
	

CT248:	Introduction	to	Modeling	
	

Assignment	2:	Sub-functions	and	Function	Handles		
	
The	aim	of	this	assignment	is	explore	how	sub-functions	can	be	made	available	from	a	
function	 file,	 via	 functional	 handles.	 The	 aim	 is	 to	 implement	 a	 simple	 stack	 in	 a	 file	
(mystack.m),	 where	 the	 main	 function	 passes	 back	 the	 three	 stack	 manipulation	
functions.	A	stack	is	a	“last	 in	 first	out”	queue.	The	function	file	does	not	maintain	any	
stack	state,	therefore	the	stack	itself	is	passed	in	to	functions,	and	then,	when	it’s	modified,	
the	updated	stack	is	returned.	
	
The	file	mystack.m	contains	the	following	functions:	
	
Function		
Name	

Function	
Type		

Inputs	 Outputs	 Description		

mystack	 Main	function	
for	the	file.	

None	 push	
pop	
peek		
	

Main	 function	 that	 returns	 3	
handles	to	the	stack	functions		

mystack_push	 Sub-function	 stack	
value	

stack	 Pushes	 value	 onto	 the	 stack	
(location	1)	
	

mystack_pop	 Sub-function	 stack	 stack	 Pops	 value	 off	 the	 stack	 (i.e.	
value	 in	 array	 location	 1).	
Should	return	an	empty	stack	if	
there	is	only	one	element	
	

mystack_peek	 Sub-function	 stack	 value	 Returns	the	top	value	from	the	
stack	 (array	 location	 1).	 If	 the	
stack	 is	 empty,	 it	 should	 not	
throw	an	error.	
	

	
The	code	below	shows	a	test	case.	The	first	call	sets	up	the	three	stack	functions	so	that	
they	can	be	called.	The	variable	stack	is	an	array	variable	that	holds	the	data.	It	is	passed	
into	functions,	and	also	its	modified	value	returned	(from	two	of	the	functions).	
	
Implement	a	script	that	contains	the	following	test	code.	
	
[push, pop, peek] = mystack();

stack = []
stack = push(stack,100)
>> stack = 100

stack = push(stack,200)
>> stack = 200 100

peek(stack)
>> ans = 200

stack = pop(stack)
>> stack = 100

peek(stack)
>> ans = 100

