
IRISH RAIL TRAIN TRACKER

CT216 GROUP PROJECT

Andrew Hayes (21321503), Conor McNamara (21378116),
Jack Lennox (21337636), Owen Guillot (21378921)

Train Enthusiasts

CT216: Software Engineering I

University of Galway

March 2023

IRISH RAIL TRAIN TRACKER

Contents

1 Introduction 1
1.1 Problem Statement and Project Description . 1

1.2 Project Goals . 2

2 User Requirements 3
2.1 User Stories . 3

2.1.1 Real-Time Train Plotting . 3

2.1.2 Real-Time Data Insights . 3

2.1.3 Map Search and Filtering . 3

2.1.4 User Authentication and Management . 4

2.1.5 User Map Preference Storage . 4

2.2 Prototypes . 4

3 System Design 11

4 Core Technologies 11
4.1 Backend . 11

4.1.1 Firebase Hosting and Firestore Database . 11

4.1.2 Serverless Functions . 12

4.2 Frontend . 13

4.2.1 VueJS Framework and Libraries . 13

4.2.2 Router . 13

4.2.3 Store State Management . 14

4.2.4 Responsiveness . 14

4.2.5 Map Page . 17

4.2.6 Insights Page . 20

4.2.7 Login and Sign Up Pages, and JWT Tokens . 21

4.2.8 Account Settings Page . 22

4.2.9 Custom Error Handling with Toasts . 22

4.3 Unit and Integration Testing . 22

4.4 Continuous Integration and Deployment (CI/CD) . 24

4.5 Version Control and Project Management . 26

4.5.1 Git and Github . 26

4.5.2 Jira, Agile, and Scrum . 26

5 Key Challenges 27

2

6 Future Developments 28

7 Individual Contributions 28
7.1 Andrew Hayes . 28

7.2 Conor McNamara . 29

7.3 Jack Lennox . 30

7.4 Owen Guillot . 30

8 Conclusions 30

IRISH RAIL TRAIN TRACKER

1 Introduction

1.1 Problem Statement and Project Description

The initial idea of this project was to design and build a real-time tracker that plotted and displayed Irish
trains on a map. We were aware of a public API ran by Irish Rail which provided (amongst other data)
the live co-ordinates of every train being ran by Irish Rail at any given time. Our intention was to make a
replacement to the official live maps provided by Irish Rail, which had numerous issues.

These problems include:

• The live map provided by the official Irish Rail app has accuracy issues and invents data to fill in the
gaps between API calls so that the map can have a continuous movement animation. We thought
that this was inaccurate because at any given time, there was no way of knowing if a train was
actually in the location that was being reported on the map or if the information had been simply
made up to present a more seamless façade to the user. Frequently, we observed discrepancies that
were equivalent to about 30 minutes travel, where we knew a train to be in one location, but the app
displayed it elsewhere, a great distance away.

• The Irish Rail maps have unintuitive and indistinct icons for the various types of trains and stations.
For example, the web version of the map makes no visual distinction between mainline trains and
DARTs at all, while the app version uses icons that are slightly different shades of green to distinguish
between them. Neither of these seemed acceptable to us.

Figure 1: Indistinct Train and DART Icons [Source: Irish Rail Live Map (Web Version)]

1

https://www.irishrail.ie/en-ie/train-timetables/live-train-map

IRISH RAIL TRAIN TRACKER

• There is an overall lack of attention to detail in the design. The web version of the Irish Rail live
map displays each train’s public message (which is essentially the status of the train), rendering as
plaintext the \n escape sequences that are supposed to represent a newline, resulting in strings such
as “\n13:08 - Maynooth to Dublin Connolly (1 mins late)\nDeparted Maynooth next stop Leixlip
(Louisa Bridge)” being displayed to the user verbatim. Clearly, the data received from the API is not
groomed in any way to make it more intelligible or human-readable, especially for non-tech-savvy
users who may be confused by the presence of the \n.

Figure 2: Unhandled Escape Sequences [Source: Irish Rail Live Map (Web Version)]

We intended to use newer technologies and software development methodologies that we had encountered
to build a better, more user friendly, and intuitive live train tracker. We decided that we would do our web
hosting using Firebase and our data storage with Firestore, the data in question being fetched from the Irish
Rail public API. We decided that we would use the API data to plot each train on a map, and that we would
use OpenLayers as the source of our map layers.

1.2 Project Goals

Our initial goals could be summarised as follows:

• Create a live train tracker that presents only data that is as accurate as possible, with none of the
conjecturing that the Irish Rail’s app employed.

• Create an intuitive, easy to use, and visually pleasing user interface that could be understood and
made use of by almost anyone, regardless of their technical ability.

