Outline

Planned topics for this lesson:

e \What is Software Quality Assurance (SQA)

e Software Quality Metrics
— PLEASE USE THIS TOOL RESPONSIBLY

® How to Measure and Improve Code Quality?

CT417 : Software Engineering Il " /16] 4

(
| inl
WKO08 Software Quality Assurance
We test here We also
We test test here
here
And we
We test test here
here
Release
Deploy
And here
And ofcource..
here Operate
And we
test here Can we test here ?
Of course we can !
i

Shift Left Shift Right

Software Quality Assurance

What is it?

e SQA is a systematic process that ensures
software products meet quality standards at
each phase of the development lifecycle.

e |t's more than just testing.

® it involves reviewing the entire development
process, including standards, tools, procedures,
and methodologies, to ensure the final product
meets both functional and non-functional
requirements.

SAA IS NOT JVUST ABOVT TESTING
AT THE END BUT IS EMBEDDED N
EACH PHASE OF THE SDLC.

CT417 : Software Engineering |l ¥/

WKO08 Software Quality Assurance

‘(¢45 kgp
w\xé'{‘ ‘“f"%“sf"ng&
CLEASE w3
PLAN RELEASE ~, %51 -
VeERWY &~
@y)
AND
o
MONTToR OF Coulst ..
R Cwwe
TesT HEEE.
of CovlsE
Wt CAn

Software Quality Assurance

Evolution of SQA

Manual Testing
1

1980 - 1990
Waterfall
Methodology

A

CONDUCTED AFTER THE
COMPLETION OF THE
DEVELOPMENT PHASE

Bulky Automation

Tools

1990 - 2000
Experimentation
with different
development
approaches

D ———e—

More Robust Automation
Tools+ Open Source More About
Frameworks Scale

2000 - 2010 2010 - 2018
Agile approaches, DevOps,
faster release continous
cycles testing, CI/CD

\——

TEST EVERYWHERE, EVERY TIME —
BECOMING A CRITICAL PILLAR (N
FAST—PACED DEVELOPMENT CYCLES

|
‘

CT417 : Software Engineering Il

WKO08 Software Quality Assurance

Autonomous Testing,
Machine Learning
and Al

The Future
Collaborative,
Smart Testing

Levels of autonomy

Assisted Test

Automation
Manual Testing

1
0

Integrated
Automated Testing

Partial Test
Automation 3

2

NEXT?
Autonomous Testing

Intelligent
Automated Testing | \ 5 Vi

4

Software Quality Assurance

Shifting Left in SQA

® A major trend in modern software development is to shift
left.

® [his means performing testing and quality assurance

activities earlier in the development process. Bitiaiatsd

build and test
Push code changes '

®-© ;:
Create %\

new branch

o

e By addressing issues during design and coding, instead of
waiting for later stages like user acceptance testing or
production, teams can reduce the cost and impact of fixing
defects

Percentage
of defects
introduced

Coding Unit Test Release

Functional System
Test Test

Jones, Capers. Applied Software Measurement: Global Analysis of Productivity and Quality.

CT417 : Software Engineering Il

WKO08 Software Quality Assurance

Continuous Integration

Push code fixes

Deploy Review App

»

Automated
build and test

© o0 @
"> ~

©-0-0°0_

Review and approve

=]

o

Merge

Continuous Deployment

Automated
build, test, deploy

o o

©-0-0-0.

Deploy to production

S

| J

S

—)

CT417 : Software Engineering Il " /16] 4

WKO08 Software Quality Assurance

SQA vs. ST
QA + Testing = good software

Quality Assurance (QA) is primarily
focused on improving and
maintaining the integrity of the
process that produces the
software.

QA

improvement of

Rather than looking at the end
development process

product, QA evaluates the steps
and practices that are followed to
create it.

uncovering bugs before
users will find them

prevention of

By refining how the software is :
bugs appearing

built, it reduces the likelihood of
defects and enhances the overall
quality.

Testing

Software Testing (ST) is concerned with
evaluating the final product.

It identifies defects by validating the
functionality, security, and performance
of the software.

Whereas QA seeks to prevent issues,
software testing reactively catches
defects in the product.

It focuses on ensuring that the end
result meets the original specifications
and works as intended.

