CT5106

Connecting to DB’s

There are number of ways we can connect to the DB — we will
look at the first 2 for now:

Connecting IDE (NEtBeans) to DB (MySQL)

The purpose of this is to allow us to explore / query DB from with the
IDE environment

Connecting application server (Payara) to DB (MySQL)

The purpose of this is to allow our application to use JPA (which
uses the JDBC driver) which relies on connection pools we create
from within the Payara admin tool

Adding a dependency to Java (Maven) project to allow
reverse engineering of database (to classes)

You need a MySQL database

You can use the MySQL database you used for other modules

If you don’t have one, you can create it on the CS school
intranet:

You will need to use the admin userid and password that you
receive when you set up the database

https://www2.it.nuigalway.ie/intranet/

1. Connecting IDE (NetBeans) to DB
(MySQL)

We can create connections to databases from within
NetBeans

These connections can be used to run queries, see
DB structure, insert / delete records etc

These connections can also be used to engineer
database tables and relations to create entity
classes

Download MySQL JDBC connector

Go to

Select ‘Platform Independent’ as the OS and then click on ‘Go to Download
Page’

It will bring you to the MySQL Community Downloads page, and you should
click on the ‘Download Now’ page,

but this will bring you to the Oracle site - you will need to log in to the Oracle site to
access the download

Download the ‘mysql-connector-java-xxx.zip’ file — | downloaded the
version

Unzip and put somewhere you will remember — | put mine in the NetBeans
installation folder

Then go back to NetBeans

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-8.0.30.zip

Start with connecting to MySQL
B

o In NetBeans

0 Select Services tab

01 Right-click on Databases
0 Select ‘New Connection’
0 Select Driver: MySQL

1 You will need to select the ‘Add’ button to
add the driver file

Locate Driver

Driver: [My5S0L (Connector/) driver) w l

Driver File(s): | C\Program Files\NetBeans-15\netbeans\mysql-connector-java-8.0.30 jar Add... |

Remove

Finish Cancel || Help

Set connection properties and test

connection
I

71 Enter your MySQL
database connection
properties

1 Check the ‘Remember
password’ box Customize Connection

o Click on ‘Test Connection Driver Name: | MySOL (Connector/) driver)

Host: | danub.it.nuigalway.ie

0 Hopefully it will say
‘Connection Succeeded’

Database: mydb1860

1 Click Next User Name: |mydb15&ﬂmo

Bemermber password

| Connection Properties || Test Connection

danuf.it.nuigalway.ie:3306/mydb18607zeroDateTimeBehavior=COMVERT_TO_NULL

| <Back || Net> | FEinsh | Canced || Help

Choose database schema
B

o1 If you have only one schema in the database, this will show no
schema to select, like this, so click on ‘Next’

Choose Database Schema

For each database connection, the Services window only displays chjects from one database schemna.
Select the scherna of the tables to be displayed.

Select schema: | <Mo schema=

<Back || Ned> | Finsh || Cancel || Help

Give your connection a name
N

1 Something short would be good!

1 Then click ‘Finish’ and it’'s done

Choose name for connection

Override the default name for the connection. The name should be descriptive about the conne ction
you are creating.

Input connection name:

' mydb1260)

< Back Next > Finish || Cancel | Help

See what’s in your database
N

Projects Files Services

O YOU ShOUId be B Databases
. » [JavaDB
able to drill L el
down into the v [E] mydb1860
~ [mydb1860
database and v [Tables
A @ artists
see the tables, artistid
° EUrname
views and first_name
procedures gender

birthyear
naticnality
emailaddress
websiteaddress
bicgraphy
Efll photegraph
> [Indexes
» [Foreign Keys
> @ artworks
> @ custormer
> @ customer_address
> @ customers
> @ EMp
> @ emp_address
> B employees
> @ offices

Run an SQL query
N

o1 Right click on ‘Tables’ ¥ B mydotaco

~ [mydb1860

Create Table...

