Design Patterns: Creational

v Creational Patterns:

o Creational patterns focus on the process of object creation, ensuring
that objects are created in a way that suits the system’s design
requirements.

o These patterns allow developers to manage and control how objects are
instantiated, giving flexibility to change the instantiation process without
altering existing code.

Creational
Design
Patterns

Abstract | |singleton| | Builder Factory Multiton Fraiolype
Factory : : . Method

Design Patterns: Creational

v What is a Singleton Pattern?

» The Singleton Pattern ensures that a class has only one instance and
provides a global point of access to that instance.

o This is particularly useful in scenarios where exactly one object is
needed to coordinate actions across the system.

Singleton Design
Pattern

“Ensure that a class has only one instance and
provide a global point of access to it.”

Singleton

- instance : Singleton

- Singleton()
+ getInsance() : Singleton

Why do we need a Singleton?

e Some applications require only a single instance of a class to control
access to resources.

o Examples:
= Logger classes (global logging for the entire application).

= Configuration managers (central management of app
configuration).

= Database connection pools (ensure only one connection pool
exists).

Benefits of Singleton Pattern
e Controlled access to the sole instance.

o Rather than creating multiple objects, a single instance manages
everything.

» All parts of the system use the same instance, ensuring uniform
behaviour across the application.

Design Patterns: Creational

Singleton

Singleton is a creational design pattern that lets you
ensure that a class has only one instance, while
providing a global access point to this instance.

https://refactoring.guru/design-patterns/singleton

Singletons in Java | Baeldung

See how to implement the Singleton Design Pattern in
plain Java.

On Baeldung

) https://www.baeldung.com/java-singleton

v Basic Implementation of Singleton Pattern

Here's a simple implementation of the Singleton pattern in Java:

public class Logger {

// Step 1: Create a private static instance of
the class
private static Logger instance;

// Step 2: Private constructor to prevent insta
ntiation
private Logger() {}

// Step 3: Public method to provide global acce
ss to the instance
public static Logger getInstance() {
if (instance == null) {
instance = new Logger();

}

return instance;

// Example method
public void logMessage(String message) {
System.out.println("Log: " + message);

Design Patterns: Creational

https://refactoring.guru/design-patterns/singleton
https://www.baeldung.com/java-singleton

Key Points about the Basic Implementation
¢ Private Constructor: Prevents instantiation from outside the class.

o Static Instance: Ensures a single instance across the entire
application.

» Lazy Initialisation: The instance is created only when it's needed
(first time getInstance() is Called).

v Thread-Safe Singleton Implementation
In a multi-threaded environment, multiple threads could try to

instantiate the Singleton at the same time. To prevent this, we need to
make the Singleton thread-safe.

1. Synchronized Method - One simple approach is to synchronise
the getinstance method, but this can lead to performance issues.

public class ThreadSafelLogger {
private static ThreadSafelLogger instance;
private ThreadSafelLogger() {}
public static synchronized ThreadSafelLogger
getInstance() {
if (instance == null) {

instance = new ThreadSafelLogger();

}

return instance;

public void logMessage(String message) {
System.out.println("Log: " + message);

Design Patterns: Creational

2. Double-Checked Locking - A more efficient thread-safe
approach using double-checked locking.

public class EfficientThreadSafelLogger {

private static volatile EfficientThreadSafelL
ogger instance;

private EfficientThreadSafelLogger() {}

public static EfficientThreadSafelLogger getI

nstance() {

if (instance == null) {

synchronized (EfficientThreadSafelog

ger.class) {

if (instance == null) {
instance = new EfficientThre
adSafeLogger();

}

return instance;

public void logMessage(String message) {
System.out.println("Log: " + message);

Common Pitfalls in Singleton

» Global State: Singleton can introduce global state, making it
harder to isolate components during testing.

» Testing Challenges: It's hard to mock or substitute the
singleton class in unit tests, unless dependency injection or
mock frameworks are used.

