Node.js and the MEAN Stack

MEAN STACK

Mongo DB Express Angular,js Node.js

(database system) (back-end web (front-end (back-end runtime
| framework) | | framework) | | environment) |

What is NodelS?

A JavaScript runtime environment running Google Chromes V8
engine
* a.k.a. a server-side solution for JS
* Compiles JS, making it really fast

* Created 2009
 Server Side JavaScript

* Designed for high concurrency
* Without threads or new processes

* Evented I/O for JavaScript
* Never blocks, not even for I/O

First what is MEAN

® M =mongoDB -- lightly covered in this class
® E=Express -- lightly covered in this class

® A =Angular.js (client side)— will not cover

® N=Node.js --lightly covered in this class
FULL stack solution

NGULARJS

by Google 2
Client

AJAX

13

no d e °SXVIESS

@ . A Server
' ’ - \/

Mongo DB Express Angularjs

(database system) (back-end web ack-end runtime
| J | framework) | L framework)) L i) m 0 ngo

MEAN STACK

JSON

Database

http:N=Node.js

Why Use Node.js ?

* Node's goal is to provide an easy way to build scalable

network programs.

Standard JavaScript with

Buffer .

C/C++ Addons e HTTPS

Child Processes .

Cluster

Console « OS

Crypto » Path

Debugger * Process

DNS * Punycode

Domain * Query Strings
Readline
REPL

Globals

.. but without DOM manipulation

String Decoder
Timers
TLS/SSL

TTY
UDP/Datagram
URL

Utilities

VM

ZLIB

What can you do with Node ?

« JS executed by the V8 javascript engine, the same thing
that makes Google Chrome so fast.

 Node provides a JavaScript API to access the network and
file system.

« Instead of threads Node uses an event loop with a stack
which alleviates overhead of context switching

What is unique about Node.js?

1. JavaScript on server-side ensures that communication
between client and server will happen in same
language - native JSON objects on both sides

2. Servers are normally thread based but Node.]S is
“Event” based. Node.JS serves each request in an
Evented loop that can handle simultaneous requests.

7~ N\ Register Gy
™ INTENSIVE
+ EVENTLOOP ik

(single thread) 'm

Database

e ' 'op¥14 Computation
Trigger Callback /ation Complete : :

What can’t do with Node?

 Node is a platform for writing JavaScript applications
outside web browsers. This is not the JavaScript we are
familiar with in web browsers. There is no DOM built
into Node, nor any other browser capability.

« Node doesn’t run in a GUI, but runs on the terminal or
as a background process

Threads VS Event-driven

Threads Asynchronous Event-driven

Lock application / request with
listener-workers threads

Using incoming-request model

multithreaded server might
block the request which might
involve multiple events

Using context switching

Using multithreading
environments where listener
and workers threads are used
frequently to take an incoming-
request lock

only one thread, which
repeatedly fetches an event

Using queue and then processes
it
manually saves state and then

goes on to process the next
event

no contention and no context
switches

Using asynchronous I/0
facilities (callbacks, not
poll/select or O_NONBLOCK)

environments

Node.js uses an event-based model

Normally a webserver waits for server-side 10 operations
to complete while processing a web client request, thus
blocking the next request to be processed.

Node.]JS processes each request as events, it doesn’t wait
(non-blocking) for the I0 operation to complete = it can
handle other request at the same time. When the IO
operation of first request is completed it will call-back the
server to complete the request.

Regisfe,
—— oy
Lo,

* INTENSIVE
EVENT LOOP OPERATION

P~

(single thread)

File System

Database

N -

e B— 0/; S e Computation
Trigger Callback ®’ation Complete : :

Non-blocking 1/0

* Servers do nothing but I/O
* Scripts waiting on I/O requests degrades performance

* To avoid blocking, Node makes use of the event driven nature of JS by
attaching callbacks to 1/O requests

* Scripts waiting on I/O waste no space because they get popped off
the stack when their non-I/0 related code finishes executing

Blocking vs Non-Blocking......

