h| cesk

:'_II-

T Oitemns

the affable bean q)

>

com on the cob
add to cart

2 pisces

red currants T

150g

brfﬂ:f::nh add to cart

S0lg

fruit & veg

CT5106

Entities

Java Persistence API requires that you identify the
classes that you will store in a database.

The API uses the term entity to define classes that it will
map to a relational database. You identify persistable
entities and define their relationships using annotations.

The Java compiler recognizes and uses annotations to
save your work. Using annotations, the compiler can
generate additional classes for you and perform
compile time error checking.

Table Name Defaults
=

-1 Every entity has a name. By default, the entity name is the entity's class

name.

11 The Entity annotation has a name attribute that allows you to explicitly

specify a name.

71 You will use the entity name in queries

BEntity
@Table (name = "customer")

Column name defaults
=

o1 By default, persistence provider implementations use an entity's field or property
names as the column names in the entity table

1 You can, however, override the default using the Column annotation and its name
element. If you prefer SURNAME instead of LASTNAME, you can annotate the

lastName property like this:

E5ize (max = 255)

II:I

@Column (name = "Addr

private 5String address;

Entity Declarations

Entity classes become tables in a relational database. Entity instances map
intfo rows in one or more tables.

The following code sample begins the definition of a baseball Player class.
Annotations in your code begin with the @ symbol.

The Java Persistence APl implementation can create a table for the Player
entity in your relational database.

By default, the table name corresponds to the unqualified class name. In this
case, a PLAYER table will represent Player entities.

@Entity
public class Player implements Serializable

Primary Keys

All entities must have a primary key. Keys can be a single
unique field or a combination of fields.

|dentify single field keys with the |d annotation.

Key fields must have one of the following types:
primitive type (like int, long, etc)
wrappers for primitive types (Integer, Long, etc)
java.lang.String
java.util.Date

java.sql.Date

The reference implementation will generate a key automatically if you
add the @GeneratedValue annotation to the primary key:

Sequencing

In JPA the object id is defined through the annotation and should
correspond to the primary key of the object's table.

An object id can either be a natural id (e.g. email, name, PRSI) or a
generated id.
The main issue with natural ids is that almost anything can change eventually. Natural ids can
also make querying, foreign keys and indexing less efficient in the database.
A sequence number in JPA is a sequential id generated by the JPA
implementation and automatically assigned to new objects.

The benefits of using sequence numbers are that they are guaranteed to be unique, allow all
other data of the object to change, are efficient values for querying and indexes, and can
be efficiently assigned.

In JPA an @Id can be easily assigned a generated sequence number through
the @GeneratedValue annotation

(unless you just want to generate them yourself — then just don’t use
@GeneratedValue)

https://java.sun.com/javaee/5/docs/api/javax/persistence/Id.html

@GeneratedValue(strategy = GenerationType.IDENTITY)

popular method

Not necessarily supported by all databases

The database controls the ID generation, JPA does not act on
the id at all. Thus in order to retrieve the id from the databse
an entity needs to be persisted first, and after the transaction
commits, a query is executed by the entity manager to retrieve
the generated id for the specific entity.

MySQL Identity column use
N

CREATE TABLE name (

Id int NOT NULL AUTO_INCREMENT,

Firstname varchar(3@) DEFAULT NULL,

PRIMARY KEY (Id)) ;

Query OK, @ rows affected

-- Inserting values into table.

INSERT INTO Name(FirstName) VALUES ('John');
INSERT INTO Name(FirstName) VALUES ('Mary'); m
INSERT INTO Name(FirstName) VALUES ('Peter'); 1 John

select * from name;

2 Mary

3 Peter

SQL Server Identity use
=

CREATE TABLE Name(
ID INT IDENTITY NOT NULL PRIMARY KEY,
FirstName VARCHAR(4@) NOT NULL
);
-- Inserting values into table.
INSERT INTO Name(FirstName) VALUES ('John');
INSERT INTO Name(FirstName) VALUES ('Mary');
INSERT INTO Name(FirstName) VALUES ('Peter');

SELECT * FROM dbo.Name;
o [Fistame |

1 John
2 Mary

3 Peter

Category entity uses IDENTITY
N

DROFP TABLE IF EXISTS ‘"affablebean’ . category” ;

CREATE TABLE IF NOT EXISTS “affablebean’. 'category” (
“id® TINYINT UNSIGNED NOT NULL AUTC INCREMENT ,
‘name”® VARCHAR(<{-5) NOT NULL ,

PRIMARY KEY (id"))

ENGINE = InnoDB

COMMENT = 'contains product categories, e.qg., dairy, meats, etc.';
@Td
@GeneratedValue (strategy = GenerationType. IDENTITY)
@Basic (optional = false)
@Column (name = "id'")

private Short id;

GenerationType.SEQUENCE

1 Used with sequence generator (created in database based on
annotation, e.g.:

B @SequenceGenerator(name = Car.CAR_SEQUENCE_NAME,
sequenceName = Car.CAR_SEQUENCE_NAME, initialValue = 10,
allocationSize = 53)

B @GeneratedValue(strategy = GenerationType.SEQUENCE,
generator = CAR_SEQUENCE_NAME)

m allocationSize = # of id’s JPA keeps in a cache to used

® Not all databases support sequences — MySQL doesn’t for
example — closest thing in MySQL is AUTO INCREMENT (you can
set the increment value)

Create sequence in SQL Server

CREATE SEQUENCE Sequence Name
START WITH Initial Value
INCREMENT BY Increment Value

MINVALUE Minimum Value
MAXVALUE Maximum Value
CYCLE |NOCYCLE;

e Sequence_Name — This specifies the name of the sequence.

e Initial_Value - This specifies the starting value from where the sequence
should start.

