
AS01 Setup musicFinder 🎸 1

AS01: Setup musicFinder 🎸
Version Control, CI/CD Pipeline, Dockerisation, and 
Basic Application Setup

Introduction:
This assignment will introduce you to the essential components of modern 
software engineering: version control, continuous integration/continuous 
delivery CI/CD, Dockerization, and basic application setup. The goal is to 
familiarize you with tools and practices such as Git, GitHub, GitHub Actions, 
Docker, and Spring Boot.

By the end of this assignment, you will have:

Set up and used Git and GitHub for version control and collaboration.

Implemented a basic CI/CD pipeline to automate the build process.

Containerised a Spring Boot application using Docker.

Successfully run a basic Spring Boot application locally.

Task 1.1 Set Up Git and GitHub Repository

Goal:
The objective of this task is to introduce you to version control and 
collaborative development using Git and GitHub. You will create a 
repository, manage branches, commits, and pull requests, and understand 
how teams collaborate on software projects.

Instructions:
� Fork and Clone the Repository:

Fork the musicFinder repository from GitHub.

Clone it to your local machine:

git clone https://<the clone url after you accept 

the invite>



AS01 Setup musicFinder 🎸 2

cd musicFinder

� Set Up Git Locally:

Ensure Git is installed and configured with your username and email:

git config --global user.name "Your Name"

git config --global user.email "your.email@exampl

e.com"

� Branching and Commit:

Create a new branch for your changes:

git checkout -b feature/setup

Add some changes (like updating the README or adding a new file).

Stage, commit, and push your changes:

git add .

git commit -m "Added initial setup"

git push origin feature/setup

� Collaboration:

Open a pull request PR on GitHub to merge your branch into the 
main branch.

After review, merge the PR.



AS01 Setup musicFinder 🎸 3

💡 Submission Instructions:
Ensure youʼve created a GitHub repository for the project.

Make sure the repository has:

At least one branch other than main .

A clear commit history showing multiple meaningful 
commits.

At least one pull request PR demonstrating collaborative 
development.

What the GitHub Action will check:

The presence of branches.

The number of commits.

The existence of a merged pull request.

What you need to do:

Push your work to GitHub and ensure the action runs correctly.

Tips:
Use branches for isolated development. This allows you to make 
changes without affecting the main codebase.

Always pull the latest changes from the main branch before creating 
new branches.

Helpful Link:
Git Basics: Branching and Merging

Task 1.2 Create a Basic CI/CD Pipeline Using 
GitHub Actions

Goal:
The goal of this task is to introduce you to Continuous Integration CI using 
GitHub Actions. You'll create a pipeline that automatically builds your 

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging


AS01 Setup musicFinder 🎸 4

project whenever you push code to the repository.

Instructions:
� Create a Workflow Directory:

Inside your repository, create a directory for GitHub Actions 
workflows:

mkdir -p .github/workflows

� Define the CI/CD Workflow:

Create a workflow file that automates the build process whenever 
you push changes or open a pull request.

� Trigger the Pipeline:

Ensure the pipeline is triggered on every push to the repository.

💡 Submission Instructions:
Make sure you have created a CI/CD pipeline using GitHub 
Actions.

The pipeline should:

Build the application on push or pull requests.

What the GitHub Action will check:

The existence of a valid .github/workflows/ci.yml  file.

Whether the CI/CD pipeline runs and completes successfully 
on push events.

What you need to do:

Ensure that the pipeline runs when you push your work to the 
repository.

Tips:
Your pipeline should focus on building the project using Maven to verify 
that the build is successful.



AS01 Setup musicFinder 🎸 5

Check the Actions tab in your GitHub repository to see the results of 
your CI pipeline.

Helpful Link:
GitHub Actions: Getting Started with CI

Task 1.3 Docker Containerisation

Goal:
This task introduces you to Docker, a tool that helps package applications 
into containers. You will write a Dockerfile to package the musicFinder 
application and run it inside a Docker container.