W

and select ‘Execute

Recreate Table...

Commqnd, Execute Command...

Refresh
Efll nation ality

Write and run query
N
o This will open a query tab on the RHS
-1 Enter a simple query and click on the green triangle
fo run

€| Employeejava % [&] CreateEmployeejava x pomaxml [weekd] x [&] SQL1 [r‘nidl:l'IEEﬂD] s

Connection: | mydb1860 e @iﬁ =0 e [-

1 gelect * from artists

Query results
B

1 These will be shown in a tab on the bottom RHS

select * from artists =

B E @ Maxrows Fetched Rows: 5 Matching Rows:

artistid SUrname first_name gender birthyear
1 1003 Kahlo Frida F 1934 Mexican
2 1003 O'Keeffe Georgia F 1887 American
3 1010 Gentileschi Artermisia F 1593 Italian
4 3001 Frankenthaler Helen F 1928 American
5 4001 Cassatt Mary F 1844 Armerican

2. Connecting application server (Payara)
to DB (MySQL)

We just added it to NetBeans so that we can see
into your database from there, but to run
applications that use JPA (and hence the jdbc
connector to MySQL), we need to add the mysql
connector .jar to the application server

Go to your Payara server installation folder and
open the /bin folder

You should see just a few files there, including
‘asadmin.bat’

Double click on ‘asadmin.bat’ to run it

Add library in asadmin

Enter the command ‘add-library’

Then provide the location of the mysql connector jar file, like in the example
below

@ CAWindowssystemiZ\cmd.exe s x|

Use “exit" to exit and “help" for online help. A
asadmin? add-lihrary

Enter the value for the files operand? civswserssso_molloyssmysgl-connector-java-8.0.30. jar

Command add-library executed successfully.

asa@min?

It should put the .jar file in

<Payara install directory> \glassfish\domains\domain1\lib

Open Payara admin tool

Right click on your server in NetBeans and select ‘View Domain Admin
Console’

Go down to Resources and drill down to JDBC Connection Pools

...and select New

[® Nodes
gy Clusters (Deprecated)
=7 Applications

Pools (3)

Mew... Delete
&% Lifecycle Modules
Monitoring Data Pool Name Resource Type

B Resources

H2Pool javax.sql.DataSource

Concurrent Resources

i Connectors

B JDBC

I JDBC Resources

JDBC Connection Pools
B H2Pool

__TimerPool

TimerP ool javax.sqgl. XADataSource

javax sql DataSource

B mysqglpool

Create new JDBC connection pool

Pick a simple name

Resource type: javax.sql.DataSource
Database Driver Vendor: MySQL

General Settings

Pool Name: * n'|'r'rpc.0|

Resource Type: javax sgl.DataSource

Must be specified if the datasource class implements more than 1 of the interface.

Database Driver Vendor:

Select or enter a database driver vendor

Introspect: . Enabled

If enabled, data source or driver implementation class names will enable introspection.

o o QneXf

Replace the Datasource Classname with:

com.mysql.cj.jdbc.MysqlDataSource

®
%UO O User: admin Domain: domaini

COMMUNITY

:_:.-,..._.._ e Modify an existing JDBC connection pool. A.JDBC connection pool is a group of reusable connections for a particular database.
nstances
Nodes

Clusters (Deprecated)

L oad Defaulis Flush Ping

Applications.

Lifecycle Modules

Monitoring Data O = i

Resources Pool Name: el

B Concurrent Resources

Fesoties Type:
ﬁ- Connectors javax sql.DataSource

Must be specified if the datasource class implements more than 1 of the interface.