® Increment_Value — This specifies the value by which the sequence will
increment by itself. This can be valued positively or negatively.

® Minimum_Value - This specifies the minimum value of the sequence.
e Maximum_Value - This specifies the maximum value of the sequence.

® Cycle — When the sequence reaches its Maximum_Value, it starts again from
the beginning.

® Nocycle — An exception will be thrown if the sequence exceeds the
Maximum_Value.

Use sequence in SQL Server
=

CREATE TABLE CUSTOMERS (
ID INT,
NAME VARCHAR (20) NOT NULL,

INSERT INTO CUSTOMERS VALUES
(NULL, "Ramesh®, 32, 'Ahmedabad’', 2000.00),
(NULL, "Khilan®, 25, 'Delhi’, 1500.00),

(NULL, "Kaushik®', 23, 'Kota', 2000.00),

AGE INT NOT NULL,
ADDRESS CHAR (25),
SALARY DECIMAL (18, 2),

(NULL, *Chaitali’, 25, "Mumbai’, 6500.00),
(NULL, "Hardik', 27, 'Bhopal', 8500.00
(NULL, "Komal', 22, ‘"Hyderabad®,

(NULL, "Muffy', 24,

ID NAME AGE ADDRESS SALARY
NULL Ramesh 32 Ahmedabad 2000.00
NULL Khilan 25 Delhi 1500.00
NULL Kaushik 23 Kota 2000.00
NULL Chaitali 25 Mumbai 6500.00

LR L= e i s a7 Dhmm=l OChAN NN

Use sequence in SQL Server
=

CREATE SEQUENCE My Sequence AS INT
START WITH 1

INCREMENT BY 1

MINVALUE 1

MAXVALUE 7

CYCLE;

UPDATE CUSTOMERS SET ID = NEXT VALUE FOR my_Sequence;

SELECT * FROM CUSTOMERS;

ID NAME AGE ADDRESS SALARY
1 Ramesh 32 Ahmedabad 2000.00
2 Khilan 25 Delhi 1500.00
3 Kaushik 23 Kota 2000.00
4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

GenerationType. TABLE

1 A table is used to store the id’s e.g.

@Entity

public clasz= Employee |

BId

@TableGenerator (name="TABLE GEN", table="SEQUENCE TABLE", pkColumnName="SE(Q NAME",

valueColumnName="SEQ COUNT",

pkColumnValue="EMF SEQ")

@GeneratedValue (strategy=GenerationType.TABLE, generator="TABLE GEN")

private long id;

SEQUENCE TABLE

SEQ NAME

SEQ COUNT

EMP_SEQ

123

PROJ _SEQ

220

GenerationType. AUTO
N

0 With the Auto approach any strategy can be used
by JPA.

1 JPA will choose.

O Picks the strategy that is preferred by the used database platform.

0 The preferred strategies are IDENTITY for MySQL, SQLite and MsSQL (SQL
Server) and SEQUENCE for Oracle and PostgreSQL.

Using Table

Eclipselink (JPA provider) apparently prefers the
use of Table when Auto is chosen

In this case, the sequence table would need to be
generated by the JPA provider

This means that you would need to run the
application in ‘create tables’ mode at least once

@Basic(optional = false)

JPA support various Java data types as persistable fields of
an entity, often known as the basic types.

A basic type maps directly to a column in the

database. These include Java primitives and their wrapper
classes, String, java.math.Biglnteger and java.math.BigDecimal,
and various available date-time classes

false => cannot be null

@Transient

Always explicitly mark properties or fields that should not be persisted.
Use the annotation Transient for marking transient properties.

f**

* Returns the last words spoken by this
player.

*We don't want to persist that!