CT417 : Software Engineering Il " /16] 4

WKO08 Software Quality Assurance

Proactive vs. Reactive

Approaches in SQA

Test Test
PROACTIVE STRATEGY
® |n proactive software quality assurance, the | Design + Launch
focus is on preventing defects from being | | _
introduced into the system. I‘ 1* —1)
Discovery A Development
® This involves activities such as code j
reviews, writing tests before development |
(e.9., TDD), and using tools to analyse the ~ b Bug tracking
code quality upfront, even before execution. I Incident repo,rts otc

® [he aim is to catch potential issues early,
reducing the cost of fixing them later.

\ REACTIVE STRATEGY 14

® Reactive quality assurance occurs after defects have been introduced,

f([))ds re:'ews’ with the focus on identifying and fixing issues after they occur.
, €LC.

® [his involves testing the system to uncover defects, tracking bugs, and
fixing problems through activities like regression testing and post-
deployment incident responses.

CT417 : Software Engineering Il

WKO08 Software Quality Assurance

Static vs. Dynamic

DYNAMIC TESTING

Automated ,
GUI Tests Business

Facing Tests

Automated API Tests “Are we building“the
right system?

Automated Component Tests Technology Facing Tests

AUENVE EULE. N L hS
system right?”
Automated Unit Tests

STATIC TESTING

CT417 : Software Engineering Il

WKO08 Software Quality Assurance

Static vs. Dynamic

e Static testing involves examining the code or software artefacts (like design documents) without executing the code.
e Key lechniques:
- Manual inspection of code for potential defects.
- Static analysis tools (e.g., SonarQube) analyse the source code for syntax errors, vulnerabilities, and adherence to coding standards.

e [inds issues early in the development cycle, like coding errors or security vulnerabilities, before running the application.

ETENVE EULCIN) .
system right?”

Automated Unit Tests

STATIC TESTING

CT417 : Software Engineering |l

WKO08 Software Quality Assurance

Static vs. Dynamic

DYNAMIC TESTING

4 \ Costs /N
¥y Automated Y .
~ GUITests Business
Facing Tests
Automated API Tests "Are we building“the
right system?
Automated Component Tests \/ Speed

e Dynamic testing involves executing the code to validate its behavior against expected outcomes.
e Key lechniques:

- Unit Testing, Integration Testing, System Testing.

- Functional & Non-Functional Testing

e [dentifies real-time issues in a running application, such as memory leaks or functionality bugs.

CT417 : Software Engineering |l s 1) -

WKO08 Software Quality Assurance

Software Quality Metrics

Code Coverage

e (Code coverage measures how much of your Coverage Report - All Packages

source code is tested by automated tests. Package ’ # Classes Complexity
All Packages 221 1.727
e [t identifies untested code paths and functions. o > o
junit.runner 2.225
o Key Types of Coverage: junit textui 1.686
org.junit 1 1.655
v Line Coverage — Measures the junit.experimental 1.5
. .junit. i l. i 3.357
percentage of executed lines of code > T o
during a test suite. org.junit.experimental.results 1.222
org.junit.experimental.runners 1
v Branch Coverage — Evaluates whether ora.lunit.experimental.theories. ' He7e
org.junit.experimental.theories.internal 2.29
bOth true aﬂd false braﬂCheS Of every) org.junit.experimental.theories.suppliers 2
control structure (like if-statements) are and; lin', e - i
org.junit.internal.builders 2
teSted, org.junit.internal.matchers 1.391
org.junit.internal.requests 1.429
v Function Coverage — Verifies that all 269 jupitinternal uANers : 2155
\ > org.junit.internal.runners.model 1.5
methods/functions are executed at least org.junit.internal.runners.rules 2.111
once during teSting. org.junit.internal.runners.statements 2
org.junit.matchers 1
. . . Junit.rul 20 1.444
e High code coverage can signal robust testing ora unit runner " 378
but does not guarantee code qua“ty org.junit.runner.manipulation 1.632
org.junit.runner.notification 12 1.162
e [t ensures that critical code paths are not left g rp——— = 2
. . org.junit.runners.model 11 1.918
untested, which could lead to defects In
' Report generated by Cobertura 1.9.4.1 on 12/22/12 2:25 PM.
production.