@ JDBC

I JDBC Resources .
RCiel AR o mysql.c.jdbe. MysgIDataSource

I JDBC Connection Pools
® H2Pool Vendor-specific classname that implemenis the DataSource and/or XADataSource APls

8 _ TimerPool Driver Classname:

Vendor-specific classname that implements the java sql Driver interface
+" JMS Resources

Y JNDI [l Enabled
B JavaMail Sessions When enabled, the pool is pinged during creation or reconfiguration to identify and warn of any ermmoneous values for its attributes

B Resource Adapter Configs
Configurations

o o QneXf

Then scroll down to ‘Additional Properties’

Select all properties and delete them. Then add the following properties - using
your own values of course!l

Additional Properties (7)

Add Property

Name Value

usessL false

portNumber 3306

mydb1860mo

serverMame danub.it.nuigalway.ie

databaseMName mydb1860

password gobgop

driverClass com.mysql.cj.jdbc. Driver

If you are successful

When you finish you should be able to successfully
Ping the database

Advanced Additional Properties

Edit JDBC Connection Pool

Modify an existing JOBC connection pool. A JDBC connection pool is a group of reusable connections for a partic

Load Defaults Flush Ping

Now create a JDBC resource which uses

that connection pool

Under JDBC Resources select ‘New’

JDBC Resources

JDBC resources provide applications with a means to connect to a database.

Enable Ysable

JNDI Name = Logical JNDI Name Enabled

jdbc!__TimerPool

jdbc!__ default java:comp/DefaultDataSource

jdbcimysqldb

Connection Pool

TimerPool

HZ2Poo

Set up the new JDBC Resource

Give it a JNDI name: it must be of the form: jdbc/xxx
Select the pool you have just created

That's it — select ‘OK’

New JDBC Resource “

Specify a unique JNDI name that identifies the JDBC resource you want to create. The name must contain only alphanumeric, underscore, dash, or dot charact

JNDI Name: * | FREESSNSE

Pool Name: mysglpeol v

Use the JDBC Connection Pools page to create new pools

Enabled

Additional Properties (0)

Next Create Persistence Unit
S

o1 This is used by the application container to get connections to the database
01 Right click on the Project name

1 Select New -> Other

W weekd-1.0-SNA
W > L=
v g Web Pages Mev [Folder...
_ &) Serviet...
> E WEE-IM Build = ey
index.ht | | Class...
6 indecsy Cleanand Build - e e
'] Package...
> PE RESTful We Build with Dependencies — ava Fackage
Bl J5P...
» PE Source Pach Clean &
> U TestPackag Verify HTML...
» I Other Sourc &| Filter...
— Generate Javadoc _ _
v 5g Dependenc Web Service...
> @ Javace-a Run & Entity Class...
> @ actrvatic Deb " . I
:] ebug g5 Entity Classes from Database...
> javax.ms |
+ Eg JavaDepen Reload [JSF Pages from Entity Classes...
> B oK 15 Profile @ Web Service Client... |
'}h & J:“ae'?'a Execute Java Shell &Y RESTful Web Services from Database...
- .qg&zroject File: Test Alt+FB | &) Session Bean... b
pom.xm _ y I
nb-conf Run Selenium Tests Message-Driven Bean... 1
Set Confiauration > T3 0G| VK aaffa

Select Persistence Unit

The ‘New file’ dialog pops up

Select ‘Category’ -> ‘Persistence’ and then
‘FileTypes:’ -> ‘Persistence Unit’

Click on ‘Next’

Persistence Unit properties
N

71 You should give the PU (Persistence Unit) a simple name

1 Then for the Data Source, select the new JDBC Resource you just created

7 And accept the other default settings

Steps Provider and Database
1. Choose File Type Persistence Unit Mame: | com.mycompany_weekd_war_1.0-SNAPSHOTPU |
2. Provider and Database
Specify the persistence provider and database for entity classes.
Persistence Provider EclipseLink (JPA 2.1)(default) v |
Data Source: | jdbc/mysqldbl | w |
Use lava Transaction jgva:comp/DefaultDataSource
Jdbeo/__default

Table Generation Strate

Jdbc/__TimerPool

MNew Data Source...