Example :: Read data from file and show data

~ Synchronous IO

| Thread waits during VO operation I

Thread : File 10O

" _ = =

/TAsynch ronous 11O

I Thread DON'T wait during VO operation

Thread E -
- File 10
\ - — —

de

Blocking.....

® Read data from file

® Show data

e Do other tasks

var data = fs.readFileSync(“test.txt”);
console.log(data);

console.log(“Do other tasks”);

Non-Blocking......

® Read data from file
When read data completed, show data
® Do other tasks

fs.readFile(“test.txt”, function(err, data) {
console.log(data);

1;

PHP vs Node Example

<?php
Sresult = mysgl gquery('SELECT * FROM ...'");
while ($Sr = mysgl fetch array($Sresult)){

2>

<script type="text/javascript">
mysqgl.query ('SELECT * FROM ...', function (err, result, fields) {

});

</script>

Node.js VS Apache

WN =

. It's fast

It can handle tons of concurrent requests

. It's written in JavaScript (which means you can

use similar code server side and client side)

PHP (via Apache) 3187,27
Static (via Apache) 2966,51
Node.js 5569,30

Netflix has over 160 million customers worldwide
Change to Node.js reduced startup time by 70%

Success Stories..... NETFLIX

Rails to Node
® « Servers were cut to 3 from 30 »
LlnkEd m « Running up to 20x faster in some scenarios »
« Frontend and backend mobile teams could be combined [...] »
Java to Node
Pa Pal" « Built almost twice as fast with fewer people »
y « Double the requests per second »

« 35% decrease In the average response time »

Walmart

YAHOO! UBER

de

Supports HTTP Method......

o GE
e POS
o PUT
e DELETE

When to use it ?

« Chat/Messaging

* Real-time Applications

* Intelligent Proxies

* High Concurrency Applications
« Communication Hubs

« Coordinators

node

Node.js for....

e \Web application

e \Websocket server

e Ad server

® Proxy server

e Streaming server

e Fast file upload client

e Any Real-time data apps
e Anything with high I/O

node

File package.json.....

Project information
 Name
* Version
* Dependencies
* Licence
* Main file
etfc...

node

https://github.com/heroku/node-js-getting-started
http:nodeindex.js
http:index.js
http:AsampleNode.js

Node.js Modules.....

e https://npmjs.org/
e # of modules = 450k and counting

MANY

npm is the package manager for javascript.

@ 1,21,943

de

2

4,08,79,678

— 22,86,36,931

— 82,36,52,154

http:�https://npmjs.org

Install a module.....inside your project directory

Snpm install <module name> --save

Install a module.....globally

Snpm install <module name> --g

de

2

Using a module..... Inside your javascript code

evar http = require(‘http’);
evar fs = require(‘fs’);
*var express = require(‘express’);

Hello World Example

STEP 1: create directory and call npm install and follow instructions
>mkdir myapp
>cd myapp

® Use the npm init command to create a package.json file for your
application. For more information, see Specifics of npm’s
package.json handling.

> S npm init

® prompts you for a number of things, such as the name and version of
your application. For now, you can simply hit RETURN to accept the
defaults

https://docs.npmjs.com/files/package.json

Hello World example

® Create file index.js with the following code:
http.createServer(function (request, response) {
// Send the HTTP header
// HTTP Status: 200 : OK

// Content Type: text/plain
response.writeHead(200, {'Content-Type': 'text/plain'});

// Send the response body as "Hello World“
response.end('Hello World\n'); }).listen(8081);

// Console will print the message
console.log('Server running at http://127.0.0.1:8081/");

Hello World example —package.json —
describes application

"name": "helloworld",
"version": "1.0.0",

"description": "simple hello world app”,

"main": "index.js",

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"
b
"author": "L. Grewe",
"license": "ISC",
"dependencies": {
"express": "14.14.1"

/

http:index.js

Run your hello world application

Run the app with the following command:

S node app.js

Then, load http://localhost:3000/ in a browser to see the output.

Command Prompt - node app.js - O “

:\Grewe\Classes\CS6320\Mat\NodeJS\Heroku\sample\hellolWorld>node app.Jjs

Example app listening on port 3000?

