
CT5106

JPA & EJB’s

Entities

 Java Persistence API requires that you identify the
classes that you will store in a database.

 The API uses the term entity to define classes that it will
map to a relational database. You identify persistable
entities and define their relationships using annotations.

 The Java compiler recognizes and uses annotations to
save your work. Using annotations, the compiler can
generate additional classes for you and perform
compile time error checking.

2

Table Name Defaults

 Every entity has a name. By default, the entity name is the entity's class
name.

 The Entity annotation has a name attribute that allows you to explicitly
specify a name.

 You will use the entity name in queries

3

Column name defaults

 By default, persistence provider implementations use an entity's field or property
names as the column names in the entity table

 You can, however, override the default using the Column annotation and its name
element. If you prefer SURNAME instead of LASTNAME, you can annotate the
lastName property like this:

4

Entity Declarations

 Entity classes become tables in a relational database. Entity instances map
into rows in one or more tables.

 The following code sample begins the definition of a baseball Player class.
Annotations in your code begin with the @ symbol.

 The Java Persistence API implementation can create a table for the Player
entity in your relational database.

 By default, the table name corresponds to the unqualified class name. In this
case, a PLAYER table will represent Player entities.

5

@Entity
public class Player implements Serializable
{
 ……….

Primary Keys

 All entities must have a primary key. Keys can be a single
unique field or a combination of fields.

 Identify single field keys with the Id annotation.
 Key fields must have one of the following types:

 primitive type (like int, long, etc)

 wrappers for primitive types (Integer, Long, etc)

 java.lang.String

 java.util.Date

 java.sql.Date

6

The reference implementation will generate a key automatically if you
add the @GeneratedValue annotation to the primary key:

Sequencing

 In JPA the object id is defined through the @Id annotation and should
correspond to the primary key of the object's table.

 An object id can either be a natural id (e.g. email, name, PRSI) or a
generated id.
 The main issue with natural ids is that almost anything can change eventually. Natural ids can

also make querying, foreign keys and indexing less efficient in the database.

 A sequence number in JPA is a sequential id generated by the JPA
implementation and automatically assigned to new objects.
 The benefits of using sequence numbers are that they are guaranteed to be unique, allow all

other data of the object to change, are efficient values for querying and indexes, and can
be efficiently assigned.

 In JPA an @Id can be easily assigned a generated sequence number through
the @GeneratedValue annotation

7

 (unless you just want to generate them yourself – then just don’t use
@GeneratedValue)

https://java.sun.com/javaee/5/docs/api/javax/persistence/Id.html

@GeneratedValue(strategy = GenerationType.IDENTITY)

 popular method
 Not necessarily supported by all databases

 The database controls the ID generation, JPA does not act on

the id at all. Thus in order to retrieve the id from the databse
an entity needs to be persisted first, and after the transaction
commits, a query is executed by the entity manager to retrieve
the generated id for the specific entity.

MySQL Identity column use

SQL Server Identity use

Category entity uses IDENTITY

GenerationType.SEQUENCE

 Used with sequence generator (created in database based on
annotation, e.g.:

 @SequenceGenerator(name = Car.CAR_SEQUENCE_NAME,
sequenceName = Car.CAR_SEQUENCE_NAME, initialValue = 10,
allocationSize = 53)

 @GeneratedValue(strategy = GenerationType.SEQUENCE,
generator = CAR_SEQUENCE_NAME)

 allocationSize = # of id’s JPA keeps in a cache to used

 Not all databases support sequences – MySQL doesn’t for
example – closest thing in MySQL is AUTO INCREMENT (you can
set the increment value)

Create sequence in SQL Server

Use sequence in SQL Server

Use sequence in SQL Server

GenerationType.TABLE

 A table is used to store the id’s e.g.

GenerationType.AUTO

 With the Auto approach any strategy can be used
by JPA.

 JPA will choose.
 Picks the strategy that is preferred by the used database platform.

