
OWASP ZAP 1

�
OWASP ZAP
 Introduction to OWASP 
Open Web Application Security Project)

OWASP is a non-profit organisation that focuses on improving the security 
of software. 

They provide open-source tools, frameworks, and educational resources to 
help developers create secure applications. 

One of their most well-known projects is the OWASP Top 10, which lists the 
most critical web application vulnerabilities. This list acts as a guide for 
developers, security professionals, and organisations to understand and 
prioritise the risks associated with insecure software.

OWASP Top Ten | OWASP Foundation
The OWASP Top 10 is the reference standard for the 
most critical web application security risks. Adopting the 
OWASP Top 10 is perhaps the most effective first step 

https://owasp.org/www-project-top-ten/

What is OWASP ZAP?

https://owasp.org/www-project-top-ten/


OWASP ZAP 2

OWASP ZAP Zed Attack Proxy) is an open-source security testing tool 
for web applications.

 It helps developers and security professionals find vulnerabilities in web 
applications through both passive and active scanning.

 It is one of the most widely used tools for dynamic application security 
testing DAST.

Features:

Active and Passive Scanning Can passively observe traffic and 
actively test for vulnerabilities by simulating malicious behaviour.

Automated & Manual Testing Works in both fully automated modes 
and allows for manual exploration of web applications.

Authentication Handling Supports scans behind login screens.

Proxy Functionality Can intercept and modify traffic to simulate 
attack scenarios.

OWASP ZAP Architecture & Key Components

Components:



OWASP ZAP 3

Menu Bar For managing sessions, creating reports, and accessing 
tools.

Toolbar Provides shortcuts to ZAPʼs most common features.

Tree Window Displays the hierarchical view of the site being tested.

Workspace Window Displays requests, responses, and site 
information.

Alerts Tab Shows security alerts and their severity.

History Tab Logs all HTTP requests and responses.

Types of Scanning in ZAP
Passive Scanning:

Passively scans HTTP traffic for vulnerabilities without interacting with 
the application.

Ideal for continuous monitoring and less disruptive, but limited in depth.

Active Scanning:

Actively interacts with the web application by sending modified requests 
to identify vulnerabilities like SQL injection and XSS.

Can be disruptive to live systems and should be used in a test 
environment.

Demonstrating OWASP ZAP with Juice Shop:



OWASP ZAP 4

Juice Shop is a vulnerable web application designed for security training 
and testing, making it an ideal target for ZAP's features.

Hereʼs how you can run the demo:

� Access the Juice Shop demo:

Visit the publicly hosted instance of Juice Shop to access the 
application directly in your browser.

� Launch OWASP ZAP:

Start OWASP ZAP locally and set it up as a proxy. 

Configure your browser to pass all traffic through ZAP (set the proxy 
to localhost:8080 ).

� Perform a passive scan:

Open the Juice Shop application in your browser. ZAP will 
automatically capture the traffic and list it in the interface. 

This passive scan will give you insights into potential security issues 
without actively attacking the site.

� Active scan:

To perform a more thorough analysis, right-click on the Juice Shop 
entry in ZAPʼs “Sitesˮ tree, and select "Attack" > "Active Scan". 

This will allow ZAP to probe the application for vulnerabilities like 
SQL injection, cross-site scripting XSS, and broken authentication.

� Explore vulnerabilities:

ZAP will generate a report highlighting security issues detected, which 
can include a variety of web vulnerabilities like XSS, injection flaws, 
sensitive data exposure, and more. 

https://demo.owasp-juice.shop/


OWASP ZAP 5



OWASP ZAP 6

Integration with CI/CD Pipelines
Why Integrate ZAP with CI/CD?:

Ensures security tests are run continuously, reducing the risk of 
introducing vulnerabilities into production environments.

ZAP can be triggered as part of the build process, automating 
vulnerability detection.

Tools & Integration:

ZAP works with Jenkins, GitLab CI, and other CI tools.

Generate reports automatically and track vulnerabilities over time.