*/

@ Transient

public String getLastSpokenWords() {
return lastSpokenWords;

;

Cascading changes to related entities

In a JPA entity relationship, the CascadeType. ALL annotation
specifies that all operations (persist, merge, remove, refresh,
and detach) that are performed on the parent entity should be

cascaded to the child entity

Fetching related entities
—

-1 Dictates when you load related entities

E.g. fetch productCollection when you load Category (EAGER) , or only
when you call getProductCollection() (LAZY)

. «Entitys
«Entity» Student
University : -
id: String;
id: String; firstNarme: 5tring;
name: 5tring; lastMame: 5tring;
address: String; has » dob: Instant;
students: List=5tudent> 1 rmany | university: University;
getld(): 5tring getld(}: 5tring
getMarme(): String getFirstNarme(): String
getAddressi): 5tring getLastMame(): String
getStudents(): List=5tudent= getDobi): Instant
getlUniversity(): University
@Entity @Entity
public class University { public class University {
@Id @Id
private String id; private String id;
private String name; private String name;
private String address; private String address;
@OneToMany(fetch = FetchType.EAGER) @OneToMany(fetch = LAZY)
private List<Student> students; private List<Student> students;
// etc. // etc.

example — online shop —
AffableBean tutorial

o = pres——
Vid INT

2 name VARCHAR(45) Cid INT m

“»name VARCHAR(45) m
“email VARCHAR(45) “» amount DECIMAL(S, 2) T customer_order_id INT

“ price DECIMAL(S,2) ! id TINYINT
< phone VARCHAR(45) Hi— — — —<& date_created TIMEST AMP = ¥ product_id INT 5

 description TINYTEXT & name VARCHAR(45)
2 address V ARCHAR{45) 2 confirmation_number INT & guantity SMALLIMT

“»|ast_update TIMEST AMP Indexes
& city_region VARCHAR(Z) & customer_id INT Indexes

@ category_jd TINYINT

This is a MySQL database created using the following SQL.:
1. createSchema.sql
2. createData.sql

https://netbeans.apache.org/kb/docs/javaee/ecommerce/intro.ntml

—| product v

D Cl TCI MO d e I > ?a:':;r‘-mHCHAHMEJ — category v

> price DECIMAL(S,2) .
description TINYTEXT belongs to id TINYINT
———————— —4 > name VARCHAR(45)

=
- »last_update TIMESTAMP v

& category_id TINYINT |PFIII'u'IAHY |
1 Basic set of entities needed v
FRIMARY
i duct_cat
1 Note the need for the ordered- ——
product entity :L
0 Serves the same purpose as a (| ordered product v
|ine in an order customer order id INT
product_id INT
1 Represents the many-to-many » quantity SMALLINT
k4
relationship between product PRIMARY
Gnd CUSTomer Order fk_ordered_product_customer_order
- fk_orersd_product_product

1 Note it has a compound I
primary key = eustomer v
"] customer_order v o INT
=1 Note the multiplicity of the @ INT y rams VARGHAR(45)

» amount DECIMAL(E,2) y ol VARCHAR{45)

date_created TIMESTAMP is placed by » phone VARCHAR(45)
confirmatien_number INT Bl————— — — — HH

relationships

1 Note also the direction(s) of » address VARCHAR(45)
5 city_region VARCHAR|Z)

Ll Ll '
the relationships SR ARY » Go_number VARGHAR(19)
v

fk_customer_crder_customer

1 Note the need for foreign keys PRmanRY |

customer_id INT

customer table

S
o Primary key ‘id’

—— Table *"affablebean”. 'customer’

DROP TABLE IF EXISTS "affablebean’. ‘customer” ;

CEICREATE TABLE IF NOT EXISTS "affablebean”. "customer™ |
*id® INT UNSIGNED NOT NULL AUTO INCREMENT ,
"name” VARCHAR(4-) NOT NULL ,

‘email® VARCHAR(45) NOT NULL ,
"phone”™ VARCHAR(Z-5) NOT NULL ,
"address® VARCHAR(Z-5) NOT NULL ,
‘city region® VARCHAR(Z) NOT NULL ,
"cc number” VARCHAR(!Y) NOT NULL ,

- PRIMARY KEY ("id"))

ENGINE = InnoDB

COMMENT = 'maintains customer details';

customer_order table

T
7 Foreign key refers to PK of customer

DROP TABLE IF EXISTS "affablebean’. customer order” ;

LICREATE TABLE IF NOT EXISTS “affablebean’. 'customer order’ (
“id® INT UNSIGNED NOT NULL AUTO INCEEMENT ,
*amount® DECIMAL(:,”) NOT NULL ,
‘date_created‘ TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP ,
‘confirmation number® INT UNSIGNED NOT NULL ,
‘customer_id‘ INT UNSIGNED NOT NULL ,
PRIMARY KEY ("id") ,
INDEX “fk customer order customer® (‘customer id® ASC) ,
CONSTRAINT "fk customer order customer’
FOREIGN KEY ('customer id")
REFERENCES “affablebean”. customer® ("id"~)
ON DELETE NO ACTION
- ON UFDATE NO ACTION)
ENGINE = InnoDB
COMMENT = 'maintains customer order details';

category table

S
71 Only used by product

DROP TABLE IF EXISTS "affablebean’. 'category’ ;

CREATE TABLE IF NOT EXISTS "affablebean”. ‘category™ |
*id® TINYINT UNSIGNED NOT NULL AUTO INCREMENT ,
‘name” VARCHAR(45) NOT NULL ,
PRIMARY KEY (“id"))
ENGINE = InnoDB
COMMENT = 'contains product categories, e.g., dairy, meats, etc.';