< Back Next > Finish | Cancel || Help

Persistence Unit file
-~

1 NetBeans will create a file called ‘persistence.xml’ which contains the information
you have entered

7 You shouldn’t have to change anything in it for now, so just close it

Projects X Files Services _ @ CreateEmployeejava X [P persistencexml X
T com.mycompany.weekd.servlets
T i i General: v
liﬁ_—l CreateEmployee java Design Source History D
& .
l___'l DeleteEmployee.java L|:_| General:
& FindEmployee.java
& GetEmployees.java
E‘ JPQLQueries java Persistence Unit Name: MyPU
& . .
&) SalariesAbove java Persistence Provider: Eclipselink (JPA 2.1)(default)
[0 Test Packages
G Other Sources Data Source: jdbc/mysqldb
4 src/main/resources
EE] META-INF Use Java Transaction APls
EY persistence.xml
g Dependencies Table Generation Strategy: (®) Create Drop and Create None
@ jakarta.persistence-2.2.3 jar
javaee-api-8.0 jar Validation Strategy: (®) Auto Callback None
ﬁ] mysql-connector-java-8.0.30 jar

@ org.eclipse.persistence.antlr-2.7.10 jar

JPA overview

Bridging the gap between object-oriented and relational
models : ORM (Object-Relational Mapping)

Used to persist our object data in relational form

Generally 1:1 mapping is not a problem, although you may
have to map parts of a Java object to different columns, e.g.

EMP
Employee PK |ID
id:int NAME
name: String START_DAY
startDate: Date START _MONTH
salary: long START_YEAR
SALARY

)ava DB

Relations are where it get’s tricky
—

1 There can be multiple scenarios for mapping classes to tables or vice-versa

1 We may have to introduce PK’s or associate classes at either end

(A)
EMFP ADDRESS
PK |ID PK | ID
NAME HO----=---= OH STREET
START_DATE CITY
SALARY STATE
FK1 | ADDRESS_ID P
Employee Address
id: int street: String (B)
name: String »| city: String ADDRESS
startDate: Date 0.1 | state: String EMP PK | 1D
salary: lon zip: Strin —
ary-ong b J PK D IV ot STREET
NAME CITY
START DATE STATE
SALARY 7P
FK1 | EMP_ID
(C)
ADDRESS
EMP
EMP_ADDRESS
java P ID PKFKI | ADDRESS_ID LRE
NAME * Ot prrk2 | EMPID 4 t gT“EH
START_DATE sgm
SALARY P

Inheritance also needs handling

01 Ais the simplest scenario, but queries are separate for emp types

o1 B is efficient but not normalised, and mapping is more complicated

1 Cis the likely DB design choice, but requires more complicated classes, queries and

additional association class

Employee

id: int
name: String
startDate: Date

-~

PariTimeEmployee

hourlyRate: float

FullTimeEmployee

FULL_TIME_EMP

PK

NAME
START_DATE
SALARY

(A)

PART_TIME_EMP

PK | ID

NAME
START_DATE
RATE

(B)

EMP

PK

NAME
START_DATE
SALARY
RATE

TYPE

(C)

salary: long

FULL TIME_EMP

EMP

PK,FK1

PK

PART_TIME_EMP

SALARY

NAME
START_DATE
TYPE

H+——CH PKFK1

o

RATE

Classes or Tables first

You will generally have to deal with both situations
Applications for which you generate a new DB schema based on the classes
Applications which access existing database (schemas) and where you have to
decide how to manage the ORM
JPA supports (on the Java side) all of the mappings you would expect, e.g.
One-to-one
One-to-many
Many-to-one
Many-to-many
These mappings (and other aspects of the ORM) are defined on the Java
side using annotations, e.g.
@Entity
@Table
@OneToMany

(@Entity

An entity (from the JPA perspective at least) is an object

Is persistable
Is unique (must have a primary key / unique id)
Transactional (can perform create, update, delete)

Granularity (not primitive types)

Basic requirements to transform Java class into entity
No-argument constructor

Annotation — at a minimum we need:

@Entity, @Id
Generally entities don’t have to be serialisable, but keys / composite key classes
do

