

CT2108 – Nets & Comms 1

Content

- The Network Layer in the Internet
 - The IP protocol
 - IP Addressing
 - IP subnet design
 - CIDR (Classless InterDomain Routing)
 - NAT (Network Address Translation)
 - Internet Control Protocols
 - ICMP (Internet Control Message Protocol)
 - ARP (Address Resolution Protocol)
 - RARP (Reverse Address Resolution Protocol)
 - BOOTP (BOOTstrap Protocol, alternative to RARP)
 - DHCP (Dynamic Host Configuration Protocol
 - IPv6

Principles that drove the design

- Make sure it works first test and then write specs
- Keep it simple fight features (leave out non essential features)
- Make clear choices if multiple ways to do same thing, choose just one
- Exploit modularity have protocol stacks
- Expect heterogeneity different types of hardware, etc..
- Avoid static options and parameters negotiate a value than define a fixed one (where absolutely needed)
- Look for a good design, not need to be perfect do a god design, don't complicate it to handle special wired cases
- Be strict when sending, tolerant when receiving comply with the standards when sending, try to accommodate errors when receiving
- Think about scalability systems that have to use millions of users don't accommodate well centralized databases
- **Consider performance and cost** a solution that is either expensive or performs poorly is not usable

Internet Protocol (IP)

- The glue that holds together the Internet
- Provides a best-efforts (not guaranteed) way to transport datagrams from source to destination
- Workflow:
 - The transport layer takes the data streams and breaks them into datagrams (in theory they can be up to 64KB, but in practice they are no more than 1500 bytes)
 - Each datagram is transmitted through the Internet (possible being fragmented into smaller pieces as it goes)
 - When all pieces get to the destination machine, they are reassembled by the network layer into the original datagram
 - This datagram is handed to the transport layer which inserts it into the receiving process input stream

IP packet is transferred in big endian : from left to right, with the high order bit of the version control going first. All 8086 based machines are little endian, so whenever sending or receiving, a conversion is required •Versioning (keeps track of the versioning control). Currently we can have IPV4 (0100) or IPV6 (0110)

•Header Length – how long the header is in 32 bit-words; the minimum value is 5, which applies when no option is present; maximum value is 15 giving a maximum of 60 bytes for the header, when options are present (thus options field is limited to 40 bytes)

•Type of service – defines how the datagram should be handled; it includes bits that define priority of the datagram; it also include bits that define the type of service the sender desires, such as level of throughput, reliability and delay; most of the times, this filed is completely ignored by routers

•Total length – includes everything in the datagram, both header and data; the maximum length is 65,535 bytes; at this stage, this limit is OK, but with future gigabit networks, larger datagrams may be needed

•Identification – is needed to allow the destination host to determine which datagram a newly arrived fragment belongs to. All the fragments of the datagram contains the identification field.

•DF – bit specifying Don't Fragment; this is helpful for systems that can't put back together the fragments of a datagram

•MF – stands for More Fragments; all fragments except the last one have this bit set. It is needed to know when the fragments of a datagram have arrived

•Fragment offset – tells where in the current datagram the current fragments belongs. All fragments, except the last one have to be multiple of 8 bytes (elementary fragment unit); since 13 bits are provided, there are a number of 8192 fragments per datagram, giving a maximum datagram length of 65536 bytes

•Time to live – is a counter used to limit the packets life times; it is suppose to count time in seconds, allowing a maximum life time of 255 seconds, but in practice it counts only hops. When it hits 0, the packet is discarded and a warning packet is sent back to the host; this feature prevents datagrams from going around forever.

•Protocol – tells which transport process to give it to...in other words is specifies the transport layer protocol (TCP, UDP, etc...)

•Header checksum – verifies only the header; the algorithm is to add up all 16 bit half words as they arrive, using one's complement arithmetic and then take one's complement result; the header checksum must be computed at each hope, since there are values in the header that modifies (i.e. hops count)

•Options – was designed to allow designers and implementers of network protocols an escape mechanism; this option value allows for subsequent version of the protocols to include information not present in the original specs; the options are variable length, each of them beginning with one byte identifying the option.

	IP Options
Option	Description
Security N	Specifies how secret the datagram is
Strict source routing	Gives the complete path to be followed
Loose source routing	Gives a list of routers not to be missed
Record route	Makes each router append its IP address
Timestamp	Makes each router append its address and timestamp
Time stamp – same v address, the routers h option is mostly for c	with the Record route option, but beside the IP have to record also a 32 bit time stamp value; this lebugging routing algorithms.

