
CT417 : Software Engineering III

Outline

• What is Software Quality Assurance (SQA)

• Software Quality Metrics
- please use this tool responsibly

• How to Measure and Improve Code Quality?

Planned topics for this lesson:

WK08 Software Quality Assurance

CT417 : Software Engineering III

Software Quality Assurance
What is it?

WK08 Software Quality Assurance

• SQA is a systematic process that ensures
software products meet quality standards at
each phase of the development lifecycle.

• It’s more than just testing.

• it involves reviewing the entire development
process, including standards, tools, procedures,
and methodologies, to ensure the final product
meets both functional and non-functional
requirements.

⟨SQA is not just about testing
at the end but is embedded in
each phase of the SDLC.

CT417 : Software Engineering III

Software Quality Assurance
Evolution of SQA

WK08 Software Quality Assurance

conducted after the
completion of the
development phase

{
test everywhere, every time —
becoming a critical pillar in
fast-paced development cycles

Next?

CT417 : Software Engineering III

Software Quality Assurance
Shifting Left in SQA

WK08 Software Quality Assurance

• A major trend in modern software development is to shift
left.

• This means performing testing and quality assurance
activities earlier in the development process.

• By addressing issues during design and coding, instead of
waiting for later stages like user acceptance testing or
production, teams can reduce the cost and impact of fixing
defects

CT417 : Software Engineering III

SQA vs. ST
WK08 Software Quality Assurance

• Quality Assurance (QA) is primarily
focused on improving and
maintaining the integrity of the
process that produces the
software.

• Rather than looking at the end
product, QA evaluates the steps
and practices that are followed to
create it.

• By refining how the software is
built, it reduces the likelihood of
defects and enhances the overall
quality.

⟨ • Software Testing (ST) is concerned with
evaluating the final product.

• It identifies defects by validating the
functionality, security, and performance
of the software.

• Whereas QA seeks to prevent issues,
software testing reactively catches
defects in the product.

• It focuses on ensuring that the end
result meets the original specifications
and works as intended.

⟨

CT417 : Software Engineering III

Proactive vs. Reactive
WK08 Software Quality Assurance

Approaches in SQA

• In proactive software quality assurance, the
focus is on preventing defects from being
introduced into the system.

• This involves activities such as code
reviews, writing tests before development
(e.g., TDD), and using tools to analyse the
code quality upfront, even before execution.

• The aim is to catch potential issues early,
reducing the cost of fixing them later.

• Reactive quality assurance occurs after defects have been introduced,
with the focus on identifying and fixing issues after they occur.

• This involves testing the system to uncover defects, tracking bugs, and
fixing problems through activities like regression testing and post-
deployment incident responses.

Proactive strategy

Bug tracking,
Incident reports, etc.

Reactive strategy

Code reviews,
TDD, etc.

CT417 : Software Engineering III

Static vs. Dynamic
WK08 Software Quality Assurance

static testing

dynamic testing

CT417 : Software Engineering III

Static vs. Dynamic
WK08 Software Quality Assurance

static testing

• Static testing involves examining the code or software artefacts (like design documents) without executing the code.

• Key Techniques:

- Manual inspection of code for potential defects.

- Static analysis tools (e.g., SonarQube) analyse the source code for syntax errors, vulnerabilities, and adherence to coding standards.

• Finds issues early in the development cycle, like coding errors or security vulnerabilities, before running the application.

CT417 : Software Engineering III

Static vs. Dynamic
WK08 Software Quality Assurance

• Dynamic testing involves executing the code to validate its behavior against expected outcomes.

• Key Techniques:

- Unit Testing, Integration Testing, System Testing.

- Functional & Non-Functional Testing

• Identifies real-time issues in a running application, such as memory leaks or functionality bugs.

dynamic testing

CT417 : Software Engineering III

Software Quality Metrics
WK08 Software Quality Assurance

Code Coverage

• Code coverage measures how much of your
source code is tested by automated tests.

• It identifies untested code paths and functions.

• Key Types of Coverage:

✓ Line Coverage — Measures the
percentage of executed lines of code
during a test suite.

✓ Branch Coverage — Evaluates whether
both true and false branches of every
control structure (like if-statements) are
tested.

✓ Function Coverage — Verifies that all
methods/functions are executed at least
once during testing.

• High code coverage can signal robust testing
but does not guarantee code quality.

• It ensures that critical code paths are not left
untested, which could lead to defects in
production.

{

Code Coverage

}

}

method for testing

unit test

• Line coverage measures how many statements you took

- A statement is usually a line of code, not including
comments, conditionals (if-then-else), and method
headers)

• Branch coverage checks if you took the true and false
branch for each conditional (if, for, while).

- You’ll have twice as many branches as conditionals

calculate the line coverage and branch
coverage - what do you think?

50/50 , 50/25, , 62/50 , 100/50

CT417 : Software Engineering III

WK08 Software Quality Assurance

Line vs. Branch

CT417 : Software Engineering III

Software Quality Metrics
WK08 Software Quality Assurance

Code Smells

• Code smells refer to any symptom in the source code that indicates
deeper problems or technical debt.