Employee entity class
—

Identify the class as a JPA entity

@Entity
@Table(name = "Employee™) Specify which table to map to
public class Employee implements Serializable
{ Serializable not strictly speaking necessary but no
- harm
a1d This is the PK

@Column(name=""1d"")
private iInt empid;

@Column(name = "name") @Column : Can specify @Entity and @14
which columns to map
to — obviously types

@Column(name = "salary') must be compatible

Are the minimum
requirements for JPA to
be able to persist objects

private String name;

private long salary;

public Employee()

{ Empty constructor
by
public Employee(int empid, String name, long salary)
Also provide other
{ constructor(s)
this.empid = empid; PLUS getters and setters
this.name = name; mandatory

this.salary = salary;

JPA Entity Manager

We need an entity manager (em), which implements the JPA

The entity manager is the interface by which we interact with the Persistence Context (basically a
cache within which entities and transactions are managed)

The em is used to access the db and run all queries

Obijects are managed by the em
An Entity Manager Factor (emf) interface is used to provide an em, e.g.

EntityManagerFactory emf=Persistence.createEntityManagerFactory(PUame");

Where PuName is the name of a persistence unit (defined in Persistence.xml)

Rather than create the emf and em ourselves, though, we can use Context

Dependency Injection, where the application container provides and manages the
em

This just requires adding these lines to the class where you want to use the em:
@PersistenceContext(unitName = "MyPU")

private EntityManager em;

Benefits of container managed entity

manager
]

7 Don’t need to open and close the em / emf ourselves

01 It provides container-managed transactions (which can span
different objects with the application)

A simple example

Look at the GetEmployees.java servlet in the sample code

owebServlet(name = "GetEmployees™, urlPatterns = {"/GetEmployees”})

public class GetEmployees extends HttpServiet
{

Use 3 container-managed

@PersistenceContext(unitName = "MyPU") entity manader

private EntityManager em;

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, I0Exception

{

List<Employee> employees = new ArrayList<>();

This is a JPA Query, written in
Query g = em.createQuery(''select e from Employee e"); JPQL
employees = g.getResultList();

HttpSession session = request.getSession();
session.setAttribute('employees', employees);
RequestDispatcher dispatcher =
request.getRequestDispatcher('displayEmployees. jsp™);
dispatcher.forward(request, response);
I

Inserting an entity

Look at code in CreateEmployee.java servlet

Some of the more important lines:

@PersistenceContext(unitName = "MyPU™) Using a container managed
persistence context

private EntityManager em;

@Resource

n . ; Using a container managed
private UserTransaction userTransaction; : - :

Employee el = new Employee(id, name, (long) salary);
Begin a transaction

userTransaction.begin();
em.persist(el); Save entity to database
em.flush(Q): Make sure changes in the persistence context are saved to the DB

userTransaction.commit(); Commit the transaction

Running a query

Just some selected lines from servlet SalariesAbove.java

@PersistenceContext(unitName = "MyPU")

private EntityManager em;

String sthreshold = request.getParameter(''threshold");
List<Employee> employees = new ArrayList<>();
Query g = em.createQuery(''select e from Employee e where

e.salary > " + sthreshold); Create a Query

employees = g.getResultList(); Run query and get resultset

find

Used to find an entity given it’s primary key

Sample lines from FindEmployee.java

@PersistenceContext(unitName = ""MyPU™)
private EntityManager em;

request.getParameter('id”);
nteger.parselnt(id);

Employee e = em.find(Employee.class, 11d);

remove

Like create, update and delete type queries, this must be in a transaction

Select lines from DeleteEmployee.java:
@PersistenceContext(unitName = "MyPU™)

private EntityManager em;
@Resource

private UserTransaction userTransaction;

String sid = request.getParameter(*id™);

int 11d = Integer.parselnt(sid);

userTransaction.begin(Q); Must (find) bring entity into the

persistence context first - i.e. it is then

Employee e = em.find(Employee.class, 11d); S

em.remove(e);
em.flush(Q);

userTransaction.commit();

Querying the Persistence Storage

The Java Persistence query language (JPQL) allows you to perform both
dynamic and static queries on the entities in your application.