Security – i.e., a military router might use this field not to route through certain countries; in practice, all of the routers ignore it, so it can be used to spy easily on interesting stuff ...

Strict source routing – gives the complete path from source to destination, as a list of IP address (sequence). The datagram is forced to follow that exact route; useful when routing tables are corrupted or for timing measures.

Loose source routing – requires the packet to traverse the list of routers specified, and in the specified order; it allows a pass through other routers on the way; this is useful when avoiding or force passing through certain countries (economical or political reasons)

Record route – tells the routers along the way to append their address to the option list. This allows tracking down of bugs in routing algorithms. At first, ARPANET was having at most 9 routers...so 40 bytes was plenty...but now this is too short. Time stamp – same with the Record route option, but beside the IP address, the routers have to record also a 32 bit time stamp value; this option is mostly for debugging routing algorithms.

S	Special IP addresses	
0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	This host
0 0 0 0	Host	A host on this network
111111111111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Broadcast on the local network
Network	1111 1111	Broadcast on a distant network
127	(Anything)	Loopback
 Loopback – the over the wire; – they are treated – Very useful for 	packets sent to these addresses as incoming packets and processed testing/debugging an TCP/IP stack	are not sent locally

Three LANs One Token Ring G – gateway R – router

Outside the network, the subnetting is not visible, so allocating a new subnet doesn't require contacting any official organization (that assigns IP addresses) nor changing any external databases

IP addresses shortage

- IP is running out of addresses
 - Class A networks (with 16 million host addresses) is too big for most of the organizations
 - Class C networks (with 256 host addresses) is too small for most of the organizations
 - Class B networks (with 65,536 host addresses) is about right for a medium sized organizations
- In reality a class B address is too large for most of the organizations; studies show that half of the class B networks have less than 50 hosts....
- Two solutions to cope with the shortage problem
 - Use of CIDR (Classless InterDomain Routing)
 - Use of NAT (Network Address Translation)

CIDR

- Basic idea is to allocate the remaining IP addresses in variable-sized blocks, without regard to the classes.
- If a site needs, say 2000 addresses, it is given a block of 2048 addresses on a 2048 byte boundary
- Dropping classes makes the routing more complicated, the old routing algorithm is not working anymore

Old routing algorithm

- Incoming packet to the router (i.e. with destination address 140.203.8.22
- Router extracts the destination IP address and shift a copy of it with 28 bits to the right to obtain a 4 bit class number (i.e. 1000)
- Have a 16 way branch that sorts the packet into A, B, C and D (if supported):
 - $-\,$ 8 cases for class A; 4 cases for class B, 2 cases for class C and one case for each D and E
- Once the router knows the class (in our example class B), it will know what mask to apply (i.e. 16 bit mask, or 255.255.0.0), in order to find out the network address (140.203.0.0) and look it up into appropriate class routing tables (class B routing tables) to find out the outgoing physical line

CIDR routing algorithm

- Each routing table entry is extended by giving it a 32 bit mask
- There is now a single routing table for all networks consisting of (net IP address, subnet mask, outgoing line) triplets
- When a packet comes in:
 - its destination address is first extracted
 - The routing table is scanned entry by entry to find a match
 - It is possible to find multiple matches (entries), the one having the longest mask is used (i.e. between /20 entry and /24 entry, /24 is used)
 - The packet is forwarded on the outgoing line
- Commercial VLSI chipsets for routers have been developed using this new algorithm, in order to speed up the address matching process

CIDR practical example (1)

- Addresses are available at 194.24.0.0
- Suppose that:
 - Cambridge needs 2048 addresses and it is assigned 194.24.0.0 through 194.24.7.255 with mask 255.255.248.0
 - Oxford asks for 4096 addresses and it is assigned 194.24.16.0 through 194.24.31.255 with mask 255.255.240.0
 - Edinburgh asks for 1024 addresses and it is assigned 194.24.8.0 through 194.24.11.255 with mask 255.255.252.0

