ | I|b12@gmall_com

<input type="submit™ wvalue="Submit™> jna[ne|ﬁbra
< /fieldset>
</ form>

password |Ifrp345

| Submit

String email = request.getParameter ("email™) ;
String name = regquest.getParameter ("nams=");
String pwd = request.getParameter("pwd"):

Uzer newl=zer = new User({email, name, pwd):
assume we have an object that contain=s a list of current users
we could add our new user to this list

Uzers myusers = new Users():

ArraylList<User> userlist = (ArrayList<User>) myusers.getlUsers():

userlist.add (newlser) ;
try ([PrintWriter out = response.getWriter())

o » . o o g e e o g, I g T [
J# TODD output yvour page here. You may

out.println ("<!DOCTYPE html>") ;

out.println ("<html>"} ;

out.println ("<head>") ;
out.println("<tcitle»Serviec Createlser</citles");
out.println("</head>");

out.println ("<body>"} ;
out.println("<hl>Users</hl>"}
out.println("<cabler<trr<thremail</chrx<ch>Name<,/ thx»<,/cr>") ;

for (User u : userlist)

out.println ("<tr><td>" + u.getEmail () + "< tdx<cds" + u.getMame () + "</ cdx</tr>");

out.println("<table>");

out.println {"</body>") ;
out .println ("< /html>") ;

Output from servlet

Simple example, but shows that we can build fairly useful web

app using simple building blocks

Also shows the need for Persistence (data layer), session
management (keep track of current state of user session /
application), validation (e.g. of inputs(), redirect (if user
creation fails, then redirect to error page or back to user

creation page

& Servlet Createlszer ® +
&« C @ localhost:3080/mavenproject5/Creats

_ﬁ. Login Ey School of Compute... @ Lagin H fip - dir

Users

email Name
jm@ebay.uk J. Murphy
arit@disc.com An
s19@pegx.1e Max
lib12(@gmail.com libra

Request Dispatcher
—

-1 The RequestDispatcher class enables your servlet to "call”
another servlet from inside another servlet. The other servlet is

called as if an HTTP request was sent to it by a browser.
protected void doPost (HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{

RequestDispatcher requestDispatcher =
request. getRequestDispatcher ("/anotherURL. simple") ;

// You can call the RequestDispatcher using either its include ()
// or forward() method:

requestDispatcher. forward (request, response);

requestDispatcher example
B

11 Check if user exists before proceeding, and redirect
if yes

for (User u : userli=t)
{
if (w.getEmail () .equals (newlser.getEmail()))
{
EequestDispatcher reguestDispatcher = request.getBequestDispatcher ("userCreationfFailed.tml™) ;
requestDispatcher. forward (request, reapnnse}d

@ TODO supply a title

&« - C @locahes.. = o N = 0O o@

m Login a School of Compute... @ Login . fip - direct - Lundi...

Register New User

email ‘jm@ebay_uk

name |mike @ TODO supply a title

password[dd333 & 5 O @localhos.. 2 & ® = 0O o@
M’ m Login a Schoal of Compute... @ Lagin . fip - direct - Lundi...

This user exists already

Filters

Would be useful to be able to apply some filtering
to URLs and requests / responses before sending
them on their way

For example, there could be checks to perform on
headers, body, request parameters etc. before
passing on to any servlets

Or in this following simple example, we can use to
check the email address for the presence of the ‘@’
symbol

Create new class will implement the
Filter interface

Choose File Type

Project: &) mavenproject5-1.0-SNAPSHOT

Q4 Filter:

Categories:

Web

lavaServer Faces
Bean Validation
Struts

Spring Frarmework

Im

ile Types:

J5p

J5F Page

Servlet

Web Application Listener
WebSocket Endpoint
HTML

KHTML

Cascading Style Sheet
JavaScript File

ison =1

Enterprise JavaBeans
Contexts and Dependency Inj
lava

JavaBeans Objects

=B FEEEEEEREE

Description:

Creates a new filter class. Filters can pre-process a request before it reaches a servlet,
post-process a response leaving a servlet, or do both, Filters can intercept, examine, and
modify requests and responses.