Authentication Mechanisms in ZAP
Form-based Authentication: ZAP can handle simple login forms and 
simulate the login process, maintaining the session throughout the scan. 
This is useful for web applications with basic login setups.

Basic & Digest Authentication: Credentials (username and password) 
are automatically handled in the request headers for these simpler 



OWASP ZAP 7

HTTP-based authentication methods, allowing ZAP to seamlessly test 
protected resources.

OAuth & SAML Authentication: ZAP can work with modern 
authentication mechanisms like OAuth2 and SAML, often used in APIs 
and Single Sign-On SSO systems. While these require more complex 
handling, custom scripting enables token-based workflows.

Authentication Scripting: ZAP offers custom scripts for multi-step or 
complex authentication flows, like 2FA or dynamic token exchange, 
ensuring the session remains active during scans.

ZAP Spidering in Detail 
Crawling Depth & Limitations: ZAPʼs spidering can be configured to set 
the depth of crawling, controlling how many levels deep the spider 
explores the applicationʼs structure. This is useful for larger applications 
where deep crawling might result in overload or performance issues.

Handling JavaScript-Rich Applications: Traditional spiders may miss 
pages rendered dynamically via JavaScript. ZAPʼs AJAX Spider 
addresses this issue by executing JavaScript during the crawl to capture 
dynamic content.

Exclusions & Constraints: ZAP allows for the exclusion of certain URLs 
(like logout links or admin panels) to avoid unnecessary or harmful 
actions during spidering, such as logging out users or accessing 
sensitive sections.

Advanced API Security Testing with ZAP
REST and SOAP API Testing: ZAP supports testing for both RESTful 
APIs and SOAP services. It automatically identifies endpoints and can 
send requests to test for vulnerabilities like improper input validation or 
exposed sensitive data.

Automatic and Manual Testing: While ZAP can automate scans on API 
endpoints, more complex testing—like multi-step API calls or chained 
responses—might require manual testing or the use of custom scripts.

Custom Headers & Tokens: Many APIs rely on custom headers for 
authentication (e.g., JWT, Bearer tokens). ZAP allows testers to 
configure these headers for accurate scans of API endpoints.



OWASP ZAP 8

HTTP Interception and Modification
Intercept and Modify Requests: ZAPʼs proxy allows testers to intercept 
HTTP/HTTPS requests, modify them, and replay the altered request. 
This helps simulate attacks such as parameter tampering, SQL 
injection, or altering cookies.

Session Management Testing: ZAPʼs interception capabilities allow you 
to test how a web application manages session cookies or tokens, which 
can expose vulnerabilities like session fixation or token replay attacks.

Replay Modified Requests: After intercepting and modifying HTTP 
requests, testers can replay them to see if the application properly 
handles unexpected inputs, like altered GET/POST parameters.

Extending ZAP with Add-ons
Custom Add-ons for Specific Vulnerabilities ZAPʼs add-on 
marketplace includes plugins for testing specific vulnerabilities like 
Cross-Site Scripting XSS, SQL Injection SQLi), and Content Security 
Policies CSP.

Framework-Specific Scanning ZAP add-ons extend its scanning 
capabilities to handle modern frameworks like Angular, React, or 
Vue.js, allowing for more precise vulnerability detection in applications 
using JavaScript-based front ends.

Enhanced Reporting Add-ons can enhance ZAPʼs default reporting 
tools, enabling more detailed or customised reports that suit different 
security standards (e.g., OWASP Top 10, PCIDSS.

Customisation and Scripting in ZAP
JavaScript & Groovy Scripting ZAP allows testers to write custom 
scripts in JavaScript, Python, or Groovy for advanced testing scenarios, 
such as simulating race conditions or testing specific business logic 
flaws.

Advanced Vulnerability Tests By writing custom scripts, testers can go 
beyond default ZAP scans and target niche vulnerabilities that may not 
be covered by ZAPʼs built-in rules, such as business logic flaws or 
custom encryption weaknesses.