Category entity
—

Named queries pre-defined, and can be run by

GEntity entity manager on request
@Table (name = "category™)
ENamedfueries | {
@ANamedQuery (name = "Category.findZll"™, gquery = "SELECT c FROM Category c"),
@MamedQuery (name = "Category.findById", gquery = "SELECT ¢ FROM Category c WHERE c.id = :id"),
@ANamedQuery (name = "Category.findByHName", query = "SELECT < FRCOM Category o WHERE c.name = :nams")})
public clas=s Category implements Serializable {
private static final long serizlVersionUID = 1L;
@Id

Database maintains an quto-incremented

@GeneratedValue (strategy = GenerationType. IDENTITY) cothnvfbrtheid\alues and'ﬂﬂsisinseﬁfd

€8asiclopeional = faise) into the entity by the entity manager when
BColumn (name = "id") ;
rivate Short id: PCFﬂSted
EBasic (optional = false)
BColumn (name = "nams")
private String name;
@ACneToMany (cascade = CascadeType.ill, mappedBy = "category™)

—

private Collection<Product> productCollection;

Makes relationship readable in both directions
CascadeType ALL: all operations (persist,

remove, merde,..) are propadated to the

children - i.e. remove Category => remove

Product

Cascading dangerous - deleting parent can
delete all children

product

DROF TABLE IF EXISTS “affablebean”. "product™ ;

CICREATE TABLE IF NOT EXISTS "affablebean’. "product® (
*id® INT UNSIGNED NOT NULL AUTO INCEEMENT ,

‘name” VARCHAR(4-0) NOT NULL ,

‘price’ DECIMAL(-,”) NOT NULL ,

‘description® TINYTEXT NULL ,

‘last_update‘ TIMESTAMP NOT NULL DEFAULT CURRENT TIMESTAMP ON UFDATE CURRENT TIMESTAMP ,
‘Category_id‘ TINYINT UNSIGNED NOT NULL ,
PRIMARY KEY (id‘) ,
INDEX "fk product category® (‘category id® ASC) ,
CONSTRAINT "fk product category’
FOREIGN KEY ('category id")
REFERENCES ‘affablebean”. 'category” ("1d")
ON DELETE NO ACTICHN
= ON UFDATE NO RCTION)
ENGINE = InnoDb
COMMENT = 'contains product details';

Product

Many Products to one Category
@JoinColumn

Defines the physical mapping on the owning side of the one-to-many relationship (here
with category) which is usually defined on the many side

Name: the column name in this (Product) table which links to the
‘referencedColumName’ in the referenced table (Category)

One Product to many OrderProducts
mappedBy tells us the name of the field on the owning side of the
OneToMany relationships (OrderedProduct) which field is used to
reference the Product

@JoinColumn (name = "category i1d", referencedColumnName = "1d")

@ManyToOne (optional = false)

private Category category;

@OneToMany (cascade = CascadeType.ALL, mappedBy = "product")
private Collection<OrderedProduct> orderedProductCollection;

Ordered_product

DROP TABLE IF EXISTS "affablebean’. ordered product® ;

ICREATE TABLE IF NOT EXISTS "affablebean’. ordered product” (
‘customer order id® INT UNSIGNED NOT NULL ,
‘product_id‘ INT UNSIGNED NOT NULL ,
‘quantity® SMALLINT UNSIGNED NOT NULL DEFAULT | ,
PRIMARY KEY ('customer order id', “product id') ,
INDEX “fk ordered product customer order® (customer order id® ASC) ,
INDEX “fk ordered product product® (‘“product id® Asc) ,
CONSTRAINT "fk ordered product customer order’
FOREIGN KEY ('customer order id")
REFERENCES "affablebean”. customer order’ (“id™>)
ON DELETE NO ACTICN
ON UPDATE NO ACTICN,
CONSTRAINT "fk ordered product product”®
FOREIGN KEY ('product id")
REFERENCES ‘affablebean”. product™ ("id")
ON DELETE NO ACTICN
- ON UPDATE NO ACTION)

ENGINE = InnoDB
COMMENT = 'matches products with customer orders and records their guantity’';

OrderedProduct

m1 Association table between product and customer order

@EmbeddedId
m Persists the composite PK field as the ID of the object

m Can’t use Id for a composite PK class

public class OrderedProduct implements Serializable d

private static final long serialVersionUID = 1L;
@EmbeddedId

protected OrderedProductPK orderedProductPK;
@Basic (optional = false)

@Column (name = "quantity")

private short quantity;

@JoinColumn (name = "product id", referencedColumnName = "id", 1insertable = fa
@ManyToOne (optional = false)

private Product product;

@JoinColumn (name = "customer order 1d", referencedColumnName = "1id", insertab
@ManyToOne (optional = false)

private CustomerOrder customerOrder;

Customer entity

One customer mapped to many customer orders

MappedBy: the field at the other end of the relationship which
references this (customer) end