The language is like SQL in many ways. However, it does have benefits over
SQL. The Java Persistence query language operates over the entities and
their relationships rather than over the actual relational database schema.
This makes queries portable regardless of the underlying database.

Queries come in three different flavours: select, update, and delete.

A select query returns a set of entities from your database. The set usually has
specific constraints that limit the result set.

An update query changes one or more properties of an existing entity or set of
entities.

A delete statement removes one or more entities from the database.

Select

You have several options to create a query. The most basic way is to simply ask the
entity manager for one. The select query applies your specific criteria when it
retrieves entities.

Query gl = em.createQuery("select e from Employee e where e.name = 'mary");

you may want to programmatically set the parameters of the where clause. You can
do that by calling the query object's setParameter method when it has parameterized
elements. The following code creates the same query and prints the results, but it
allows you to dynamically set the name:

Query g2 = em.createQuery("select e from Employee e where e.name = :name");
g2.setParameter("name", "mary");

Employee e2 = (Employee) g2.getSingleResult();

Update
I

-1 One you've retrieved a managed entity, either by querying the database with the
query language or by using the find method, updating the entity is as easy as
modifying its properties and committing the open transaction.

More sample queries
B

1 From JPQLQueries.java

1 No transaction needed for straight query without change to DB

11 Using parameterised elements allows us to easily insert data

values into queries

71 To save changes to an entity which is already ‘managed’ (has
already been retrieve / created using the entity manager) use

the merge() method

Named queries are different from dynamic queries in that they are
static and unchangeable.

In addition to their static nature, which does not allow the flexibility of
a dynamic query, named queries can be more efficient to execute
because the persistence provider can translate the JPQL string to SQL
once the application starts, rather than every time the query is
executed.

Named queries are static queries expressed in metadata inside either a
@NamedQuery annotation or the XML equivalent.

To define these reusable queries, annotate an entity with the

@NamedQuery annotation, which takes two elements: the name of the
query and its content.

The Customer Entity Defining Named Queries
@Entity

@NamedQueries({

@NamedQuery(name = "findAll", query="select ¢ from Customer c"),
@NamedQuery(name = "findVincent", query="select ¢ from Customer ¢ where c.firstName = "Vincent™),
@NamedQuery(name = "tindWithParam", query="select ¢ from Customer ¢ where c.firstName = :fname")
1)
public class Customer {
@1d @GeneratedValue
private Long id;
private String firstName;
private String lastName;
private Integer age;
private String email;
@OmneToOne
@JoinColumn(name = "address_fk")
private Address address;
/[Constructors, getters, setters

The way to execute these named queries resembles the way dynamic
queries are used.

The EntityManager.createNamedQuery() method is invoked and
passed to the query name defined by the annotations.

This method returns a Query that can be used to set parameters, the
max results, fetch modes, and so on.

To execute named queries:

Query query = em.createNamedQuery("findAll");
List<Customer> customers = query.getResultList();

Query query = em.createNamedQuery("findWithParam");
query.setParameter("fname", "Vincent");
query.setMaxResults(3);

List<Customer> customers = query.getResultList();

Entity Relationship mapping
B

-1 Example where | have a table artworks, with a
single foreign key, referencing the table artists

- L e e B W e

B8 artists ’ @ artworks
@ artistid E@ artworkid
@ surname Eﬁ] category
@ first_name Eﬁ] title
@ gender Eﬁ] description
@ birthyear @ medium
@ nationality @ image
@ emailaddress Eﬁ] notes
[l websiteaddress Efl] valuation
@ biography Al artistid

photograph

JPA mapping on the artists side

Need a Collection to hold the artworks

Specifying the name of the Java property used to
reference this Artist object on the other side of the
relationship in Artworks

@GHETGMEHF {mappEdEF — "Ell't'_Et'_-:L"]

private Collection<Artworks>» artworksCollection;

JPA mapping on the artworks side
—

1 Just need to reference a single Artist object

1 Specifying the name of the property and column to
map to in the Artist object

@JoinColumn (name = "artistid"”, referencedColumnName = "artistid")
@ManyToOne

private Artists artistid;

Autogenerate classes using
NetBeans

MNew) | 1 Folder...