CT417 : Software Engineering Il " /s]

| 1T
WKO08 Software Quality Assurance
Line vs. Branch
public void setBalance(int balance)
® | ine coverage measures how many statements you took ‘
if (balance>100000)
{
- I . . . Svy l. OULC. intlr: "You are very rich"):;
A statement is ugqally a Ime of code, not including Syste: whl-:r:n; vlu . _) METHOD FOR TESTING
comments, conditionals (if-then-else), and method . FhAEs.pasamce = batances
headers) yee
{
® Branch coverage checks if you took the true and false System.out.println("¥ou are well offf);
branch for each conditional (if, for, while). | Fhas-beience = balences

- You’ll have twice as many branches as conditionals

public class BalanceTest {

@Tesc
CALCVYLATE THE LINE COVERAGE AND BRANCH public void evaluatesSetBalance() {
COVERAGE — UWHAT DO YOU THINK? Account acc = new Account ("Enda", 0): VNIT TEST
acc.setBalance (100001);
SO/SO , SO/ZS' , 62/50 , 100/8S0 assertEquals(acc.getBalance (), 100001):;

CT417 : Software Engineering Il

WKO08 Software Quality Assurance

Software Quality Metrics 7

Code Smelis

e (Code smells refer to any symptom in the source code that indicates
deeper problems or technical debt.

public abstract class AbstractCollection implements Collection {
public void addill (dbhstractCollection c¢) {
_(if (c instanceof Set) ()

Set 8 =

e Examples of Common Code Smells: ‘

™\ Duplicated

o Long Methods — Functions that are excessively long, making | . if ({containg)(§.getElementdt (1)) { ’Y| Code
. : : | add(s.getElementldt (1)) ; i —
them difficult to understand and maintain. R o N
\ L R : ~4/ Duplicated ~',
o Duplicated Code — Code that is repeated across the codebase, -} eise if (c instanceof List] () — Code _“

-~

Increasing maintenance effort and risk of errors. / List 1 = (Listjec; .7
' Jfor (int i=0; i < l.size(); i++] {, Alternative Classes
o Large Classes — Classes that have too many responsibilities, [if (teomtainsl.gecii))) ¢ F with
e . - . | add(l.get (1))’ R Different Interfaces
violating the Single Responsibility Principle (SRP).) N |
k\ f:bi ——— -

o Excessive Comments — Too many comments may indicate
code that is hard to understand or not self-explanatory.

e Code smells increase the complexity of the codebase, making it
harder to maintain and test.

e Addressing them early improves readability and maintainability.

}

-} else if (c instanceof Map) —{_\'__

Haﬁ—ﬁ = (Map)c:

for (int 1i=0; i<m.size(); 1i++)

4 Switch Statement

add@if_'ys[i] ; m.val%appropriate Intimacy
M Long Method

CT417 : Software Engineering Il " /16] 4

WKO08 Software Quality Assurance

Software Quality Metrics

Cyclomatic Complexity

e (Cyclomatic complexity is a software metric used to indicate the complexity of a program by measuring the number of independent paths through the source code.

e |t counts the number of decision points (e.g., if, for, while statements) in a function, method, or code block. The higher the number, the more complex the code.

CC=E-N+2P

o E, Number of edges in the control flow graph.
o N, Number of nodes in the control flow graph.

o P, Number of connected components or exit points in the code

e \WVhat Does It Mean?

Low Complexity CC=1to 10 Easier to understand and maintain

Moderate Complexity CC=11t0 20 Increased testing effort, some challenges in maintainability
High Complexity CC =21to 50 Difficult to maintain and test; higher risk for bugs

Very High Complexity CC > 50 Unmanageable, likely requiring refactoring

Software Quality Metrics

Cyclomatic Complexity

IF A = 354
THEN IF B °
THEN A

ELSE A
END I1IF
END IF
PRINT A

CT417 : Software Engineering Il

WKO08 Software Quality Assurance

— E—N+2P
o G —8—7+2(1)

=3
O
O
&

Control Flow Graph

The Tools

Code Coverage

Cyclomatic

Complexity

CT417 : Software Engineering |l

WKO08 Software Quality Assurance

‘ A A) A widely used tool for measuring test coverage in Java
Q'j J J projects. It integrates seamlessly with popular build tools

Java Code Coverage like Maven and Gradle.

il

A popular tool for JavaScript applications. It provides coverage
reports for Mocha, Jest, and other testing frameworks.

SonarQu be\\\ and IDEs to calculate cyclomatic complexity, alongside other

A static analysis tool that integrates with multiple languages

code quality metrics.

