
Design Patterns: Behavioural 1

�
Design Patterns: Behavioural

Behavioural Design Patterns:
Behavioural patterns deal with object collaboration and delegation 
They help define how objects interact and communicate with each other.

These patterns help manage complex control flows and communication
between objects.

They define how responsibilities are divided, how objects request
actions from one another, and how they can communicate changes in
state.

Behavioural patterns are critical in maintaining flexibility and scalability
in systems with a large number of interacting objects.

They help avoid spaghetti code by organising and defining object
relationships and promoting loose coupling and high cohesion.

Design Patterns: Behavioural 2

What is the Observer Pattern?
The Observer Pattern defines a one-to-many relationship between
objects, where a subject (the one) maintains a list of observers (the
many) that need to be notified of any changes in its state.

When the subjectʼs state changes, it notifies all of its observers
automatically.

This pattern is widely used in event-driven systems and graphical
user interfaces GUIs).

Design Patterns: Behavioural 3

Why Use the Observer Pattern?

The observer and the subject are loosely coupled. The subject
doesnʼt need to know any details about the observers—it just needs
to notify them.

Ideal for systems where several parts need to respond to the state of
another object.

Examples:

A weather station application, where various displays
(observers) need to update when the weather changes (subject).

A stock price tracking system, where multiple screens update
with price changes.

Design Patterns: Behavioural 4

Observer
Observer is a behavioral design pattern that lets
you define a subscription mechanism to notify
multiple objects about any events that happen to

https://refactoring.guru/design-patterns/obse
rver

The Observer Pattern in Java | Baeldung
Learn a few ways to implement the Observer
design pattern in Java

https://www.baeldung.com/java-observer-pat
tern

Basic Implementation of the Observer Pattern
The Observer Pattern establishes a one-to-many relationship
between a subject (or observable) and multiple observers.

When the state of the subject changes, all its observers are
notified.

This pattern is commonly used in event-driven systems, where
one objectʼs change affects many others.

import java.util.ArrayList;

import java.util.List;

// Step 1: Create the Subject (Observable) class

class Subject {

 private List<Observer> observers = new ArrayLis

t<>();

 private int state;

 // Method to get the state

 public int getState() {

 return state;

 }

 // Method to change the state

 public void setState(int state) {

 this.state = state;

https://refactoring.guru/design-patterns/observer
https://www.baeldung.com/java-observer-pattern

Design Patterns: Behavioural 5

 notifyAllObservers(); // Notify observers

when state changes

 }

 // Method to attach observers

 public void attach(Observer observer) {

 observers.add(observer);

 }

 // Method to notify all observers about the sta

te change

 private void notifyAllObservers() {

 for (Observer observer : observers) {

 observer.update(); // Each observer's

update method is called

 }

 }

}

// Step 2: Create an abstract Observer class

abstract class Observer {

 protected Subject subject;

 public abstract void update();

}

// Step 3: Concrete Observer classes implementing t

he Observer interface

class HexObserver extends Observer {

 public HexObserver(Subject subject) {

 this.subject = subject;

 this.subject.attach(this); // Attach this

observer to the subject

 }

 @Override

 public void update() {

 System.out.println("Hex String: " + Intege

Design Patterns: Behavioural 6

r.toHexString(subject.getState()));

 }

}

class BinaryObserver extends Observer {

 public BinaryObserver(Subject subject) {

 this.subject = subject;

 this.subject.attach(this); // Attach this

observer to the subject

 }

 @Override

 public void update() {

 System.out.println("Binary String: " + Inte

ger.toBinaryString(subject.getState()));

 }

}

// Step 3: Test the Observer Pattern

public class ObserverPatternDemo {

 public static void main(String[] args) {

 Subject subject = new Subject();

 new HexObserver(subject); // Create and

attach observers

 new BinaryObserver(subject); // Create and

attach observers

 System.out.println("First state change: 1

5");

 subject.setState(15); // Set state and see

the update in observers

 System.out.println("Second state change: 1

0");

 subject.setState(10); // Set state again a

nd see the update

Design Patterns: Behavioural 7

 }

}

Key Concepts:

The Subject class manages a list of observers. When its state
changes, it triggers the notifyAllObservers method to call each
observerʼs update method.

Observers are abstract classes that must implement the
update method. This allows flexibility in how each observer
reacts to the subjectʼs state changes.

Concrete Observers In this example, two observers
(HexObserver and BinaryObserver) are created, each with their
own implementation of the update method.

Notification Logic — When the state of the Subject is
changed, it calls notifyAllObservers , and each observerʼs
update() method gets called.