So each customer object has a collection of the related
customer order objects

privadaLe oLIri1Mg CChNumoer,

T T

@OneToMany (cascade = CascadeType.ALL, mappedBy = "customer")

private Collection<CustomerOrder> customerOrderCollection;

Category class

Named Queries
Fixed queries
Mapped to specific class

Can include parameters

@NamedQueries({
@NamedQuery(name = "Category.findAll", query = "SELECT ¢ FROM Category c"),
@NamedQuery(name = "Category.findByld", query = "SELECT ¢ FROM Category c WHERE c.id = :id"),
@NamedQuery(name = "Category.findByName", query = "SELECT ¢ FROM Category ¢ WHERE c.name =

‘name")})

See servlets:
getCategories

getProductsByCategoryName

Use of named query

o
1 In GetCategories servlet

List<Category> categories = new ArrayList<>();
Query q = em.createNamedQuery ("Category.findAll");
categories = g.getResultList () ;

71 In GetProductsByCategoryName servlet

String category = request.getParameter ("category"):;
Query g = em.createNamedQuery ("Category.findByName™) ;
g.setParameter ("name"™, category):;

Category c = (Category) g.getSingleResult():;

private static final long serialVersionUID = 11;

The serialVersionUID is a universal version identifier for
a Serializable class. Deserialization uses this number to
ensure that a loaded class corresponds exactly to a
serialized object. If no match is found, then an
InvalidClassException is thrown.

Many-to-One

OrderedProduct has a many-to-one relationship
with Product and with CustomerOrder

dJoinColumn (name = "product 1d", referencedColumnName = "1d", ilnsertable = false, updatable = false)
ManyToOne (optional = false)
private Product product;

‘product_id’ is the foreign key of Product in the
OrderedProduct table

‘id’ is the referenced column name in the related table
(Product)

One-to-Many

Use the attribute mappedBy so that the persistence engine knows how to
join OrderedProduct and Product

The mappedBy attribute exists on the other side of the relationship, which is
the Product.

In this example, the mappedBy attribute shows that an OrderedProduct
instance’s ‘product’ property maps to the Product instance.

This means that the Products primary key will be a foreign key in the
OrderedProduct table.

In the actual Product obiject, though, we also have a Collection of
OrderedProduct objects that it is linked to

T
|

@OneToMany (cascade = CascadeType.ALL, mappedBy = "product™)

private Collection<OrderedProduct> orderedProductCollection;

AffableBean: e-commerce tutorial

1 Based on the NetBeans e-commerce tutorial

1 Basic flow is

Categories

dairy

meat

bakery
fruit & veg

Purchase

calculations

Enter
personal detalls
Submit purchase

Proceed to
checkout

resources

S
0 AffableBean.zip
o1 NetBeans project

o1 Contains a setup directory with database set files

Enterprise Beans
—

- The components that carry out the business logic / processes

1 Use interfaces to make that functionality available to clients
(internal and external to the application)

1 They are managed by a container

- Three kinds .

Session Beans o ——
- Synchronous Communication Asynchronous Communication

Entity Bean Message-Driven Bean

Stateful I

Bean Managed Container Managed
Persistence Persistence

Entity Beans

Session Bean

Message-driven Bean:

Session Beans

Business logic that can be invoked by a client

Lifecycle / state managed by EJB container, session
beans can be:

Stateless

Shared by multiple clients

The EJB container can pool them to provide to clients
Stateful

Client-specific instances
Singleton

One instance per application / shared across all clients

Examples of session beans

A session bean in a human resources application that creates a
new employee and assigns the employee to a particular
department

A session bean in an expense reporting application that
creates a new expense report

A session bean in an order entry application that creates a
new order for a particular customer

A session bean that manages the contents of a shopping cart in
an e-commerce application (would be client-specific, so should

be @stateful)

Message-driven Beans
=

o1 Allows clients to process messages asynchronously

o Usually a JMS listener — receives JMS messages

Mapped to a JMS queue

-1 Event-driven — when message arrives, the container calls the beans
onMessage method to process the message

MVC architecture using session beans
_

7 We need to create the entity beans, and also session beans, which will act
as a fagcade, hiding the details of using JPA to manipulated (CRUD) the
entity beans

11 Session beans can also contain code (business logic) for the application

Controller
Request Secsion Beans
{EJB)
S o@
View Entity Classes

{JPA)

=

(ISP pages)

Java EE containers
N

©1 The entity classes are managed by the persistence provider
71 The session beans are managed by the EJB container

71 Views are rendered in JSP pages, which are managed by the
web container.

persistence

web EJB provider
container container
(EclipseLink)

JSP pages J session beans] entity classes]

Entity Manager

Entities are managed by an EntityManager

An instance of javax.persistence.EntityManager

Each EntityManager instance is associated with a persistence
context

The persistence context is a set of managed entity instances that exist in
a particular data store

A persistence context defines the scope under which particular entity
instances are created, persisted, and removed

The EntityManager interface defines the methods that are used
to interact with the persistence context

Entity life cycle

Each arrow is an entity manager method (except new)