Instructions:
� Write a Dockerfile:

Write a Dockerfile to define the environment and how the 
musicFinder application should run.

� Build the Docker Image:

Build the Docker image based on your Dockerfile.

� Run the Docker Container:

Run the application inside the Docker container and ensure that it is 
accessible through localhost .

https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-java-with-maven


AS01 Setup musicFinder 🎸 6

💡 Submission Instructions:
Ensure that a Dockerfile is present in your repository.

The Dockerfile should:

Successfully build a Docker image for the project.

Allow the application to run in a container and be 
accessible on port 8080.

What the GitHub Action will check:

That the Dockerfile builds successfully.

That the Docker container runs and is accessible on the 
required port.

What you need to do:

Ensure your Dockerfile is complete and functional, and that the 
action runs when you push.

Tips:
Pay attention to port mapping when running the Docker container ( p  
flag).

Test your Dockerfile by manually running the app locally before building 
the container.

Helpful Link:
Dockerfile Best Practices

Beginner's Guide to Docker

Task 1.4 Basic Application Setup

Goal:
The goal is to ensure that the musicFinder application is working correctly 
by running it locally using Spring Boot and testing its API functionality.

Instructions:

https://docker-curriculum.com/


AS01 Setup musicFinder 🎸 7

� Run the Application:

Use Maven to run the musicFinder application locally:

mvn spring-boot:run

� Test the API:

Access the API to fetch song lyrics using the provided endpoint:

http://localhost:8080/song/{artist}/{name}

� Verify the Functionality:

Input a real artist and song title to test if the application fetches the 
correct lyrics.

💡 Submission Instructions:
The musicFinder application must run locally, and the API 
must respond correctly when queried.

You should:

Ensure that the application builds and runs using Maven.

Test the /song/{artist}/{name}  API endpoint to ensure it 
returns valid data.

What the GitHub Action will check:

That the application builds successfully using Maven.

That the API endpoint responds with valid data when queried.

What you need to do:

Ensure the application runs and responds correctly when the 
GitHub Action is triggered by your push.

Tips:
If the application fails to run, check the logs for detailed error messages.



AS01 Setup musicFinder 🎸 8

Make sure the application is using the correct version of Java and 
Maven.

Helpful Link:
Spring Boot Documentation

Disclaimer: 
Please note that this assignment will be evaluated using GitHub Actions, an 
automated tool that runs scripts to validate your submissions. The following 
points outline how the evaluation will work:

� Automated Testing:

Each time you push your code to GitHub, GitHub Actions will 
automatically validate your work based on the requirements for each 
task (e.g., CI/CD pipeline setup, Docker containerization, application 
functionality).

It is your responsibility to ensure that the automated tests pass before 
the assignment deadline.

� No Manual Submission:

You do not need to manually submit screenshots, videos, or reports. 
The automated pipeline will check all the required criteria.

You must regularly push your work to GitHub to trigger the validation 
process.

� Monitoring Your Progress:

You can view the status of your submission by visiting the Actions tab 
in your GitHub repository. The pipeline will show whether each task 
passed or failed the checks.

If any checks fail, you should review the error logs, fix the issues, and 
push the changes to re-trigger the tests.

� Final Evaluation:

Your grade will be based on the successful completion of the tasks as 
verified by the GitHub Actions workflows.

Be aware that the automated pipeline will strictly follow the assignment 
criteria. Ensure your repository, files, and configurations meet the 

https://spring.io/projects/spring-boot


AS01 Setup musicFinder 🎸 9

requirements.

� Deadline and Pushes:

Ensure that all your work is committed and pushed before the 
submission deadline. The last successful build and test before the 
deadline will be considered for grading.

⚠  Important Note: 

💡 Failure to push your work or fix failed checks before the deadline may 
result in an incomplete submission and impact your grade. Regularly 
check the status of your pipeline and address any issues promptly.