B3 Entity Classes from Database...

[@ HTAR

Steps Database Tables

Choose File Type
Database Tables
Entity Classes Available Tables: Selected Tables:
Mapping Options

Data Source: | jdbc/mysql

| Add > '

| < Remove

| Add All >> |

| << Remove All

Include Related Tables

j?; o Select the table source.

<Back || Next> || Fnish || Cancel | Help

Locate Driver

Driver:

v

Driver File(s):

<Missing Driver Files=>

[aee |

| Remove |

o Driver File is missing. Download from http://dev.mysal.com/downloads/connector/j/. Use preferred mys
gl-connector-java-8.0.17 jar.

| <Back || Next> || Enish || Cancel || Help

Locate Driver

Driver: | MySQL (Connector/] driver) (1)

Driver File(s): = C:\Program Files\NetBeans-18\mysqgl-connector-java-8.0.30 jar

<Back | Next> | Enish | Cancel || Help

1 Need to fill in all these correctly

Customize Connection

Driver Name: [MySQL (Connector/J driver) on MySQL (Connector/J driver) (1)

Host: ‘ danub.it.nuigalway.ie ‘ Eort:‘ 3306

Database: | mydb1860

User Name: ‘ mydb1860mo

Remember password

| Connection Properties | | Test Connection

JDBC URL: ‘ nysgl://danub.it.nuigalway.ie:3306/mydb18607zeroDateTimeBehavior=CONVERT_TO_NULL ‘

o Connection Succeeded.

<Back || Next> | Enish | Cancel || Help

1 Pick schema if there is one

Choose Database Schema

For each database connection, the Services window only displays objects from one database schema.
Select the schema of the tables to be displayed.

Select schema: | <No schema>

<Back || Next> || Enish | Cancel | Help

11 Accept default here

Choose name for connection

Override the default name for the connection. The name should be descriptive about the connection
you are creating.

Input connection name:

mo on Default sc

. <Back | Nex- [Ensh | cancel | Help

Steps

Database Tables

Choose File Type
Database Tables
Entity Classes

Mapping Options

Data Source: jdbc/mysqgl

Available Tables:

BOOK
CUSTOMER
Employee
SEQUENCE
artists (A

customer
customer_address
customer_order
customers

emp

Selected Tables:

Add =

< Remove

Add All ==

Any

<< Remove All

Include Related Tables

artists is already mapped to the com.mycompany.week4. Artists entity class.
Update and recreate options are available for corresponding entity.

o Select at least one table.

< Back

MNext =

fnsh | Cancel || Help

Database Tables

Choose File Type
Database Tables
Entity Classes

Mapping Optians

Data Source: | jdbc/mysqgl

Available Tables:

BOOK
CUSTOMER
Employee
SEQUENCE
category
customer
customer_address
customer_order
customers

emp
emp_address
employees
image (no primary key)

Selected Tables:

Add =

< Remove

Add All »=

<< Remove All

Any

artists (class Artists)
artworks (class Artworks)

Include Related Tables

<Back | Next> | Enish || Cancel || Help

Entity Classes

Choose File Type Specify the names and the location of the entity classes.
Database Tables

Entity Classes Class Names: Database Table
Mapping Options

Class Mame Generation Type
artists Artists Update
artworks Artworks Update

Project: ‘ week4-1.0-SNAPSHOT

Location: [Source Packages

Package: l com.mycompany.weekd

Generate Named Query Annotations for Persistent Fields
D Generate JAXE Annotations

|| Generate MappedSuperclasses instead of Entities
Useful when entity classes are supposed to represent parameters or return values for

< Back || MNext > || FEinish | | Cancel | | Help

Steps

Mapping Options

Choose File Type
Database Tables
Entity Classes
Mapping Options

Specify the default mapping options.