Each oval shape is an entity state

—New | | New J’—ﬂﬂﬂ- . Managed
A 4 ", — F IuSh_[_C_o mm11
Database
. Detached | "~ Removed

A detached entity (a.k.a. a detached object) is an object that
has the same ID as an entity in the persistence store but
that is no longer part of a persistence context, e.g. because
the EM which retrieved it was closed, or the object was received
from outside the application

Container-managed Entity Manager

A Java EE container manages the lifecycle of container-managed entity
managers

An EntityManager instance’s persistence context is automatically
propagated by the container to all application components that use the
EntityManager instance within a single JTA transaction

To obtain an EntityManager instance, inject the entity manager into the
application component with the javax.persistence.PersistenceContext
annotation

@PersistenceContext

EntityManager em;

Finding entities using entity manager
N

71 The find method is used to look up entities in the
data store by the entity’s primary key

Application-managed Entity Manager

lifecycle of EntityManager
instances is managed by the
application

Applications create EntityManager
instances here by using the
createEntityManager method of
javax.persistence.EntityManagerFac
tory

To obtain an EntityManager
instance, you first must obtain an
EntityManagerFactory instance by
injecting it into the application
component by means of the
javax.persistence.PersistenceUnit
annotation, e.g.

@PersistenceUnit (unitName = “myPU")
EntityManagerFactory emf;
EntityManager em;

@Resource

UserTransaction utx;

em = emf.createEntityManager();

try {
utx.begin();
em.persist(SomeEntity);
em.merge(AnotherEntity);
em.remove(ThirdEntity);
utx.commit();

} catch (Exception e) {
utx.rollback();

}

Adding Session Beans
—

o1 In this app, session beans are

Steps Choose File Type
used as a facade 1 Chose e Tpe proiect | @ oo }
Avoids tight coupling between e
clients and business objects e B sesiensean
JavaServer Faces 5
Cuts down on calls between Bean Validation £ Standard Deployment Descrptor
client and server Spring Framework

Enterprise JavaBeans
Contexts and Dependency Inj

Abstracts underlying (JPA Jave

Swing GUI Forms

primarily) interactions

Description:

Creates Session EJB Facade based on Entity class. This template creates Session EJB for

Uses the Contqiner 1-0 manqge every Entity class with basic access methods,
the (session bean) life cycle

L Mew File “

< Back Mext » Finish Cancel Help

Choose entity classes

Entity Classes
Choose File Type Available Entity Classes: Selected Entity Classes:
Entity Classes entity.Category
Generated Session Beans entity.CustomerOrder

entity. OrderedProduct
entity.Product

entity. Customer

Add =

< Remove

Add All ==

<< Remove All

Include Referenced Classes

Net¢> | FEinish | Cancel | Help

Select location for session beans

Steps Generated Session Beans

1. ChooseFile Type Specify the location of new Session Bean classes
2. Entity Classes)
3. Generated Session Project: AffableBean

Location: | Source Packages

Package:

Created Files: | £ Cart
E controller

£ entity

Create Interfac

Jlocal | B fijger

|| Remote EH resources

E validate

NetBeans generates session beans

Code common to all classes is factored out into
AnstractFacade

The AbstractFacade class provides a few basic JPA
methods to find entities of the related entity class

These methods use CriteriaQuery API

JPQL query

11 For example a dynamic query such as

Query query = manager.createQuery("SELECT ¢ FROM Car ¢ WHERE c.color = :hexColor");
query.setParameter(“hexColor”, “FFO000”);
query.setMaxResults(100);

return query.getResultList();

Native SQL query
N

List<Car> cars = (List<Car>)em.createNativeQuery ("SELECT * FROM cars_table", Car.class)

.getResultList();

out.printIn("Cars:
");

for (Car car : cars)

{

out.printin(""+ car.getName()+": "+car.getMileage() +"");

}

out.printin("");

JPQL vs Criteria queries

JPQL

Readable, concise, SQL-like query strings

Can use named queries defined using annotations in
entity classes

Criteria queries

Can be defined in business tier (session beans)
Used as a Java AP, typesafe

Less readable

More complex to write, fast to run

CriteriaQuery
N

01 Steps involved:
O Create a CriteriaBuilder object
® You have to use an EntityManager instance
O Create a query object by creating an instance of the CriteriaQuery interface
m This query object's attributes will be modified with the details of the query
O Set the query root
® Call the from method on the CriteriaQuery object
O Specify type of the query result
® Calling the select method of the CriteriaQuery object
O Prepare the query for execution
m Creating a TypedQuery<T> instance, specifying the type of the query result
O Execute the query
m Call the getResultList method on the TypedQuery<T> object

Example — find all

// Query for a List of data elements.
CriteriaQuery cqg = cb.createQuery();

Root e = cqg.from(Employee.class);
cq.select(e);

Query query = em.createQuery(cq);
List<Employee> result = query.getResultList();

Query for a List of element arrays

CriteriaQuery cq = cb.createQuery();
Root e = cq-from(Employee.class);
cqg-multiselect(e.get(""firstName™),employee.get('lastName"