Key Insight This demonstrates the loose coupling achieved
between the subject and observers. The subject only knows it
has to notify its observers, but it doesn't need to know what
actions they will take.

Benefits of the Observer Pattern
You can add or remove observers at runtime without modifying
the subject. This dynamic nature allows the system to scale easily
as more observers are added.

The observer pattern allows a subject to broadcast updates to
multiple observers, which can be useful in systems where
changes need to be reflected in various parts of the application.

The pattern divides the system into multiple modules (subject and
observers) that can evolve independently, improving
maintainability.

Observers can be reused across different subjects, which
increases the flexibility and reusability of the code.

The subject doesnʼt need to know the specific details of how the
observer processes the data. This allows for easier maintenance

Design Patterns: Behavioural 8

and updates to either the subject or the observers without
affecting the other.

Common Pitfalls in Observer Pattern
Memory Leaks

If observers arenʼt properly removed from the subjectʼs list
when they are no longer needed, it can lead to memory leaks.

This happens especially in long-running applications where
observers accumulate over time, even if they are no longer
required.

Example:
Imagine a scenario where observers are created for monitoring
the state of a UI component, but those observers are never
removed even after the UI component is no longer in use.

class Subject {

 private List<Observer> observers = new Array

List<>();

 public void attach(Observer observer) {

 observers.add(observer);

 }

 public void detach(Observer observer) {

 observers.remove(observer); // Observer

should be removed when no longer needed

 }

 public void notifyAllObservers() {

 for (Observer observer : observers) {

 observer.update();

 }

 }

}

// Observer pattern implementation without detac

hing observers

public class MemoryLeakExample {

Design Patterns: Behavioural 9

 public static void main(String[] args) {

 Subject subject = new Subject();

 Observer observer1 = new ConcreteObserve

r();

 Observer observer2 = new ConcreteObserve

r();

 subject.attach(observer1);

 subject.attach(observer2);

 // Later on, observer1 and observer2 are

no longer used but are never detached

 // They still reside in the observers li

st, contributing to a memory leak.

 }

}

In this example, the observers remain in memory even if they are
no longer needed because they are not detached.

Solution:
Always ensure that
observers are removed when they are no longer necessary.

subject.detach(observer1); // Properly detach o

bserver when no longer needed

Performance Overhead

When there are too many observers, the subject might end up
notifying a large number of observers, which can degrade
performance, especially if all observers are performing
computationally heavy tasks.

Example:
Letʼs say you have a stock price tracking system, where
thousands of users (observers) are tracking the price of a single
stock (subject). If the stock price updates frequently and the

Design Patterns: Behavioural 10

system notifies every observer for each update, it could cause
performance bottlenecks.

class StockPriceSubject {

 private List<Observer> observers = new Array

List<>();

 private int price;

 public void setPrice(int newPrice) {

 this.price = newPrice;

 notifyAllObservers(); // Notifies a lar

ge number of observers for each price change

 }

 public void notifyAllObservers() {

 for (Observer observer : observers) {

 observer.update();

 }

 }

}

Imagine this system scaling up to thousands of users. Each
update would notify all observers, and the performance might
degrade with every price change.

Solution:

Instead of notifying all observers for every small change, you
can batch updates or use rate-limiting to reduce the number
of notifications, especially when updates happen frequently.

Circular Dependencies

If two subjects observe each other, this can result in a circular
dependency where both objects continuously notify each
other, leading to infinite loops.

Example:
Imagine an application where two different modules monitor each
otherʼs state. If Module A is updated and notifies Module B, which

Design Patterns: Behavioural 11

then updates itself and notifies Module A again, this would create
an infinite loop of updates.

class ModuleA extends Subject implements Observe

r {

 public void update() {

 System.out.println("Module A updated.");

 setState(); // Changes state and notifi

es observers (Module B)

 }

}

class ModuleB extends Subject implements Observe

r {

 public void update() {

 System.out.println("Module B updated.");

 setState(); // Changes state and notifi

es observers (Module A)

 }

}

In this scenario, Module A updates Module B, which in turn
updates Module A, and so on, leading to an infinite loop.

Solution:

Introduce a check to avoid recursive updates. You can also
decouple these modules or re-design the system to prevent
circular dependencies.

Lack of Control Over Updates

The Observer Pattern assumes that all observers are equally
interested in every state change. However, some observers
might only be interested in certain types of updates. Not
distinguishing between different types of updates can lead to
unnecessary processing in observers.