» Tight Coupling: Singleton can lead to tight coupling between
classes, reducing flexibility and increasing dependency

Design Patterns: Creational

management complexity.
v Eager Initialisation vs. Lazy Initialisation

Eager Initialisation: Singleton instance is created at the time of class
loading.

public class EagerLogger {

// Step 1: Initialize the instance at class loa
d time

private static final EagerLogger instance = new
EagerLogger();

private EagerLogger() {}

public static EagerLogger getInstance() {
return instance;

public void logMessage(String message) {
System.out.println("Log: " + message);

Lazy Initialisation: Singleton instance is created when it's actually
needed, as shown in the previous examples.

public static void main(String[] args) {
Logger logger = Logger.getInstance();
logger.logMessage("Singleton pattern in act
ion!"); // Output: Log: Singleton pattern in actio
n!

Which one to use?

» Eager Initialisation: Use when the instance is lightweight and
expected to be used frequently.

Design Patterns: Creational

o Lazy Initialisation: Use when the instance might not always be
needed and can be created on demand.

v Common Pitfalls of Singleton:
¢ Global State

o A Singleton can inadvertently introduce global state into the
application.

o Global state refers to variables or data that are accessible
throughout the entire application.

o While Singleton ensures that only one instance of a class
exists, it also means that every part of the program shares that
one instance.

o If that instance contains mutable data, it can lead to
unintended consequences when different parts of the system
change that state.

Example Scenario:

Imagine we have a Singleton configvanager that holds application-
wide configuration settings.

public class ConfigManager {
private static ConfigManager instance;
private String setting;

private ConfigManager() {}
public static ConfigManager getInstance() {
if (instance == null) {

instance = new ConfigManager();

}

return instance;

public void setSetting(String setting) {
this.setting = setting;

public String getSetting() {

Design Patterns: Creational

return setting;

Since all parts of the program use the same instance of
configmanager , @ change in one part can unexpectedly affect other
parts of the system.

Testing Example:
public class ConfigManagerTest {

@Test
void testGlobalStateIssue() {
ConfigManager configManager = ConfigMana
ger.getInstance();

configManager.setSetting('"Development");

// In a different part of the program, a
nother test runs

ConfigManager anotherReference = ConfigM
anager.getInstance();

anotherReference.setSetting("Productio

n");

// Original reference has now changed un
expectedly

asserteEquals("Production", configManage
r.getSetting());

}

Here, the shared instance leads to a global state issue, where
modifying the setting in one place affects all other places. This
makes it difficult to predict the system’s behaviour.

o Testing Challenges

Design Patterns: Creational

o Testing Singleton classes is tricky because of their global
hature.

o Since Singleton classes control their instantiation, it becomes
hard to substitute them with mock objects or different
instances in unit tests.

o It can also interfere with test isolation.
Example Scenario:

Imagine a Singleton patabaseconnection that connects to a database.

public class DatabaseConnection {
private static DatabaseConnection instance;

private DatabaseConnection() {
// Expensive connection setup

}
public static DatabaseConnection getInstance
O {
if (instance == null) {
instance = new DatabaseConnection();
}
return instance;
}

public String query(String sqgql) {
// Database query implementation
return "Result";

When running tests, we might want to mock the database
connection or use a different instance for isolation, but Singleton
makes this challenging.

Test Challenge:

Design Patterns: Creational

public class DatabaseConnectionTest {

@Test
void testQuery() {
DatabaseConnection dbConn = DatabaseConn
ection.getInstance();
// Hard to isolate or mock this connecti
on in a unit test
String result = dbConn.query("SELECT * F
ROM users");
assertEquals("Result", result);

@Test
void testWithMock() {
DatabaseConnection mockConn = Mockito.mo
ck(DatabaseConnection.class);
Mockito.when(mockConn.query("SELECT * FR
OM users'")).thenReturn('"Mocked Result");
// But there's no easy way to inject thi
s mock into the Singleton structure

}

Solution:

This can be mitigated by using dependency injection (DI)
frameworks or testing libraries that allow mocking singletons (like
wockito With powermock). Alternatively, refactoring to avoid a
Singleton can also resolve this issue.

e Tight Coupling

o Singleton can create tight coupling between classes.

o When multiple classes depend on a Singleton, it becomes
harder to change the Singleton's implementation or switch to a
different pattern.

Design Patterns: Creational

Design Patterns: Creational

o Over time, this can lead to spaghetti code and a rigid
architecture.