Finish Cancel Help

Specify the URL pattern

S 1 —
1 Which URL patterns to apply the filter to
o /* would apply to all

1 Here we only apply to calls to a specific servlet

Filter Mame: UzerFilter

@ URL: fCreatellser

() Serviet: < Mo servlets registered:>
Dispatch Conditicns

/| REQUEST | | FORWARD | |INCLUDE | | ERROR

LK

Configure Filter Deployment

Choose File Type Register the Filter with the application by giving the Filter an internal name. Describe when the
Mame and Location Filter is inveked by listing the HTTP request path patterns or Servlets to which the Filter

Configure Filter applies. Order this Filter's mappings relative to any other Filter invocation,
Filter Init Parameters || Add information to deployment descriptor (web.xml)

Class Mame: servlets. UserFilter

Filter Mame: UserFilter

Filter Mappings:

Filter name

UserFilter /Createllser

Delete

Mowve Up

Mowve Down

<Back | MNet> | Fnish | Cancel Help

@ TODO supply a title

& =2 C @ localhost:8080/mavenproject5/addUserhtml =t O N = 0O o

m Lagin 9 School of Compute.., @ Lagin fip - direct - Lundi... n Video Conferencing... [Home - Research P... A Blackboard »

Register New User

@ TODO supply a title

& - C @ localhost:8080/mavenproject5/CreateUser w ¥ © @ % 0O o
ema-l] |pa)‘ara12 | m Login a School of Compute... @ Login fip - direct - Lundi... 0 Video Conferencing... @l Home - Research P... [Blackboard »
namie | server |

assword | 123 | 1
P Register New User

Submit

email | |
name | ‘

pas sword‘ |

Submit

> Payara Server x Run {mavenproject3-1.0-5NAPSHOT) =

INFO: WebModule [/fmavenprojects] ServletContext.log() :UserFilter:doFilter ()

INFO: WebModule [/mavenprojecth] ServletContext.log() :UserFilter:DoBeforeProcessing
INFO: email invalid - does not contain @Bpavarall

INFO: WebModule [/mavenprojects] Servletlontext.log() :UserFilter:DohifterProcessing

20 T v

Filter code

1 Here we are interrupting processing of the filter chain (there could be multiple
filters applied to some URL patterns) and redirecting back to the addUser.html
page

pukblic vold doFilter (ServletRequest reguest, ServlietResponse response,
FilterChain chain)

throws ICEXception, ServletException

if (debug)
{
log ("UserFilter:doFilter()"):

doBeforeProcessing (request, response);

Throwable problem = null;

try

{
String email = regquest.getParameter ("email™) ;
if ('email.contains ("E"))
{

Syastem.out.println("email invalid - does not contain @™ + email);

r

request.getRequestDispatcher ("addU=ser.html") . forward (request, response);
} el=e

{
chain.doFilter (reguest, response);

Session management

A Session is a conversation between client and server — multiple
requests and responses

We need a way to identifying which session (client) each request
belongs to

There are a number of ways of doing this
URL rewriting

Attaching a session identifier with every request and response
Servlets support doing this in case cookies are disabled

Cookies — storing small pieces of information on client (sent back via
data in the response header)

Session Management API

Server just stores a single piece of information on the client (jsessionid) as a

cookie and uses it to associate the client with it’s own session object which is
held on the server

Session Tracking

Cookies?

You can use cookies to store an ID for a shopping session; with each subsequent
connection, you can look up the current session ID and then use that ID to extract
information about that session from a lookup table on the server machine. So,
there would really be two tables: one that associates session IDs with user tables,
and the user tables themselves that store user-specific data.

URL Rewriting

With this approach, the client appends some extra data on the end of each URL.
That data identifies the session, and the server associates that identifier with user-
specific data it has stored. For example, with

http:/ /host /path /file.html;jsessionid=a 1234, the session identifier is attached as
jsessionid=a1234, so al1234 is the ID that uniquely identifies the table of data
associated with that user.

Sending and Receiving Cookies

To send cookies to the client, a servlet should use the Cookie constructor to
create one or more cookies with designated names and values, set any
optional attributes with cookie.setXxx (readable later by cookie.getXxx), and
insert the cookies into the HTTP response headers with response.addCookie.

To read incoming cookies, a servlet should call request.getCookies, which
returns an array of Cookie objects corresponding to the cookies the browser
has associated with your site (null if there are no cookies in the request). In
most cases, the servlet should then loop down this array calling getName on
each cookie until it finds the one whose name matches the name it was
searching for, then call getValue on that Cookie to see the value associated
with the name.