));

Query query = em.createQuery(cq);
List<Object[]> result5 = query.getResultList();

Return user-defined objects

CriteriaQuery<Employeelnfo> query =

criteriaBuilder.createQuery(Employeelnfo.class);
Root<Employee> employee = query.from(Employee.class);
query.select(criteriaBuilder.construct(Employeelnfo.class,

employee.get(Employee_.name), employee.get(Employee_.salary)));

List<Employeelnfo> resultList =

entityManager.createQuery(query).getResultList();

https://www.logicbig.com/tutorials/java-ee-tutorial/jpa/criteria-api-construct.html

User-defined class needed too

public class Employeelnfo

{

private String name;
private double salary;

public Employeelnfo(String name, double salary)

{

this.name = name; this.salary = salary;

01 Further information (when needed):

O hitps://www.logicbig.com/tutorials /java-ee-tutorial /jpa/criteria-

select.html

O https:/ /wiki.eclipse.org /Eclipselink /UserGuide /JPA /Basic_JPA_Develop
ment/Querying /Criteria#Criteria_API

https://www.logicbig.com/tutorials/java-ee-tutorial/jpa/criteria-select.html
https://www.logicbig.com/tutorials/java-ee-tutorial/jpa/criteria-select.html

AffableBean walkthrough

Points to look at:

Configuration using web.xml
Headers and footers
Context parameters
Session timeout

Session Beans using Facade
pattern

Controller servlet with multiple
URL patterns

Load on startup

init method

Use of view and userPath

Client-side validation

In checkout.jsp using jQuery
validate function

Server-side validation
Using Validator class
Language support
Throughout using <fmt:message

Resources defined in web.xml

Session Beans as Facade classes

Uses the AbstractFacade class to implement common operations for Type<T>
where <T> is a JPA entity

Facade hides complexity of the (JPA) sub-system

Can use JPA as well if you want to

Uses generics to provide common operations for all session bean classes
extending AbstractFacade

public void create (T entity) { getEntityManager().persist(entity); }
public void edit (T entity) { getEntityManager().merge(entity); }
public void remove (T entity) { getEntityManager().remove(getEntityManager().merge(entity)); }
public T find (Object id) { return getEntityManager().find(entityClass, id); }
public List<T> findAll () { javax.persistence.criteria.CriteriaQuery cq =
getEntityManager().getCriteriaBuilder().createQuery();

cqg.select(cq.from(entityClass));
return getEntityManager().createQuery(cq).getResultList(); }

Using the facade classes

Look for example at the ControllerServlet

(@EJB tells container to create an instance of the EJB (CategoryFacade)

@EJB
private CategoryFacade categoryFacade;

String categoryld = request.getQueryString();

Category selectedCategory = categoryFacade.find(Short.parseShort(categoryld));

Implementation of the Facade design pattern, which is designed to hide
complex call flows. Here it is largely used as a DAO (Data Access

Obiject)

Controller Servlet

Acts as the hub / router for the application
Maps to a number of URL patterns

Note use of loadOnStartup

If this is positive the servlet is loaded when application is started, not on
first time it is called

This allows the init() method to be used to retrieve the List of Category
objects from the database and set as a session attribute

The product categories are therefore immediately available to index.jsp
when the user opens the application on the browser

A number of servlets could implement loadOnStartup — they
will be loaded in order of the integers provided 1,2,...

Application parameters

In Java EE the web.xml file is used to store static parameters
which are useful in the application

Data which is common to the whole application (and doesn’t
change frequently if at all) is defined using <context-param>,
while data confined to a particular servlet scope is defined
using <init-param>

web.xml is also used to store parameters / rules relating to
security constraints, session configuration (e.g. timeout), headers
and footers to be included in specified pages, pages to be
displayed for particular error codes, how to authenticate users
accessing secured resources,..

<context-param>

A parameter bound to the application

For example:

<context-param>
<description>The delivery surcharge applied to all
orders</description>
<param-name>deliverySurcharge</param-name>
<param-value>3.00</param-value>
</context-param>

Accessed in the init() method of ControllerServlet:

surcharge =
servletConfig.getServletContext().getinitParameter("deliverySurcharge");

<context-param>

[

11 For example:

11 Accessed in index.jsp:

index.jsp
—

1 See web.xml for configuration (header, footer)

o Easy to apply same pattern to multiple pages

ble Bean Green Grocer X

@ localhost8080/AffableBean/ 2+ @S » 0@ :

P School of Compute.. (@ Login fip - direct - Lundi.. (@) Video Conferencing... WEl Home - ResearchP.. [Blackboard »

-

= 0items english | gesky

the affable bean

Icome to the online home
he Affable Bean Green
JCEr.

unique home delivery service
gs you fresh organic produce,
y, meats, breads and other
ious and healthy items direct
our doorstep.

index.jsp notes

Note creation of a session attribute to help track calls from this

pqge <piset var="'view' walue="/index' s=scope="s=ze:z

ion' f»