Association Fetch: | default

Collection Type: [Java.util.Collection

|| Fully Qualified Database Table Names
[| Attributes for Regenerating Tables
Use Column Names in Relationships

[] Use Defaults if Possible

| | Generate Fields for Unresolved Relationships

< Back | | Next > | |

Finish

Some other examples

o Many to many
Student 2 @ < Course

o Since both sides should be able to reference the other, we need to create a
separate table to hold the foreign keys

student cou TSE_"F:E
PK id < PK,FK1 | student _id course
PK,FK2 | course_id = PK id

o Insuch a join table, the combination of the foreign keys will be its composite
primary key

https://www.baeldung.com/jpa-many-to-many

@Entity class Student
{

@Id

Long id;

@ManyToMany

@JoinTable (name = "course like",
joinColumns = @JoinColumn (name =
"student id"), inverseJoinColumns
= @JoinColumn (name = "course id"))
Set<Course> likedCourses;

// additional properties
// standard constructors, getters,
and setters

J

@Entity class Course
{

@Id
Long id;

@ManyToMany (mappedBy =

"likedCourses")
Set<{Student> likes;

// additional properties
// standard constructors, getters,
and setters

J

Using a composite key

o when the relationship itself has an attribute

Student

= Need another table

student

PK

o>

PK,FK1

A

PK,FK2

Course
course_rating
student_id course
course_id = PK id

rating

1 Need to create a composite (primary) key class

@Embeddable class CourseRatingKey implements Serializable

{

@Column (name = "student id")
Long studentld;

@Column (name = "course id")
Long courseld;

// standard constructors, getters, and setters
// hashcode and equals implementation

Then the entity class itself
N

@Entity class CourseRating

{
@EmbeddedId

CourseRatingKey id;

@ManyToOne

@MapsId("studentId")

@JoinColumn (name = "student id")
Student student;

@ManyToOne

@MapsId("courseld")

@JoinColumn (name = "course id")
Course course;

int rating;

// standard constructors, getters, and setters

@Entity class Student

{

@Entity class Course
@1d {

Long id; ald
. . Long id;
@OneToMany (mappedBy = "student")

Set{CourseRating> ratings; @neToMany (mappedBy = "course")

Set<CourseRating> ratings;

// additional properties
// standard constructors, getters,

and setters

J

// additional properties
// standard constructors, getters,
and setters

J

	CT5106
	Connecting to DB’s
	You need a MySQL database
	1. Connecting IDE (NetBeans) to DB (MySQL)
	Download MySQL JDBC connector
	Start with connecting to MySQL
	Set connection properties and test connection
	Choose database schema
	Give your connection a name
	See what’s in your database
	Run an SQL query
	Write and run query
	Query results
	2. Connecting application server (Payara) to DB (MySQL)
	Add library in asadmin
	Open Payara admin tool
	Create new JDBC connection pool
	…next
	…next
	If you are successful
	Now create a JDBC resource which uses that connection pool
	Set up the new JDBC Resource
	Next Create Persistence Unit
	Select Persistence Unit
	Persistence Unit properties
	Persistence Unit file
	JPA overview
	Relations are where it get’s tricky
	Inheritance also needs handling
	Classes or Tables first
	@Entity
	Employee entity class
	JPA Entity Manager
	Benefits of container managed entity manager
	A simple example
	Inserting an entity
	Running a query
	find
	remove
	Querying the Persistence Storage
	Select
	Update
	More sample queries
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Entity Relationship mapping
	JPA mapping on the artists side
	JPA mapping on the artworks side
	Autogenerate classes using NetBeans
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Some other examples
	Slide Number 64
	Using a composite key
	Slide Number 66
	Then the entity class itself
	Slide Number 68