Example:
Letʼs say we have a
WeatherStation subject that notifies observers whenever the

Design Patterns: Behavioural 12

temperature, humidity, or pressure changes. Some observers
might only care about temperature, but they will still be notified for
all changes.

class WeatherStation {

 private List<Observer> observers = new Array

List<>();

 private int temperature;

 private int humidity;

 public void setWeatherData(int temp, int hu

m) {

 this.temperature = temp;

 this.humidity = hum;

 notifyAllObservers(); // Notifies obser

vers for both temperature and humidity changes

 }

}

If an observer only needs temperature data, it would still get
updates for humidity, which might be irrelevant.

Solution:

Implement more granular notifications, where observers can
specify which types of changes they are interested in.

class WeatherStation {

 private List<Observer> temperatureObservers

= new ArrayList<>();

 private List<Observer> humidityObservers = n

ew ArrayList<>();

 public void setTemperature(int temp) {

 this.temperature = temp;

 notifyTemperatureObservers(); // Notify

only temperature observers

 }

 public void setHumidity(int hum) {

Design Patterns: Behavioural 13

 this.humidity = hum;

 notifyHumidityObservers(); // Notify on

ly humidity observers

 }

}

Tight Coupling Between Subject and Observers

Even though the Observer Pattern is meant to reduce
coupling, it can still result in tight coupling if the subject and
observers are implemented too specifically. This can make it
difficult to extend or modify the system.

Example:
If a subject has a very specific type of observer, adding new
types of observers could require changes to both the subject and
the existing observers, defeating the purpose of decoupling.

class SpecificSubject {

 private SpecificObserver observer;

 public void setObserver(SpecificObserver obs

erver) {

 this.observer = observer;

 }

 public void notifyObserver() {

 observer.update(); // Subject is tightl

y coupled with a specific observer

 }

}

Solution:

Ensure that the subject and observers communicate through
abstract interfaces, so the system can be extended without
needing to modify the existing code.

class Subject {

 private List<Observer> observers = new Array

Design Patterns: Behavioural 14

List<>();

 public void attach(Observer observer) {

 observers.add(observer);

 }

 public void notifyAllObservers() {

 for (Observer observer : observers) {

 observer.update();

 }

 }

}

What is the Strategy Pattern?
The Strategy Pattern defines a family of algorithms, encapsulates
each one, and makes them interchangeable.

The key idea is to allow an algorithmʼs behaviour to be selected at
runtime. Instead of implementing a single algorithm directly, code
receives run-time instructions as to which of a family of algorithms to
use.

Why Use the Strategy Pattern?

Design Patterns: Behavioural 15

Flexibility The strategy pattern allows the behavior of an object to
be changed at runtime by changing the algorithm it uses.

Decoupling The algorithm implementations are decoupled from the
context class, allowing easier maintenance and testing.

Examples:

Different sorting algorithms (e.g., bubble sort, quicksort) that
can be selected at runtime.

Different payment methods (e.g., credit card, PayPal) in an e-
commerce system.

Strategy
Strategy is a behavioral design pattern that lets you
define a family of algorithms, put each of them into a
separate class, and make their objects

https://refactoring.guru/design-patterns/strategy

Strategy Design Pattern in Java | Baeldung
Implementation of Strategy design pattern in the light
of Java 8 features.

https://www.baeldung.com/java-strategy-pattern

Basic Implementation of Strategy Pattern
The Strategy Pattern defines a family of algorithms, encapsulates
each one, and makes them interchangeable.

This pattern allows algorithms to vary independently from clients
that use them.

Key Points of the Strategy Pattern:

Context The class that uses a strategy to complete a task.

Strategy Interface The common interface that all strategies
must implement.

Concrete Strategies The various algorithms that implement
the strategy interface.

https://refactoring.guru/design-patterns/strategy
https://www.baeldung.com/java-strategy-pattern

Design Patterns: Behavioural 16

In the Strategy Pattern, the context object receives the strategy at
runtime instead of being tightly coupled to a particular algorithm,
thus promoting flexibility.

Example: Payment Strategy

Imagine an e-commerce system where users can choose different
methods of payment (like credit cards, PayPal, etc.). Each payment
method is a strategy.