• Examples of Common Code Smells:

◦ Long Methods — Functions that are excessively long, making
them difficult to understand and maintain.

◦ Duplicated Code — Code that is repeated across the codebase,
increasing maintenance effort and risk of errors.

◦ Large Classes — Classes that have too many responsibilities,
violating the Single Responsibility Principle (SRP).

◦ Excessive Comments — Too many comments may indicate
code that is hard to understand or not self-explanatory.

• Code smells increase the complexity of the codebase, making it
harder to maintain and test.

• Addressing them early improves readability and maintainability.

CT417 : Software Engineering III

Software Quality Metrics
WK08 Software Quality Assurance

Cyclomatic Complexity

• Cyclomatic complexity is a software metric used to indicate the complexity of a program by measuring the number of independent paths through the source code.

• It counts the number of decision points (e.g., if, for, while statements) in a function, method, or code block. The higher the number, the more complex the code.

CC = E − N + 2P
◦ , Number of edges in the control flow graph.

◦ , Number of nodes in the control flow graph.

◦ , Number of connected components or exit points in the code

E

N

P

• What Does It Mean?

Low Complexity CC = 1 to 10 Easier to understand and maintain

Moderate Complexity CC = 11 to 20 Increased testing effort, some challenges in maintainability

High Complexity CC = 21 to 50 Difficult to maintain and test; higher risk for bugs

Very High Complexity CC > 50 Unmanageable, likely requiring refactoring

CT417 : Software Engineering III

Software Quality Metrics
WK08 Software Quality Assurance

= E − N + 2P
= 8 − 7 + 2(1)
= 3

Cyclomatic Complexity

CT417 : Software Engineering III

The Tools
WK08 Software Quality Assurance

Code Coverage

Cyclomatic
Complexity

Code Smell

A widely used tool for measuring test coverage in Java
projects. It integrates seamlessly with popular build tools
like Maven and Gradle.

A popular tool for JavaScript applications. It provides coverage
reports for Mocha, Jest, and other testing frameworks.

A static analysis tool that integrates with multiple languages
and IDEs to calculate cyclomatic complexity, alongside other
code quality metrics.

A tool that supports complexity analysis and gives feedback on
issues like high cyclomatic complexity in code

A plugin that integrates with IDEs to analyse code on the fly for code
smells (e.g., dead code, long methods, poor naming conventions)

Apple’s SSL Bug — 2014

• A bug in the Apple’s SSL implementation that affected
iOS 6, iOS 7, and OS X 10.9

• It was undiscovered for about TWO (2) years

• The bug compromised SSL-based HTTPS connections
that use specifically Diffie-Hellman (DH) key exchange
during the initial handshake phase
- It allowed an attacker to launch a Man-in-the-Middle

attack and compromise the secure communication
between client and server

Case Study

• Both client and server exchange public kets,
which are used by each side to calculate a
common session key

• To deter man-in-the-middle attack, the server
digitally signs its public key before sending it to
the client

• The client in turn validates the signature before
accepting the public key

CT417 : Software Engineering III

WK08 Software Quality Assurance

Apple’s SSL Bug — 2014

• A bug in the Apple’s SSL implementation that affected
iOS 6, iOS 7, and OS X 10.9

• It was undiscovered for about TWO (2) years

• The bug compromised SSL-based HTTPS connections
that use specifically Diffie-Hellman (DH) key exchange
during the initial handshake phase
- It allowed an attacker to launch a Man-in-the-Middle

attack and compromise the secure communication
between client and server

Case Study

• Both client and server exchange public kets,
which are used by each side to calculate a
common session key

• To deter man-in-the-middle attack, the server
digitally signs its public key before sending it to
the client

• The client in turn validates the signature before
accepting the public key

• client simply accepted public key regardless

• man-in-the-middle attack happens !

CT417 : Software Engineering III

WK08 Software Quality Assurance

Apple’s SSL Bug — 2014
Case Study

CT417 : Software Engineering III

WK08 Software Quality Assurance

Best Practices
Maintaining Code Quality

CT417 : Software Engineering III

WK08 Software Quality Assurance

Regular Code Reviews:

• Code reviews ensure that different developers review each other’s work, catching bugs or bad practices early.

• It fosters team collaboration, helps in knowledge sharing, and enforces consistency in coding standards.

• Encourage pair programming or peer reviews as part of the development culture.

Automated Testing in CI/CD:

• Automated tests in CI/CD pipelines ensure that new code doesn’t break existing functionality.

• Write unit tests, integration tests, and use code coverage metrics.

• Automating tests saves time, reduces manual testing effort, and quickly identifies bugs after every code change.

Monitoring & Continuous Improvement:

• Implement dashboards with tools like SonarQube, Jenkins, or CircleCI to monitor ongoing code quality metrics.

• Set thresholds for when alerts should be triggered if quality metrics degrade over time.

Best Practices
Maintaining Code Quality

CT417 : Software Engineering III

WK08 Software Quality Assurance