Example Scenario:

Let's assume we have multiple classes relying on a Logger
Singleton. As the system grows, they become tightly coupled to
the specific Singleton implementation.

public class Logger {
private static Logger instance;

private Logger() {}

public static Logger getInstance() {
if (instance == null) {
instance = new Logger();

}

return instance;

public void log(String message) {
System.out.println(message);

// Multiple classes relying on Logger Singleton
public class ServiceA {
public void performAction() {
Logger.getInstance().log("ServiceA is pe
rforming an action");

}

public class ServiceB {
public void performAction() {
Logger.getInstance().log("ServiceB is pe
rforming an action");

n

If we want to replace 1ogger with a different logging framework,
we'd have to refactor all classes that rely on 1Logger.getinstance() ,
which introduces tight coupling.

Testing Example:
public class LoggerTest {

@Test
void testLoggerWithMultipleServices() {
Logger logger = Logger.getInstance();

// Logger instance used in multiple plac
es can create coupling issues

ServiceA serviceA = new ServiceA();

ServiceB serviceB = new ServiceB();

serviceA.performAction(); // Relies on t
he same Logger

serviceB.performAction(); // Relies on t
he same Logger

}

v What is the Factory Method Pattern?

o The Factory Method Pattern defines an interface for creating objects
but allows subclasses to alter the type of objects that will be created.

o The essence of the pattern is that object creation is deferred to a
specialised method, often called a factory method.

o Problem: You have a class that needs to create objects, but you
want to delegate the responsibility of deciding which class to
instantiate.

o Solution: Use the Factory Method Pattern, where the object
creation is delegated to subclasses or a specific factory class.

Design Patterns: Creational

Factory Method Design
Pattern

Define an interface for creating an object, but let
subclasses decide which object to instantiate. Factory
Method lets a class defer instantiation to subclasses.

Abstraction

+normalMethod() Product
+makeObj().Product

= ProductA
Implementation1 Implementation2 ProductB

+makeObj():Product +makeObj():Product

The Factory Design Pattern in Java | Baeldung

Explore the factory design pattern.

4

» Java L
£ nttps://www.baeldung.com/java-factory-pattern On Baeldung :

Factory Method

Factory Method is a creational design pattern that
provides an interface for creating objects in a
superclass, but allows subclasses to alter the type of

https://refactoring.guru/design-patterns/factory- REFACTORING
method -GURU-

v Example Scenario
» Imagine you are building a logistics system.

o Depending on whether you are handling land or sea
transportation, you will need to instantiate different kinds of
vehicles, such as trucks or ships.

e In a standard scenario, you might use new to create these objects,
but this approach would make your code less flexible if new
vehicle types are introduced later.

v Step-by-Step Example

Design Patterns: Creational

https://www.baeldung.com/java-factory-pattern
https://refactoring.guru/design-patterns/factory-method

Step 1: Define the Product Interface (Common Interface for
Products)

You define a common interface for the types of objects you want
to create.

public interface Transport {
void deliver();

Step 2: Concrete Products (Specific Object Types)

You create concrete classes that implement the common
interface, such as truck and ship .

public class Truck implements Transport {
@Override
public void deliver() {
System.out.println("Delivering by land i
n a truck");

}

public class Ship implements Transport {
@Override
public void deliver() {
System.out.println("Delivering by sea in
a ship");
}

Step 3: Factory Interface or Abstract Class

Now, define an abstract class (or an interface) that declares the
factory method responsible for creating objects of type transport .

public abstract class Logistics {
// The Factory Method
public abstract Transport createTransport();

Design Patterns: Creational 14

// Other methods using the product created b
y the factory method
public void planDelivery() {
Transport transport = createTransport();
transport.deliver();

Step 4: Concrete Factories (Classes that decide which product
to create)

Concrete factory classes will override the factory method to
decide which Ttransport to create.

public class RoadlLogistics extends Logistics {
@Override
public Transport createTransport() {
return new Truck(); // Concrete Product
(Truck)

}

public class Sealogistics extends Logistics {
@Override
public Transport createTransport() {
return new Ship(); // Concrete Product
(Ship)
3

Step 5: Client Code

The client code calls the factory method but doesn’t need to know
the exact class of the object that will be created.

public class LogisticsApp {
public static void main(String[] args) {
// Choosing the type of logistics dynami
cally
Logistics logistics = new RoadLogistics

Design Patterns: Creational 15

();
logistics.planbDelivery(); // Output: De
livering by land in a truck

logistics = new Sealogistics();
logistics.planbDelivery(); // Output: De
livering by sea in a ship
3
3

¥ Why Use the Factory Method Pattern?

o The factory method separates the process of creating an object
from the client code that uses it — This allows you to introduce
new types of products without modifying existing code.