 The preferred strategies are IDENTITY for MySQL, SQLite and MsSQL (SQL
Server) and SEQUENCE for Oracle and PostgreSQL.

Using Table

 EclipseLink (JPA provider) apparently prefers the
use of Table when Auto is chosen

 In this case, the sequence table would need to be
generated by the JPA provider

 This means that you would need to run the
application in ‘create tables’ mode at least once

@Basic(optional = false)

 JPA support various Java data types as persistable fields of

an entity, often known as the basic types.
 A basic type maps directly to a column in the

database. These include Java primitives and their wrapper
classes, String, java.math.BigInteger and java.math.BigDecimal,
and various available date-time classes

 false => cannot be null

@Transient
20

Always explicitly mark properties or fields that should not be persisted.
Use the annotation Transient for marking transient properties.

Cascading changes to related entities

 In a JPA entity relationship, the CascadeType. ALL annotation
specifies that all operations (persist, merge, remove, refresh,
and detach) that are performed on the parent entity should be
cascaded to the child entity

Fetching related entities
 Dictates when you load related entities

 E.g. fetch productCollection when you load Category (EAGER) , or only
when you call getProductCollection() (LAZY)

@Entity
public class University {
 @Id
 private String id;
 private String name;
 private String address;
 @OneToMany(fetch = FetchType.EAGER)
 private List<Student> students;
 // etc.
}

@Entity
public class University {
 @Id
 private String id;
 private String name;
 private String address;
 @OneToMany(fetch = LAZY)
 private List<Student> students;
 // etc.
}

example – online shop –
AffableBean tutorial

This is a MySQL database created using the following SQL:
1. createSchema.sql
2. createData.sql

https://netbeans.apache.org/kb/docs/javaee/ecommerce/intro.html

Data Model

 Basic set of entities needed

 Note the need for the ordered-
product entity

 Serves the same purpose as a
line in an order

 Represents the many-to-many
relationship between product
and customer_order

 Note it has a compound
primary key

 Note the multiplicity of the
relationships

 Note also the direction(s) of
the relationships

 Note the need for foreign keys

customer table

 Primary key ‘id’

customer_order table

 Foreign key refers to PK of customer

category table

 Only used by product

Category entity

 Named queries pre-defined, and can be run by
entity manager on request

Database maintains an auto-incremented
column for the id values, and this is inserted
into the entity by the entity manager when
persisted

Makes relationship readable in both directions

Cascading dangerous – deleting parent can
delete all children

CascadeType.ALL: all operations (persist,
remove, merge,..) are propagated to the
children – i.e. remove Category => remove
Product

product

Product

 Many Products to one Category

 @JoinColumn
 Defines the physical mapping on the owning side of the one-to-many relationship (here

with category) which is usually defined on the many side

 Name: the column name in this (Product) table which links to the
‘referencedColumName’ in the referenced table (Category)

 One Product to many OrderProducts

 mappedBy tells us the name of the field on the owning side of the
OneToMany relationships (OrderedProduct) which field is used to
reference the Product

Ordered_product

OrderedProduct

 Association table between product and customer order
 @EmbeddedId

 Persists the composite PK field as the ID of the object
 Can’t use Id for a composite PK class

Customer entity

 One customer mapped to many customer orders
 MappedBy: the field at the other end of the relationship which

references this (customer) end
 So each customer object has a collection of the related

customer order objects

Category class

 Named Queries
 Fixed queries

 Mapped to specific class

 Can include parameters

 See servlets:
 getCategories
 getProductsByCategoryName

@NamedQueries({

 @NamedQuery(name = "Category.findAll", query = "SELECT c FROM Category c"),

 @NamedQuery(name = "Category.findById", query = "SELECT c FROM Category c WHERE c.id = :id"),

 @NamedQuery(name = "Category.findByName", query = "SELECT c FROM Category c WHERE c.name =

:name")})

Use of named query

 In GetCategories servlet

 In GetProductsByCategoryName servlet

 private static final long serialVersionUID = 1L;
 The serialVersionUID is a universal version identifier for

a Serializable class. Deserialization uses this number to
ensure that a loaded class corresponds exactly to a
serialized object. If no match is found, then an
InvalidClassException is thrown.