A tool that supports complexity analysis and gives feedback on
issues like high cyclomatic complexity in code

Code Smell

sonarlint

A plugin that integrates with IDEs to analyse code on the fly for code
smells (e.g., dead code, long methods, poor naming conventions)

CT417 : Software Engineering Il " /16] 4

WKO08 Software Quality Assurance

Apple’s SSL Bug — 2014

Case Study

® A bug in the Apple’s SSL implementation that affected
I0OS 6, I0S 7, and OS X 10.9

® |t was undiscovered for about TWO (2) years * BOTH CLIENT AND SERVER EXCHANGE PUBLIC KETS,
UWHICH ARE VSED BY EACH SIDE TO CALCULATE A

COMMON SESSION KEY
® The bug compromised SSL-based HTTPS connections

that use specifically Diffie-Hellman (DH) key exchange > + TO DETER MAN—-IN-THE-MIDDLE ATTACK, THE SERVER
during the initial handshake phase DIGITALLY SIGNS ITS PUBLIC KEY BEFORE SENDING IT TO
THE CLIENT

- |t allowed an attacker to launch a Man-in-the-Middle

attack and compromise the secure communication o THE CLIENT IN TVRN VALIDATES THE SIGNATURE BEFORE
between client and server ACCEPTING THE PVBLIC KEY

CT417 : Software Engineering Il " /16] 4

WKO08 Software Quality Assurance

Apple’s SSL Bug — 2014

Case Study

® A bug in the Apple’s SSL implementation that affected
I0OS 6, I0S 7, and OS X 10.9

® |t was undiscovered for about TWO (2) years * BOTH CLIENT AND SERVER EXCHANGE PUBLIC KETS,
UWHICH ARE VSED BY EACH SIDE TO CALCULATE A

COMMON SESSION KEY
® The bug compromised SSL-based HTTPS connections

that use specifically Diffie-Hellman (DH) key exchange > + TO DETER MAN—-IN-THE-MIDDLE ATTACK, THE SERVER
during the initial handshake phase DIGITALLY SIGNS ITS PUBLIC KEY BEFORE SENDING IT TO
THE CLIENT

- |t allowed an attacker to launch a Man-in-the-Middle
attack and compromise the secure communication . T A
between client and server DTG

o CLIENT SIMPLY ACCEPTED PVBLIC KEY REGARDLESS

¢ MAN-IN-THE-MIDDLE ATTACK HAPPENS !

CT417 : Software Engineering Il

WKO08 Software Quality Assurance

Apple’s SSL Bug — 2014

Case Study

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer signedParams,
uint8 t *signature, UIntlé signaturelen)

{

OSStatus err:;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)

goto fail;

goto fail;

if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 0)
i These checks got

skipped

fail: & —
SSLFreeBuffer(isignedHashes);
SSLFreeBuffer(&ihashCtx);
return err;

CT417 : Software Engineering Il

WKO08 Software Quality Assurance

Best Practices

Maintaining Code Quality

Regular Code Reviews:

e Code reviews ensure that different developers review each other’s work, catching bugs or bad practices early.
e |t fosters team collaboration, helps in knowledge sharing, and enforces consistency in coding standards.

* Encourage pair programming or peer reviews as part of the development culture.

Automated Testing in CI/CD:

e Automated tests in CI/CD pipelines ensure that new code doesn’t break existing functionality.
e Write unit tests, integration tests, and use code coverage metrics.
e Automating tests saves time, reduces manual testing effort, and quickly identifies bugs after every code change.

Monitoring & Continuous Improvement:

e Implement dashboards with tools like SonarQube, Jenkins, or CircleCl to monitor ongoing code quality metrics.
e Set thresholds for when alerts should be triggered if quality metrics degrade over time.

CT417 : Software Engineering Il

WKO08 Software Quality Assurance

Best Practices

Maintaining Code Quallty public class OrderService {

public void processOrder(Order order)
if (isOrderValid(order))

public class OrderService { > processItems(order);
public void processOrder(Order order) { } else {
if (order != null && order.getStatus() == Status.NEW)

logInvalidOrder(order);
System.out.printin(“Processing order: " + order.getld());

if (order.getItems().size() > @) {
for (Item item : order.getItems())

LT titem.1sinstockl y) private boolean isOrderValid(Order order)

return order != null && order.getStatus() == Status.NEW;

System.out.printin("Shipping item: " + item.getName());
} else {

System.out.printin("Item out of stock:

[-

+ item.getName());

private void processItems(Order order) {
order.getItems().forEach(this::processItem);

1
_V

(-

+ else {

System.out.printin(“Order invalid or already processed."); , , ,)
private void processlItem(Item 1tem)

r

if (item.isInStock()) {

w System.out.printin(“Shipping 1tem: + item.getName());

} else {
System.out.printin(“Item out of stock:

+ item.getName());

(W—

private void logInvalidOrder(Order order)
System.out.println("Order invalid or already processed.");

ol

J‘