Cookle userCookle = new Cooklie("user", "uidl23i4"):;:

userCookle.setMaxage (60*60*24*365); // Store cooklie for 1 year
response.addCookle(userCookie);

Reading Cookies
N

String cookieName = "userID";
Cookie[] cookies = request.getCookies();
if (cookies !'= null) {

for(int i=0; i<cookies.length; i++) {
Cookie cookie = cookies[i];
if (cookieName.equals(cookie.getName())) {

doSomethingWith (cookie.getValue()) ;

Using Servlet HttpSession API

Accessing the session object associated with the current request.

Call request.getSession to get an HttpSession object, which is a simple hash
table for storing user-specific data.

Looking up information associated with a session.

Call getAttribute on the HttpSession object, cast the return value to the
appropriate type, and check whether the result is null.

Storing information in a session.
Use setAttribute with a key and a value.
Discarding session data.

Call removeAttribute to discard a specific value. Call invalidate to discard an
entire session. Call logout to log the client out of the Web server and invalidate
all sessions associated with that user.

Accessing the session object
N

protected void doPost (HttpServletRequest request,
HttpServletResponse response) throws ServletException,
I0OException

{

HttpSession session = request. getSession();

get / set attribute values in the session object

session. setAttribute ("userName", "Johnl123"):

String userName = (String) session. getAttribute ("userName")

We keep Attributes on the session, whereas Parameters are what are
passed in on the request (e.g. from a Form)

We will see further on that we can also associate attributes to both
the request and the application scope, as well as the session scope

E.g. we can set attributes that just live for the scope of the
request, or also ones that can be shared across the application
with all clients

Simple example
N

11 Use session to keep track of number of visits to @
page

@ TODO supply a title

&« - C @locahos.. = w N = 0O om

m Login a School of Compute... @ Lagin H fip - direct - Lundi...

Register a Visit

Servlet code
4 ...

HttpSession session = reguest.getSession|():] |-|’- session doesn”r clready
Integer numvisits = (Integer) session.gethAttribute ("numvisitcs"); exist for fhiS clien’r, Then a
if ([pumwvisits = null) .
{ new one is created and
numvisits = 1; returned by getSession()
} el=e
{
numvisits++;
H
System.out.println ("Hunker of Visits = " + numvisits):;

gegsion.setAttribute ("numvisits", numvi=sits);

request.getRequestDispatcher ("visic.html") .forward (request, response);

1 System output e ouu

b Payara Server x Run (mavenproject3-1.0-SNAPSHOT) =

INFG: Hurker of Visits =
INFG: Mumbker of Visits =
INFG: Hurmker of Visits =
INFC: Mumbker of Visits =
INFG: Hurker of Visits =
INFG: Hurker of Visits =
INFG: Hurker of Visits =

THF: Weharrvice Fndnnint denlnved NewlehSerw

¢ H¥ v

e B = T 3 I ST L O B

	CT5106 Software Engineering II
	Java Enterprise Edition Architecture
	Typical process in a Servlet
	Life of a Servlet (cont.)
	What can you build with Servlets?
	Servlet
	Servlets - Introduction
	Servlet lifecycle
	Useful interfaces used in servlets
	Simple first servlet in NetBeans�
	Specify name for servlet and package to put it in
	Don’t need to use web.xml since JEE7
	Done!
	Run servlet – right click and “Run File”
	Browser displays the response from the servlet
	Slide Number 16
	Basics
	Request / Response
	The HttpRequest object
	Servlet That Generates HTML
	Dynamic HTML output
	Sample output
	GET vs POST
	GET vs POST
	Using query string to send parameters
	Retrieving request parameters
	Browser displays response from the servlet
	Sending request from a form
	HTML form
	The servlet code
	Result
	Dynamic => need changing data
	e.g. add new user object
	Slide Number 34
	Output from servlet
	Request Dispatcher
	requestDispatcher example
	Slide Number 38
	Filters
	Create new class will implement the Filter interface
	Specify the URL pattern
	Slide Number 42
	Slide Number 43
	Filter code
	Session management
	Session Tracking
	Sending and Receiving Cookies
	Reading Cookies
	Using Servlet HttpSession API
	Accessing the session object
	get / set attribute values in the session object
	Simple example
	Servlet code