Many-to-One

 OrderedProduct has a many-to-one relationship
with Product and with CustomerOrder

 ‘product_id’ is the foreign key of Product in the
OrderedProduct table

 ‘id’ is the referenced column name in the related table
(Product)

One-to-Many

 Use the attribute mappedBy so that the persistence engine knows how to
join OrderedProduct and Product

 The mappedBy attribute exists on the other side of the relationship, which is
the Product.

 In this example, the mappedBy attribute shows that an OrderedProduct
instance’s ‘product’ property maps to the Product instance.

 This means that the Products primary key will be a foreign key in the
OrderedProduct table.

 In the actual Product object, though, we also have a Collection of
OrderedProduct objects that it is linked to

AffableBean: e-commerce tutorial

 Based on the NetBeans e-commerce tutorial
 Basic flow is

resources

 AffableBean.zip
 NetBeans project
 Contains a setup directory with database set files

Enterprise Beans

 The components that carry out the business logic / processes
 Use interfaces to make that functionality available to clients

(internal and external to the application)
 They are managed by a container

 Three kinds:
 Session Beans
 Entity Beans
 Message-driven Beans

Session Beans

 Business logic that can be invoked by a client
 Lifecycle / state managed by EJB container, session

beans can be:
 Stateless
 Shared by multiple clients
 The EJB container can pool them to provide to clients

 Stateful
 Client-specific instances

 Singleton
One instance per application / shared across all clients

Examples of session beans

 A session bean in a human resources application that creates a
new employee and assigns the employee to a particular
department

 A session bean in an expense reporting application that
creates a new expense report

 A session bean in an order entry application that creates a
new order for a particular customer

 A session bean that manages the contents of a shopping cart in
an e-commerce application (would be client-specific, so should
be @stateful)

Message-driven Beans

 Allows clients to process messages asynchronously

 Usually a JMS listener – receives JMS messages
 Mapped to a JMS queue

 Event-driven – when message arrives, the container calls the beans
onMessage method to process the message

MVC architecture using session beans

 We need to create the entity beans, and also session beans, which will act
as a façade, hiding the details of using JPA to manipulated (CRUD) the
entity beans

 Session beans can also contain code (business logic) for the application

Java EE containers

 The entity classes are managed by the persistence provider
 The session beans are managed by the EJB container
 Views are rendered in JSP pages, which are managed by the

web container.

Entity Manager

 Entities are managed by an EntityManager
 An instance of javax.persistence.EntityManager

 Each EntityManager instance is associated with a persistence
context
 The persistence context is a set of managed entity instances that exist in

a particular data store

 A persistence context defines the scope under which particular entity
instances are created, persisted, and removed

 The EntityManager interface defines the methods that are used
to interact with the persistence context

Entity life cycle

 Each arrow is an entity manager method (except new)
 Each oval shape is an entity state

A detached entity (a.k.a. a detached object) is an object that
has the same ID as an entity in the persistence store but
that is no longer part of a persistence context, e.g. because
the EM which retrieved it was closed, or the object was received
from outside the application

Container-managed Entity Manager

 A Java EE container manages the lifecycle of container-managed entity
managers

 An EntityManager instance’s persistence context is automatically
propagated by the container to all application components that use the
EntityManager instance within a single JTA transaction

 To obtain an EntityManager instance, inject the entity manager into the
application component with the javax.persistence.PersistenceContext
annotation

 ...