� Define a Strategy Interface:

public interface PaymentStrategy {

 void pay(int amount);

}

� Implement Concrete Strategies:

public class CreditCardPayment implements Paymen

tStrategy {

 private String cardNumber;

 public CreditCardPayment(String cardNumber)

{

 this.cardNumber = cardNumber;

 }

 @Override

 public void pay(int amount) {

 System.out.println("Paid " + amount + "

using Credit Card: " + cardNumber);

 }

}

public class PayPalPayment implements PaymentStr

ategy {

 private String email;

 public PayPalPayment(String email) {

 this.email = email;

Design Patterns: Behavioural 17

 }

 @Override

 public void pay(int amount) {

 System.out.println("Paid " + amount + "

using PayPal: " + email);

 }

}

� Context Class:
The
Context holds a reference to the strategy and interacts with it.
This allows for dynamic changes to the strategy at runtime.

public class ShoppingCart {

 private PaymentStrategy paymentStrategy;

 public void setPaymentStrategy(PaymentStrate

gy paymentStrategy) {

 this.paymentStrategy = paymentStrategy;

 }

 public void checkout(int amount) {

 paymentStrategy.pay(amount);

 }

}

� Usage:

public class Main {

 public static void main(String[] args) {

 ShoppingCart cart = new ShoppingCart();

 // User selects Credit Card payment

 cart.setPaymentStrategy(new CreditCardPa

yment("1234-5678-9876-5432"));

 cart.checkout(100);

Design Patterns: Behavioural 18

 // User switches to PayPal payment

 cart.setPaymentStrategy(new PayPalPaymen

t("user@example.com"));

 cart.checkout(200);

 }

}

Encapsulation of Algorithms In this example, the payment
methods (credit card, PayPal) are strategies encapsulated in
their own classes. The client (shopping cart) interacts with
them through a common interface.

Flexibility The key benefit is flexibility. You can add new
payment methods (strategies) without modifying the shopping
cart logic.

Open/Closed Principle This pattern adheres to the
Open/Closed Principle, as you can introduce new strategies
without changing existing code.

Interchangeability You can switch between different
algorithms at runtime, making the system more adaptable to
varying needs.

Benefits of Strategy Pattern
Flexibility in Algorithm Selection:

The Strategy Pattern allows you to switch between different
algorithms at runtime, giving the system dynamic behavior
without altering the client code.

Example In a payment processing system, switching between
PayPal, credit card, or bank transfer is simple because each
payment method is encapsulated as a separate strategy.

Code Maintainability:

Strategies are encapsulated, promoting clean separation of
concerns and ensuring that each class has a single
responsibility.

Since each algorithm is in its own class, the system becomes
more modular and maintainable, making future modifications
easier.

Design Patterns: Behavioural 19

Adheres to SOLID Principles:

The Strategy Pattern supports Open/Closed Principle (you
can add new strategies without modifying existing code) and
Single Responsibility Principle (each strategy focuses on one
behavior).

This helps reduce the need for large, complex if-else or
switch statements and keeps classes focused and extensible.

Improved Testability:

Since each strategy is encapsulated separately, individual
strategies can be unit-tested in isolation, which simplifies
debugging and improves reliability.

This makes it easier to pinpoint issues during testing since the
behaviour of each strategy can be independently verified.

Reduces Code Duplication:

The Strategy Pattern eliminates the need for redundant
conditional logic by delegating algorithm-specific behaviour to
strategy classes.

By removing duplicate logic and centralising behavior into
strategy classes, it simplifies code management and reduces
bugs.

Common Pitfalls in Strategy Pattern
Increased Number of Classes

Each strategy requires its own class, which can lead to a
bloated class hierarchy when you have too many strategies.

// Strategy Interface

public interface SortingStrategy {

 void sort(int[] arr);

}

// Concrete Strategy 1: QuickSort

public class QuickSort implements SortingStrateg

y {

 @Override

Design Patterns: Behavioural 20

 public void sort(int[] arr) {

 System.out.println("Performing QuickSor

t");

 // Implement QuickSort logic here

 }

}

// Concrete Strategy 2: MergeSort

public class MergeSort implements SortingStrateg

y {

 @Override

 public void sort(int[] arr) {

 System.out.println("Performing MergeSor

t");

 // Implement MergeSort logic here

 }

}

// Concrete Strategy 3: BubbleSort (for simplici

ty's sake)

public class BubbleSort implements SortingStrate

gy {

 @Override

 public void sort(int[] arr) {

 System.out.println("Performing BubbleSor

t");

 // Implement BubbleSort logic here

 }

}

// Context

public class SortingContext {

 private SortingStrategy strategy;

 public void setStrategy(SortingStrategy stra

tegy) {

 this.strategy = strategy;

 }

Design Patterns: Behavioural 21

 public void sort(int[] arr) {

 strategy.sort(arr);

 }

}

If more strategies are needed (like HeapSort, InsertionSort,
etc.), you must create more classes, leading to an explosion in
the number of classes.

Solution:

Use lambdas or anonymous classes to reduce the number of
individual strategy classes, especially in functional languages.

