
Design Patterns 1

�
Design Patterns

Introduction to Design Patterns

What are Design Patterns?
Design patterns are reusable solutions to common problems in software
design. They are best practices that provide developers with proven
ways to structure their code, helping solve issues related to object
creation, communication, and interaction. Design patterns come from
decades of experience in object-oriented programming and are designed
to make your code more reusable, maintainable, and flexible.

Design Patterns 2

Patterns help in writing reusable software components.

For example, if you're building a module to handle connections to
a database, you don't want to write it from scratch every time.

A pattern like the Singleton ensures that only one instance of that
module exists across your app, promoting code reuse.

Design patterns embody the principles of object-oriented
programming OOP such as encapsulation, abstraction, and
inheritance. They make it easier to design solutions that can be
extended or modified with minimal impact on the existing code.

Categories of Design Patterns

Design patterns are generally categorized into three groups based on the
types of problems they solve:

� Creational Patterns  These patterns provide various mechanisms
to create objects, allowing for greater flexibility in object creation.
Examples:

Singleton Ensures only one instance of a class.

Factory Provides an interface for creating objects in a super
class, but allows subclasses to alter the type of objects that will
be created.

� Structural Patterns  These deal with the composition of classes or
objects. They help ensure that if one part of the system changes, the

Design Patterns 3

whole system doesnʼt break. Examples:

Adapter Allows incompatible interfaces to work together.

Decorator Adds responsibilities to objects dynamically.

� Behavioural Patterns  These patterns are concerned with the
interactions and responsibilities between objects. They help in
defining communication between classes and objects. Examples:

Observer Defines a dependency between objects so that when
one changes, its dependents are notified.

Strategy Enables selecting an algorithm's behaviour at runtime.
Why are Design Patterns Important?

Improves Code Maintainability By applying patterns, developers
can ensure that the software is easier to modify and extend.

Provides Common Vocabulary Design patterns create a shared
language, making communication between developers easier.

Prevents Over-Engineering Using design patterns promotes
simplicity and avoids building complex, redundant code.

Increases Productivity Having a ready-made, proven solution
accelerates development and debugging time.

Example: Singleton Pattern
As we mentioned before, one of the simplest and most commonly used
design patterns is Singleton. Here's a practical demonstration:

public class Singleton {

 private static Singleton instance;

 // Private constructor to restrict instantiation.

 private Singleton() {}

 // Public method to provide access to the single i

nstance.

 public static Singleton getInstance() {

 if (instance == null) {

 instance = new Singleton();

 }

Design Patterns 4

 return instance;

 }

 public void showMessage() {

 System.out.println("Hello from Singleton!");

 }

 public static void main(String[] args) {

 Singleton instance = Singleton.getInstance();

 instance.showMessage(); // Output: Hello from

Singleton!

 }

}

This Singleton example prevents more than one instance of a class
from being created.

This pattern can be useful for classes that manage shared resources
such as database connections or logging mechanisms.

A Singleton can prevent unnecessary resource usage by ensuring
only one instance exists, reducing the overhead of resource
management.

Design Patterns
Design Patterns: Elements of Reusable Object-Oriented
Software 1994 is a software engineering book
describing software design patterns. The book was

https://en.wikipedia.org/wiki/Design_Patterns

What's a design pattern?
Design patterns are typical solutions to commonly
occurring problems in software design. They are like pre-
made blueprints that you can customize to solve a

https://refactoring.guru/design-patterns/what-is-patt
ern

https://en.wikipedia.org/wiki/Design_Patterns
https://refactoring.guru/design-patterns/what-is-pattern

Design Patterns 5