 @PersistenceContext

 EntityManager em;

Finding entities using entity manager

 The find method is used to look up entities in the
data store by the entity’s primary key

@PersistenceContext

EntityManager em;

public void enterOrder(int custID, Order newOrder)

{

 Customer cust = em.find(Customer.class, custID);

 cust.getOrders().add(newOrder);

 newOrder.setCustomer(cust);

}

Application-managed Entity Manager

 lifecycle of EntityManager
instances is managed by the
application

 Applications create EntityManager
instances here by using the
createEntityManager method of
javax.persistence.EntityManagerFac
tory

 To obtain an EntityManager
instance, you first must obtain an
EntityManagerFactory instance by
injecting it into the application
component by means of the
javax.persistence.PersistenceUnit
annotation, e.g.

@PersistenceUnit (unitName = “myPU”)
EntityManagerFactory emf;
EntityManager em;
@Resource
UserTransaction utx;
...
em = emf.createEntityManager();
try {
 utx.begin();
 em.persist(SomeEntity);
 em.merge(AnotherEntity);
 em.remove(ThirdEntity);
 utx.commit();
} catch (Exception e) {
 utx.rollback();
}

Adding Session Beans

 In this app, session beans are
used as a façade
 Avoids tight coupling between

clients and business objects

 Cuts down on calls between
client and server

 Abstracts underlying (JPA
primarily) interactions

 Uses the container to manage
the (session bean) life cycle

Choose entity classes

Select location for session beans

NetBeans generates session beans

 Code common to all classes is factored out into
AnstractFacade

 The AbstractFacade class provides a few basic JPA
methods to find entities of the related entity class
 These methods use CriteriaQuery API

JPQL query

 For example a dynamic query such as

Query query = manager.createQuery("SELECT c FROM Car c WHERE c.color = :hexColor");

query.setParameter(“hexColor”, “FF0000”);

query.setMaxResults(100);

return query.getResultList();

Native SQL query

List<Car> cars = (List<Car>)em.createNativeQuery ("SELECT * FROM cars_table", Car.class)

.getResultList();

out.println("Cars:
");

for (Car car : cars)

 {

 out.println(""+ car.getName()+": "+car.getMileage() +"");

}

out.println("");

JPQL vs Criteria queries

 JPQL
 Readable, concise, SQL-like query strings
 Can use named queries defined using annotations in

entity classes

 Criteria queries
 Can be defined in business tier (session beans)
 Used as a Java API, typesafe
 Less readable
 More complex to write, fast to run

CriteriaQuery

 Steps involved:

 Create a CriteriaBuilder object
 You have to use an EntityManager instance

 Create a query object by creating an instance of the CriteriaQuery interface
 This query object's attributes will be modified with the details of the query

 Set the query root
 Call the from method on the CriteriaQuery object

 Specify type of the query result
 Calling the select method of the CriteriaQuery object

 Prepare the query for execution
 Creating a TypedQuery<T> instance, specifying the type of the query result

 Execute the query
 Call the getResultList method on the TypedQuery<T> object

Example
 List<Employee> employees = new ArrayList<>();

// use em to create CriteriaBuilder
CriteriaBuilder cb = em.getCriteriaBuilder();

// create a Query object
CriteriaQuery cq = cb.createQuery();

// set the query root - like the FROM part of a regular query
Root emp = cq.from(Employee.class);

// Specify what the type of the query result will be
cq.select(emp);

// Prepare the query for execution
Query q = em.createQuery(cq);

// Execute the query
employees = q.getResultList();

Example – find all

// Query for a List of data elements.
CriteriaQuery cq = cb.createQuery();
Root e = cq.from(Employee.class);
cq.select(e);
Query query = em.createQuery(cq);
List<Employee> result = query.getResultList();

Query for a List of element arrays

CriteriaQuery cq = cb.createQuery();

Root e = cq.from(Employee.class);

cq.multiselect(e.get("firstName"),employee.get("lastName"
));

Query query = em.createQuery(cq);

List<Object[]> result5 = query.getResultList();

Return user-defined objects

https://www.logicbig.com/tutorials/java-ee-tutorial/jpa/criteria-api-construct.html

CriteriaQuery<EmployeeInfo> query =

criteriaBuilder.createQuery(EmployeeInfo.class);