University	First address	Last address	How many	Written as
Cambridge	194.24.0.0	194.24.7.255	2048	194.24.0.0/21
Edinburgh	194.24.8.0	194.24.11.255	1024	194.24.8.0/22
(Available)	194.24.12.0	194.24.15.255	1024	194.24.12/22
Oxford	194.24.16.0	194.24.31.255	4096	194.24.16.0/20

CIDR practical example (2)

- The routing tables all over the world will update to contain the following entries:
 - C: 11000010 00011000 0000000 00000000 with mask 11111111 11111111 11111000 00000000
 - E: 11000010 00011000 00001000 00000000 with mask 11111111 11111111 1111100 00000000
 - O: 11000010 00011000 00010000 00000000 with mask 11111111 11111111 11110000 00000000
- Packet coming for destination 194.24.17.4 or in binary: 11000010 00011000 00010001 00000100
 - First it is ANDed with Cambridge mask
 - 11000010 000110000 00010000 00000000, this value doesn't match the Cambridge base address

CIDR practical example (3)

- The original address is ANDed with Edinburgh mask:
 - 11000010 000110000 00010000 00000000, this value doesn't match the Edinburgh base address
- Next original address is ANDed with Oxford mask:
 - 11000010 000110000 00010000 00000000, this does match the Oxford base address
- If no other matches are found, then the packet will be forwarded on the outside line corresponding to the Oxford entry.

NAT (Network Address Translation)

- It comes into play whenever a need for more hosts than real IP addresses are available (i.e. an ISP may have a class B address, having a 65,534 possible hosts, but has more customers than that)
- NAT (RFC 3022) basic idea is to assign each company a single IP address (or a small number of them) for Internet traffic. Within company, every computer gets a unique IP address, which is used for routing internal traffic; when a packet exits the company and goes to the ISP, an address translation takes place
- To make this thing possible, three ranges of IP addresses have been declared as private, companies can use them internally as they wish; the only rule is that no packets containing these addresses may appear on the internet itself

NAT problems

- Violates the architecture of IP model, which states that every host worldwide should be identified by a unique IP
- Changes the Internet from a connectionless network in a kind of connection-oriented network
- Violates the most elementary rule of protocol layering, that layer k should not make any assumption of what layer k+1 put in the payload
- Will not work with any protocols on the Internet (beside TCP or UDP)
- Some applications insert IP addresses in the text (payload); the receiver will extract these addresses and use them; NAT will not work with those applications since it doesn't know about this insertion (i.e. MS Messenger)

Internet Control Protocols

- ICMP (Internet Control Message Protocol)
- ARP (Address Resolution Protocol)
- RARP (Reverse Address Resolution Protocol)
- BOOTP (BOOTstrap Protocol, alternative to RARP)
- DHCP (Dynamic Host Configuration Protocol)

ICMP

- Used to report something unexpected; each ICMP message is encapsulated in an IP packet
- Used to test the internet

Message type	Description
Destination unreachable	Packet could not be delivered
Time exceeded	Time to live field hit 0
Parameter problem	Invalid header field
Source quench	Choke packet
Redirect	Teach a router about geography
Echo request	Ask a machine if it is alive
Echo reply	Yes, I am alive
Timestamp request	Same as Echo request, but with timestamp
Timestamp reply	Same as Echo reply, but with timestamp
stamp request and Tim of that the arrival time of coded in the reply; it is	estamp reply – are similar with echo of the message and the departure time s used me measure network performa

Destination unreachable – is used when the subnet or a router can't locate the destination or when a packet with DF bit set can't be delivered because a "small packet" network stands in the way

Time exceeded – is sent when a packet is dropped because its counter reached zero; this event is a symptom that packets are looping, there is an enormous congestion or the timer values were set to low

Parameter problem – indicates that an illegal value has been detected in a header field; this message indicates a bug in the sender's IP software or possible in the transited routers

Source quench – message formerly used to slow down stations that were sending too many packets; it is not used anymore, because when congestion occurs, those packets tend to throw more fuel into the fire; congestion control is done now in the transport layer

Redirect – is used when a router notices that a packets seem to be routed wrong. It is used by the router to tell the sending host about the probable error

Echo and Echo reply – are used to see if a given destination is reachable and alive; upon receiving the echo message, the receiving station is suppose to answer with the echo reply message

Timestamp request and Timestamp reply – are similar with echo messages, except that the arrival time of the message and the departure time of the reply are recoded in the reply; it is used me measure network performance