“— C | @ localhost:300C

Hello World!

http:nodeapp.js

Express

* minimal and flexible Node.js web application framework that
provides a robust set of features for web and mobile applications.

MEAN STACK

=

Mongo DB Express Angular.js

(database system) (back-end web (front-end (back-end runtime
| framework) | L framework) J i t)

Client files served
by Express & Node
via HTTP

hitp://agx.terpstra.co: 8888 p

v @l public
= app.js
v @l css
® styles.css
€ index.html|
v @ libs
& fastclick.js
¥ jquery-2.0.2.min,js
®rextFit.min.js

Node.js

Websocket
connections
managed by
Socket.IO

we:/fagx.terpstra.co:8888/
socket.lo/1 websocket/uid

uld: sdfiecfdtifen

uid: thkgyjB5tkyk

ud: apjkt6yufS6irh

Socket.IO

Express gives ease of functionality

* Routing

* Delivery of Static Files

* “Middleware” — some ease in development (functionality)
* Form Processing

* Simple forms of Authentication

* Cookies and Session Manipulation

A lot of this you can do in NodedJS but, you may write more code to do it than
if you use the framework Express.

Install express

® install Express (if you want it, most will) and any other
dependencies needed

® Now install Express in the myapp directory and save it in the
dependencies list. For example:

o] Command Prompt
rewe\Classes\CS6328\Mat\NodeJS\Heroku\sample\helloWorld>npm

>S5 npm install express --save

pm helloworld@P1.8.8 No repository field.
:\Grewe\Classes\CS6320\Mat\NodeJS\Heroku\sample\hellolorld>

Y

install express [N

Express install

* Will add files
to the node_modules
directory

* If this is the first
module you
have installed for
current application
IT will create the
node_modules
directory first.

Name

IT package

Doing the
npm install express

creates directory
node_modules
with this contents

As you do more
npm install modules

it will add more to
this directory

nNdrne

. .bin

. accepts

. array-flatten

. content-disposition
. content-type

. cookie

. cookie-signature
. debug

. depd

. destroy

. ee-first

. encodeurl

. escape-html

. etag

. express

. finalhandler

. forwarded

. fresh

httn-errarc

ALTERNATIVE express-generator

npm install express-generator -g express helloapp
create : helloapp

create : helloapp/package.json

create : helloapp/app.js

create : helloapp/public

create : helloapp/public/images

create : helloapp/routes

create : helloapp/routes/index.js

create : helloapp/routes/users.js

create : helloapp/public/stylesheets

create : helloapp/public/stylesheets/style.css

create : helloapp/views create : helloapp/views/index.jade
create : helloapp/views/layout.jade

create : helloapp/views/error.jade

create : helloapp/bin

create : helloapp/bin/www

install dependencies:

scd helloapp && npm install

run the app:
s DEBUG=helloapp:* npm start

create : helloapp/public/javascripts

http:create:helloapp/routes/users.js
http:create:helloapp/routes/index.js
http:create:helloapp/app.js

Express — hello world code

® index.js have the code

var express = require('express’)

This says requires module express
var app = express()

app.get('/', function (req, Calls function express to initialize object app
res.send('Hello World!')

) App object has various methods like get

app.listen(3000, function () { that responds to HTTP get request.

console.log('Example app listenin, 1HIS code will be call the function specified when
3 a GET for the URI / is invoked

Sets up the HTTP server for listening port 3000

NEXT — Todo Application

* We will go cover a simple Todo application that uses Node.js, Express,
EJS, a templating engine that works with Express, and Mongo DB.

The MEAN stack Meteor.js

http:�WewillgocoverasimpleTodoapplicationthatusesNode.js

References

* http://nodejs.org/

* http://npmjs.com/

* http://www.w3schools.com/nodejs

* http://ajaxian.com/archives/google-chrome-chromium-and-v8

http://nodejs.org/
http://npmjs.com/
http://www.w3schools.com/nodejs
http://ajaxian.com/archives/google-chrome-chromium-and-v8