» If new product types are introduced (e.g., AirLogistics), they can
be handled by creating a new concrete class without modifying
the existing code.

» It gives flexibility in object creation while ensuring the client
remains decoupled from specific product implementations.

v Common Pitfalls of Factory Method:
e Over-complication

o The Factory Method Pattern introduces abstraction by
creating additional classes (factory and product classes) to
decouple object creation. However, if your application only
requires a small number of product variations, this extra
complexity may become burdensome rather than beneficial.

o Over-complication occurs when the Factory Method Pattern
introduces too much overhead for a problem that could be
solved with simpler constructs, like constructors or static
methods.

Example:

Consider a scenario where you're building a system that only
deals with two vehicle types: car and sike .

o If you apply the Factory Method Pattern here, you'll need:

Design Patterns: Creational

Design Patterns: Creationa

vehicle interface.

car class implementing venicle .

u
> > >r

sike class implementing venhicie .
= A vehicleractory abstract class or interface.

» A carFactory and BikeFactory that inherit from

VehicleFactory .

o While this is technically correct, the amount of boilerplate
code introduced far outweighs the benefit of using the Factory
Method Pattern.

o For two types of vehicles, it might be better to use a simple
constructor or a static method rather than adding
unnecessary layers of abstraction.

// Example: Overcomplicated Factory for Two Vehi
cle Types
interface Vehicle {

void move();

class Car implements Vehicle {
@Override
public void move() {
System.out.println("Car is moving");

class Bike implements Vehicle {
@Override
public void move() {
System.out.println("Bike is moving");

abstract class VehicleFactory {
public abstract Vehicle createVehicle();

17

Design Patterns: Creational

class CarFactory extends VehicleFactory {
@Override
public Vehicle createVehicle() {
return new Car();

class BikeFactory extends VehicleFactory {
@Override
public Vehicle createVehicle() {
return new Bike();

In this case, simply using direct instantiation would be far more
efficient:

// Simpler Code
Vehicle car = new Car();
Vehicle bike = new Bike();

« Violation of the Open/Closed Principle

o The Open/Closed Principle (OCP) suggests that classes
should be open for extension but closed for modification.
This means that when you add new functionality (e.g., adding
a new product type), you should extend existing classes
rather than modifying them.

o However, in some cases, the Factory Method Pattern can lead
to violations of this principle if you find yourself constantly
modifying existing factory logic to accommodate new
products.

Example:

Suppose your logistics system initially only supports truck and

Ship .

o Later, you need to introduce riane and Train.

Design Patterns: Creational

o If the factory classes or factory methods have to be modified
repeatedly to accommodate these new vehicle types, you are
violating OCP by constantly updating the same code.

// Violating OCP by Modifying Factory
class Logistics {
public Transport createTransport(String t
ype) {
if (type.equals("Truck")) {
return new Truck();
} else if (type.equals("Ship")) {
return new Ship();
} else if (type.equals("Plane")) {
return new Plane(); // Modifying
the factory logic
} else if (type.equals("Train")) {
return new Train(); // Modifying
again for Train
} else {
throw new IllegalArgumentExceptio
n("Invalid transport type");

}

Each time you add a new type of vehicle, you modify the
createtransport mMethod. This violates the Open/Closed
Principle because instead of extending the code with new
subclasses, you're constantly modifying the original logic.

Solution:

To solve this, you can structure your code so that new vehicle
types can be extended without modifying existing factory logic.
This can be achieved by creating a separate factory for each new
type of vehicle or by using an Abstract Factory.

// Extending Without Modifying Existing Code (OC
P Compliant)
abstract class TransportFactory {

Design Patterns: Creational

public abstract Transport createTransport();

class TruckFactory extends TransportFactory {
@Override
public Transport createTransport() {
return new Truck();

class PlaneFactory extends TransportFactory {
@Override
public Transport createTransport() {
return new Plane();

class TrainFactory extends TransportFactory {
@Override
public Transport createTransport() {
return new Train();

Now, adding a new type of vehicle (e.g., Plane) doesn't require
modifying existing classes. You just need to create a new factory
that extends 7ransportractory , keeping the rest of the code intact.

20