ARP and RARP

- ARP is a network layer (3) protocol and is required to allow a sending station gather address information used in forming a layer 2 frame complete with destination and source MAC addresses
- Although ARP is a layer 3 protocol it does not use an IP header, it has its own packet format and is a broadcast on the local LAN within the data field of a layer 2 (Ethernet) frame without needing to be routed.
- The Ethernet Type field uses the value 0x0806 to indicate an ARP request and 0x0835 to indicate an ARP response.
- If a station does not know its IP address it may send out a RARP (Reverse Address Resolution Protocol) request read by a RARP server which has a table of hardware addresses and IP addresses. The RARP uses the same packet format as the ARP
- Most hosts on a network will send out a **Gratuitous ARP** when they are initializing their IP stack. This Gratuitous ARP is an ARP request for their own IP address and is used to check for a duplicate IP address. If there is a duplicate address then the stack does not complete initialization.
- RFC 826 describes ARP in detail, while RFC 903 describes RARP.

Every router maintains a table listing IP addresses and respective hardware addresses (e.g. MAC addresses) of devices that exist on the network. This table is called an ARP cache and is referenced by the router when it is looking up a hardware address of a device for which it knows the IP address and needs to forward a datagram to it. If no hardware address is found in the ARP cache then an ARP broadcast is sent on to the adjacent media (ARP only applies to the connecting wire). This broadcast is read by every station including the destination station. The destination station sends back an ARP reply with its hardware address so that the IP datagram can now be forwarded to it by the router.

										_
			A	RP j	pack	et for	mat			
	HARDWARE TYPE	PROTOCOL TYPE	LENGTH OF HARDWARE ADDRESS	LENGTH OF PROTOCOL ADDRESS	OPERATION CODE	SOURCE HARDWARE ADDRESS	SOURCE PROTOCOL ADDRESS	DESTINATION HARDWARE ADDRESS	DESTINATION PROTOCOL ADDRESS	
	2 BYTES	2 BYTES	1 BYTE	1 BYTE	2 BYTES					
	Hardy Proto	ware T col Tyj th of H	ype – (i pe - the ardware	.e. this i protoco Addres	s 1 for I l used a ss - this	Ethernet) t the netw is the ler	work lay ngth in by	er (i.e. IF ytes, so i	P). t would	
	be 6 f	or Ethe	ernet.							
•	 Lengt 	th of Pı	rotocol A	Address	- for T	CP/IP the	e value is	s 4 bytes.		
•	 Opera Request 	ation C est, AR	ode - th RP Resp	is code onse, R	indicate ARP Re	s whethe quest or	r the pac RARP F	eket is an Response	ARP	
•	 Source 	e Hard	lware A	ddress -	hardwa	are addre	ss of the	source n	ode.	
•	• Sourc	e Prote	ocol Ad	dress - l	ayer 3 a	ddress o	f the sou	rce node		
•	• Destin carrie	nation s both	Hardwa the dest	re Addi ination'	ess - us s hardw	ed in a R are and l	ARP rec ayer 3 ac	luest, the ldresses.	response	e
•	 Destin carrie 	nation s both	Protoco the dest	l Addre ination'	ss - useo s hardw	d in an A are and l	RP requ ayer 3 ad	est, the r ldresses.	esponse	
										-

RARP, BOOTP and DHCP

• Given an data-link address (i.e. Ethernet address) what is the corresponding net address (IP address)

- RARP

- Is using a broadcasting destination address of all 1s (it is not forwarded by the routers), so a RARP server needs to be in each network
- BOOTP
 - · Is using UDP messages, so they will be forwarded over routers
 - It is specifically designed for diskless stations, so it provides additional information, such as IP of the file server holding the operating system image, etc...
 - It requires manual configuration of the tables mapping the IP addresses with Ethernet addresses
- DHCP (Dynamic Host Configuration Protocol)
 - · Special server that allows automatic and manual IP assignment
 - It may require a DHCP relay agent on the local networks, so the DISCOVER packet would be forwarded outside the local LAN
 - RFC 2131 and RFC2132