Root<Employee> employee = query.from(Employee.class);

query.select(criteriaBuilder.construct(EmployeeInfo.class,

employee.get(Employee_.name), employee.get(Employee_.salary)));

List<EmployeeInfo> resultList =

entityManager.createQuery(query).getResultList();

User-defined class needed too

public class EmployeeInfo
{
 private String name;
 private double salary;

 public EmployeeInfo(String name, double salary)
{
 this.name = name; this.salary = salary;
}
 }

 Further information (when needed):
 https://www.logicbig.com/tutorials/java-ee-tutorial/jpa/criteria-

select.html

 https://wiki.eclipse.org/EclipseLink/UserGuide/JPA/Basic_JPA_Develop
ment/Querying/Criteria#Criteria_API

https://www.logicbig.com/tutorials/java-ee-tutorial/jpa/criteria-select.html
https://www.logicbig.com/tutorials/java-ee-tutorial/jpa/criteria-select.html

AffableBean walkthrough

 Points to look at:
 Configuration using web.xml

 Headers and footers
 Context parameters
 Session timeout

 Session Beans using Façade
pattern

 Controller servlet with multiple
URL patterns
 Load on startup
 init method
 Use of view and userPath

 Client-side validation
 In checkout.jsp using jQuery

validate function

 Server-side validation
 Using Validator class

 Language support
 Throughout using <fmt:message
 Resources defined in web.xml

Session Beans as Façade classes

 Uses the AbstractFacade class to implement common operations for Type<T>
where <T> is a JPA entity

 Façade hides complexity of the (JPA) sub-system
 Can use JPA as well if you want to

 Uses generics to provide common operations for all session bean classes
extending AbstractFacade

public void create (T entity) { getEntityManager().persist(entity); }

 public void edit (T entity) { getEntityManager().merge(entity); }

 public void remove (T entity) { getEntityManager().remove(getEntityManager().merge(entity)); }

 public T find (Object id) { return getEntityManager().find(entityClass, id); }

 public List<T> findAll () { javax.persistence.criteria.CriteriaQuery cq =
 getEntityManager().getCriteriaBuilder().createQuery();
 cq.select(cq.from(entityClass));
 return getEntityManager().createQuery(cq).getResultList(); }

Using the façade classes

 Look for example at the ControllerServlet
 @EJB tells container to create an instance of the EJB (CategoryFacade)

 Implementation of the Façade design pattern, which is designed to hide
complex call flows. Here it is largely used as a DAO (Data Access
Object)

@EJB
private CategoryFacade categoryFacade;
…
String categoryId = request.getQueryString();
…
Category selectedCategory = categoryFacade.find(Short.parseShort(categoryId));

Controller Servlet

 Acts as the hub / router for the application
 Maps to a number of URL patterns

 Note use of loadOnStartup
 If this is positive the servlet is loaded when application is started, not on

first time it is called

 This allows the init() method to be used to retrieve the List of Category
objects from the database and set as a session attribute
 The product categories are therefore immediately available to index.jsp

when the user opens the application on the browser

 A number of servlets could implement loadOnStartup – they
will be loaded in order of the integers provided 1,2,…

Application parameters

 In Java EE the web.xml file is used to store static parameters
which are useful in the application

 Data which is common to the whole application (and doesn’t
change frequently if at all) is defined using <context-param>,
while data confined to a particular servlet scope is defined
using <init-param>

 web.xml is also used to store parameters / rules relating to
security constraints, session configuration (e.g. timeout), headers
and footers to be included in specified pages, pages to be
displayed for particular error codes, how to authenticate users
accessing secured resources,..