// Example of using lambda for strategy (Java 8

+)

SortingContext context = new SortingContext();

context.setStrategy((arr) -> {

 System.out.println("Lambda: Perform sorting

logic");

 // Implement the sorting logic here (QuickSo

rt, MergeSort, etc.)

});

context.sort(new int[]{1, 2, 3});

Complexity in Context Setup

The context class may become complicated due to passing
multiple parameters to different strategies.

// Example: PaymentContext class passing transac

tion data to strategies

public class PaymentContext {

 private PaymentStrategy strategy;

 private String accountNumber;

 private double amount;

 public PaymentContext(PaymentStrategy strate

Design Patterns: Behavioural 22

gy, String accountNumber, double amount) {

 this.strategy = strategy;

 this.accountNumber = accountNumber;

 this.amount = amount;

 }

 public void executePayment() {

 strategy.processPayment(accountNumber, a

mount);

 }

}

// PaymentStrategy interface and implementations

public interface PaymentStrategy {

 void processPayment(String accountNumber, do

uble amount);

}

public class PayPalPayment implements PaymentStr

ategy {

 @Override

 public void processPayment(String accountNum

ber, double amount) {

 System.out.println("Processing PayPal pa

yment");

 }

}

public class CreditCardPayment implements Paymen

tStrategy {

 @Override

 public void processPayment(String accountNum

ber, double amount) {

 System.out.println("Processing Credit Ca

rd payment");

 }

}

Design Patterns: Behavioural 23

// Client code

PaymentContext context = new PaymentContext(new

PayPalPayment(), "12345", 100.0);

context.executePayment();

If PaymentContext requires many parameters, it might pass a lot
of unnecessary information to certain strategies, complicating
the design.

Solution:

Simplify the context by passing only what is essential to each
strategy, or use data objects to encapsulate parameters.

Lack of Awareness of Strategy Capabilities

Clients may unknowingly use an inappropriate strategy,
leading to performance issues or undesired outcomes.

// SortingContext unaware of the performance of

BubbleSort for large arrays

public class SortingContext {

 private SortingStrategy strategy;

 public void setStrategy(SortingStrategy stra

tegy) {

 this.strategy = strategy;

 }

 public void sort(int[] arr) {

 strategy.sort(arr);

 }

}

// Client code chooses BubbleSort without knowin

g its inefficiency for large datasets

SortingContext context = new SortingContext();

context.setStrategy(new BubbleSort()); // Ineff

icient for large arrays

Design Patterns: Behavioural 24

context.sort(new int[]{5, 2, 9, 1, 5});

Inappropriate use of strategies (e.g., BubbleSort for large
datasets) leads to performance issues.

Solution:

The context can be made smarter by adding logic to choose the
correct strategy based on the input's characteristics (e.g., input
size).

Overhead of Strategy Creation

If a new strategy object is created every time itʼs needed, this
can lead to performance issues, particularly in resource-
constrained environments.

// Inefficient: New strategy instance created ev

ery time a payment is made

public class PaymentContext {

 public void pay(double amount, String accoun

t) {

 PaymentStrategy strategy = new CreditCar

dPayment();

 strategy.processPayment(account, amoun

t);

 }

}

Repeated creation of strategy instances results in
performance overhead and memory waste.

Solution:

Reuse strategy instances where possible or use a singleton
pattern for strategies that donʼt hold state.

// Efficient: Reuse the same strategy instance

public class PaymentContext {

Design Patterns: Behavioural 25

 private PaymentStrategy strategy = new Credi

tCardPayment(); // Reuse instance

 public void pay(double amount, String accoun

t) {

 strategy.processPayment(account, amoun

t);

 }

}

Tight Coupling in the Context

The context may end up being tightly coupled to specific
strategies if not designed properly, making future changes
difficult.

// Problem: Directly calling specific strategy m

ethods from the context

public class PaymentContext {

 private PayPalPayment payPal = new PayPalPay

ment(); // Tight coupling to PayPalPayment

 public void executePayPalPayment(String acco

unt, double amount) {

 payPal.processPayment(account, amount);

 }

}

In this design, adding or switching to new payment methods
(like CreditCardPayment) requires modifications to the
PaymentContext class.

Solution:

Keep the context loosely coupled by programming to interfaces
and swapping strategies dynamically.

public class PaymentContext {

 private PaymentStrategy strategy;

Design Patterns: Behavioural 26

 public void setStrategy(PaymentStrategy stra

tegy) {

 this.strategy = strategy;

 }

 public void executePayment(String account, d

ouble amount) {

 strategy.processPayment(account, amoun

t);

 }

}