IPv6

- CIDR and NAT may "buy" a few more years, but the days of IPv4 are numbered (shortage problem)
- 1990, IETF started to work on IPv6, with the following goals:
 - Support billion of hosts
 - Reduce the size of the routing tables
 - Simplify the protocol, to allow routers to process faster
 - Provide better security (auth and privacy) than IPv4
 - Pay more attention to type of service (for real time data)
 - Aid multicasting (by allowing scopes to be specified)
 - Make roaming possible without change of address
 - Allow protocol expansion
 - Permit the old and new protocols to coexist for years

IPv6 features

- 16 bytes IP addresses
- Header simplification (contains only 7 fields versus 13 fields in IPv4)
- Better support for options;
 - the way options are represented is different, making it simple for the routers to skip over options not intended for them; this feature speeds up processing in the routers
- Improved security features authentication and privacy are key features of the new protocol.
- Better handling of quality of service

Version - is always 6 for IPv6 or 4 for IPv4; routers will be able to examine this field and process the packet accordingly

Traffic class - is used to distinguish between packets with different real time delivery requirements

Flow label – experimental field, used to allow a source and a destination to setup a pseudoconnection with particular properties and requirements; i.e. a stream of packets on a certain source host to a certain destination host may have stringent delay requirements, thus need reserved bandwidth. The flow can be setup in advance and given an identifier. When a packet with a non zero flow label gets to a router, the router will lookup his tables to determine what kind of special treatment it requires. In effect, the flow label is an attempt to have it both ways: the flexibility of a datagram subnet and the guarantees of a virtual circuit subnet. Many flows could be active at the same time between two given IP addresses.

Payload length – how many bytes follow the 40byte header of the packet. The 40 bytes header is not counted anymore in the length of the packet.

Next header – there can be optional (extra) headers for the given packet. This field tells which (if any) of the currently supported six extension headers follow this header; if this header is the last IP header, the *next header* field tells which transport protocol handler (TCP, UDP, etc..) to pass the packet to

Hop limit – used to keep packets from living forever; it is practically the same time to live field as in IPv4 header

Source and Destination address – each 16 bytes. There is a new notation:

8000:0000:0000:0123:4567:89AB:CDEF - eight groups of four hexadecimal digits, with colons between the groups

IPv4 versus IPv6

- *Protocol* filed was taken out because the next header field tells what follows the last IP header (i.e. UDP or TCP segment)
- Fragmentation fields were removed
 - IPV6 hosts are expected to dynamically determine the datagram size to use.
 - The minimum has been raised from 576 to 1280 to allow 1024 bytes of data and many headers
 - If an IPV6 host sends a too large packet, the routers will issue an error message; this message tells the host to break up all future packets to that destination
- *Checksum* field not existing because calculating it greatly reduces performance. However, since transport layer have their own checksum, it is not making sense to do it twice

L	Extension header	Description
,	Hop-by-hop options	Miscellaneous information for routers
Ł	Destination options	Additional information for the destination
Ł	Routing	Loose list of routers to visit
/	Fragmentation	Management of datagram fragments
ſ	Authentication	Verification of the sender's identity
ſ	Encrypted security payload	Information about the encrypted contents
n	rypted security payload – h tent of a packet so that only ders use cryptographic tech	eader that makes possible to encrypt the the intended recipient can read it; these niques to accomplish their mission

They are optional, if exist, they should appear after the fixed 8 bytes header, preferably in the listed order

Hop by hop options - it is used to carry information that all the headers along the path must examine. One option has been defined so far: support for datagrams that exceeds 64K; when used, the *payload length* field in the main header is set to zero

Destination options - intended for fields that may be interpreted only at the destination host

Routing header – lists one or more routers that must be visited prior to reaching the destination

Fragmentation – deals with fragmentation, similarly with IPv4; this header holds the datagram identifier, fragment number and a bit telling whether more fragments will follow; in IPv6 only the source host can fragment the packet (unlike IPv4)

Authentication – header that provides a mechanism so the receiving station is sure of who sent the packet (who is the source)

Encrypted security payload – header that makes possible to encrypt the content of a packet so that only the intended recipient can read it; these headers use cryptographic techniques to accomplish their mission

Next header – byte that shows what kind of header is next

Header length – how long the hop-by-hop header is in bytes, excluding the first 8 bytes that are mandatory

Type – for this case is code 194 showing that this option defines the datagram size

Length – one byte representing the length of the option, saying that the option value is represented on 4 bytes. It is followed by 4 bytes containing the option value; sizes less than 65536 bytes are not permitted and the routers will issue an error message if happens.