Use of <fmt :message key='greeting' [»</p>
Maps key to localised messages — performs replacement

Location of localised message resources (files) defined in
web.xml:

—-paranm
aram-name>javax.serviliet.jsp.jstl.fmt.localizationContext</param—name>

<param-valuerresources.messages</param-value
tex

Files are in folder

src/main /resources/

Selecting a category

o1 Brings you to category

§ The Affable Bean Green Grocer X

pQQe Ccfegory.isp in & - C (@ localhost:8080/AffableBean/category?1 = % @ C » = 0O o :

o Video Conferencing... [Home - Research P... [Blackboard »

folder ../Web m Login a School of Compute... @ Login H fip - direct - Lundi...

the affable bean

Pages/WEB-INF /view O tems —
. 4
1 We get there via the J b
ControllerServlet dairy
") ik
' - Eq semir:klimmed €1.70
@WekServlet (name = "Controllexr™, (1L)
= h
loadOnStartup = 1, . e €230
urlPatterns = {"/category"”, (330g)
" /faddToCart™ > -
".u"r"i.?i ewlCart™ ' d unsalt':d?erOg) €1.08
r
" /uapdateCartc™, free range eggs
ium-si €176
"/checkout”, ' med'uer;gifed ® "add to cart
" /fpurchase"™, . milk)

"/chooselanguage™})
pukblic class ControllerServlet extends HttpServlet {

Handling /category URL in ControllerServlet
N

. uses fhe Category selectedCategory:
requesf.gefServlechfh () Collection<Product> categoryProducts;
method to get the incoming

(GET) request pCl'I'h // 1f category page iz regquested

. if (userPath.equals("/category” {
1 Request.getQueryString returns ‘ quals(gory"))

the pCII‘"l' after the pCl'l'h, so for S get categoryld from regquest
example, here it WOUld be iUSf String categoryld = request.get{ueryString():

1 if the full path was
http:/ /localhost:8080/ Affable
Bean/category?1

if (categoryId !'= null) {

{ get selected category
selectedCategory = categorvFacade.find (Short.valu=elf({categoryld)

—
LT

o so it is OK to parse an int

SRR . f place selected category in =session scope
from this “1” string _ i
session.setAttribute ("selectedlCategory™, selectedCategory):

f get all products for selected category
categoryProducts = selectedCategory.getProductCollection()

f place category products in session scope

sezzion.setAttribute ("categoryPFroducts", categoryProducts):

Forwarding from ControllerServlet

1 userPath is “category” so this will brings us straight
to category.|sp:

String url = "/WEEB-INF/view"™ + userPath + ".j=sp":

try
request.getRequestlDispatcher (url) . forward (request, response);
} catch (Exception ex) {

ex.printStackTrace ()
i

Managing sessions
—

1 Timeout is defined in the web.xml file

<session-config>
<session-timeout> 30
</session-timeout>

</session-config>

71 There is also a redirect in the SessionTimeoutFilter if the session is null (which
it will be if the session has timed out)

1 Note that we don’t create a new session here if it doesn’t exist:

HttpSession session = req.getSession(false);

	CT5106
	Entities
	Table Name Defaults
	Column name defaults
	Entity Declarations
	Primary Keys
	Sequencing
	@GeneratedValue(strategy = GenerationType.IDENTITY)
	MySQL Identity column use
	SQL Server Identity use
	Category entity uses IDENTITY
	GenerationType.SEQUENCE
	Create sequence in SQL Server
	Use sequence in SQL Server
	Use sequence in SQL Server
	GenerationType.TABLE
	GenerationType.AUTO
	Using Table
	@Basic(optional = false)
	@Transient
	Cascading changes to related entities
	Fetching related entities
	example – online shop – AffableBean tutorial
	Data Model
	customer table
	customer_order table
	category table
	Category entity
	product
	Product
	Ordered_product
	OrderedProduct
	Customer entity
	Category class
	Use of named query
	Slide Number 36
	Many-to-One
	One-to-Many
	Slide Number 39
	AffableBean: e-commerce tutorial
	resources
	Enterprise Beans
	Session Beans
	Examples of session beans
	Message-driven Beans
	MVC architecture using session beans
	Java EE containers
	Entity Manager
	Entity life cycle
	Container-managed Entity Manager
	Finding entities using entity manager
	Application-managed Entity Manager
	Adding Session Beans
	Choose entity classes
	Select location for session beans
	NetBeans generates session beans
	JPQL query
	Native SQL query
	JPQL vs Criteria queries
	CriteriaQuery
	Example
	Example – find all
	Query for a List of element arrays
	Return user-defined objects
	User-defined class needed too
	Slide Number 66
	AffableBean walkthrough
	Session Beans as Façade classes
	Using the façade classes
	Controller Servlet
	Application parameters
	<context-param>
	<context-param>
	index.jsp
	index.jsp notes
	Selecting a category
	Handling /category URL in ControllerServlet
	Forwarding from ControllerServlet
	Managing sessions