<context-param>

 A parameter bound to the application
 For example:

 Accessed in the init() method of ControllerServlet:

 <context-param>
 <description>The delivery surcharge applied to all
orders</description>
 <param-name>deliverySurcharge</param-name>
 <param-value>3.00</param-value>
 </context-param>

surcharge =
servletConfig.getServletContext().getInitParameter("deliverySurcharge");

<context-param>


 For example:

 Accessed in index.jsp:

 <context-param>
 <description>The relative path to category images</description>
 <param-name>categoryImagePath</param-name>
 <param-value>img/categories/</param-value>
 </context-param>

${initParam.categoryImagePath}

index.jsp

 See web.xml for configuration (header, footer)
 Easy to apply same pattern to multiple pages

<jsp-config>

 <jsp-property-group>

 <description>JSP configuration for the store front</description>

 <url-pattern>/index.jsp</url-pattern>

 <url-pattern>/WEB-INF/view/*</url-pattern>

 <url-pattern>/WEB-INF/jspf/error/*</url-pattern>

 <include-prelude>/WEB-INF/jspf/header.jspf</include-prelude>

 <include-coda>/WEB-INF/jspf/footer.jspf</include-coda>

 </jsp-property-group>

 <jsp-property-group>

 …

 </jsp-property-group>

 </jsp-config>

index.jsp notes

 Note creation of a session attribute to help track calls from this
page

 Use of
 Maps key to localised messages – performs replacement

 Location of localised message resources (files) defined in
web.xml:

 Files are in folder
 src/main/resources/

Selecting a category

 Brings you to category
page category.jsp in
folder ../Web
Pages/WEB-INF/view

 We get there via the
ControllerServlet

Handling /category URL in ControllerServlet

 uses the
request.getServletPath()
method to get the incoming
(GET) request path

 Request.getQueryString returns
the part after the path, so for
example, here it would be just
1 if the full path was
http://localhost:8080/Affable
Bean/category?1

 so it is OK to parse an int
from this “1” string

Forwarding from ControllerServlet

 userPath is “category” so this will brings us straight
to category.jsp:

Managing sessions

 Timeout is defined in the web.xml file

 There is also a redirect in the SessionTimeoutFilter if the session is null (which
it will be if the session has timed out)

 Note that we don’t create a new session here if it doesn’t exist:

<session-config>
 <session-timeout> 30
 </session-timeout>
</session-config>

HttpSession session = req.getSession(false);

	CT5106
	Entities
	Table Name Defaults
	Column name defaults
	Entity Declarations
	Primary Keys
	Sequencing
	@GeneratedValue(strategy = GenerationType.IDENTITY)
	MySQL Identity column use
	SQL Server Identity use
	Category entity uses IDENTITY
	GenerationType.SEQUENCE
	Create sequence in SQL Server
	Use sequence in SQL Server
	Use sequence in SQL Server
	GenerationType.TABLE
	GenerationType.AUTO
	Using Table
	@Basic(optional = false)
	@Transient
	Cascading changes to related entities
	Fetching related entities
	example – online shop – AffableBean tutorial
	Data Model
	customer table
	customer_order table
	category table
	Category entity
	product
	Product
	Ordered_product
	OrderedProduct
	Customer entity
	Category class
	Use of named query
	Slide Number 36
	Many-to-One
	One-to-Many
	Slide Number 39
	AffableBean: e-commerce tutorial
	resources
	Enterprise Beans
	Session Beans
	Examples of session beans
	Message-driven Beans
	MVC architecture using session beans
	Java EE containers
	Entity Manager
	Entity life cycle
	Container-managed Entity Manager
	Finding entities using entity manager
	Application-managed Entity Manager
	Adding Session Beans
	Choose entity classes
	Select location for session beans
	NetBeans generates session beans
	JPQL query
	Native SQL query
	JPQL vs Criteria queries
	CriteriaQuery
	Example
	Example – find all
	Query for a List of element arrays
	Return user-defined objects
	User-defined class needed too
	Slide Number 66
	AffableBean walkthrough
	Session Beans as Façade classes
	Using the façade classes
	Controller Servlet
	Application parameters
	<context-param>
	<context-param>
	index.jsp
	index.jsp notes
	Selecting a category
	Handling /category URL in ControllerServlet
	Forwarding from ControllerServlet
	Managing sessions