• Ensure that the map has clear visual distinctions between normal trains and DARTs, late trains and
early trains, running and not running trains, etc.

• Implement a clear and precise data insights page on the website that gives data in a more objective
format than the visual format of the map.

• Create a powerful filtering system for the trains shown on the map so that the user may choose exactly
which categories they want to see.

• Implement a robust user system that allowed the user to save their map filter preferences, allowing
them to re-use them whenever they visit the site, regardless of the device that they are on and without
having to re-select them each time.

• Implement a search feature so that the user may search for individual trains or stations on the map,
only displaying those which contain the searched-for keyword.

As our project went on, we also developed some further goals. It became clear that we wanted to:

• Manage and plan our project using Scrum and Agile methodologies, and to make extensive use of
software such as Atlassian’s Jira.

• Make extensive use of web development frameworks such as VueJS and Bootstrap, and to get as
much as possible out of using Firebase hosting and cloud functions.

• Effectively use Git source management, making extensive use of branching and pull requests, and to
never merge a pull request to the master branch without first getting a review from another teammate.

• Design and implement a good testing environment using the Firebase Emulator to ensure that our
functions were working as intended.

• Implement an effective CI/CD pipeline that would automatically run tests and deploy to Firebase if
the code passed the unit and integration tests.

2

https://www.irishrail.ie/en-ie/train-timetables/live-train-map

IRISH RAIL TRAIN TRACKER

2 User Requirements

2.1 User Stories

2.1.1 Real-Time Train Plotting

The principle functionality of the project was the real-time train plotting feature. We wanted to take real, live,
and up-to-date data from the Irish Rail API and display it in a clear, intuitive, and easy-to-digest visual format
on a map. This would allow a user to easily visually track the locations and punctuality of the various Irish
Rail trains in operation at any given time.

We imagined a user story of a user coming to the website with the intention of simply observing the goings-ons
of Irish Rail trains at that given time. Our target user for this basic functionality would be someone with an
interest in the current locations of various trains, such as your average “train enthusiast” or someone who
wants to know if there are any trains nearby before they move equipment over a railway line.

2.1.2 Real-Time Data Insights

Another functionality that would be of use to a user was the Insights page. Again, we wanted to take live data
and display current statistics that could be inferred from this data. To achieve this, we made use of pie charts
and bar graphs which informed the user of the proportion of trains that were late, the proportion of DARTs
versus normal trains, etc. We also used a text-based leaderboard of the earliest and latest trains operating at
any given time.

Again, the user story in this case was a user coming to the website with the intention of simply observing
the goings-ons of Irish Rail trains at that given tiime. Our target user for this basic functionality would
be someone with an interest in the punctuality of various trains, particularly “train enthusiasts”, but also
researchers and reporters, and perhaps even Irish Rail officials themselves.

2.1.3 Map Search and Filtering

The search and filtering functionality was the key functionality that enabled the broadest use cases. Up until
this point, the user stories have been somewhat niche, and are not really something that your average person
would be interested in. However, the ability to search for particular trains and stations makes this application
extremely useful to everyone from your average commuter to hardcore train enthusiasts. There are a broad
range of user stories in this category. A few, but not all, are summarised below:

• A commuter comes to the website with the intention of searching for their own train to keep track of
it, e.g., see if it’s late or early, track its location, etc. This is the principle usage of the application.

• Someone coming to the website with the intention of searching for a train that a friend or family
member will be arriving on, to see if there are any delays and its location.

• Someone coming to the website with the intent to filter the map so that only running DARTs appear so
that they may keep track of nearby DARTs and when they will be arriving to their local station. This
might be more useful than the DART timetable, because while the timetable is a plan of intention,
the map shows how things are actually going.

• Someone coming to the website with the intention of monitoring the punctuality of all the trains
operating. The map can be filtered to only display late or early trains, or both, and details about each
late train such as its unique train code and its current location can be obtained. This might be of
interest to a researcher or an Irish Rail official, who might want to write a report on the punctuality
of Irish Rail trains

3

IRISH RAIL TRAIN TRACKER

2.1.4 User Authentication and Management

A core use case was to enable visitors of the site to create accounts. A successful user system would require
people to do the following: signup, login, logout, delete their account, get a password reset email, and change
an email or password. One of the services that Firebase offers is the provision of JavaScript-based functions
to interact with their user management system. This means we wouldn’t have to physically set up any actual
REST requests ourselves for example. Their user authentication system also means we don’t have to store
passwords ourselves, which improves security.

2.1.5 User Map Preference Storage

The last of the key use cases for the map was the user map preferences storage. We imagined a user story of
someone who was a frequent user of the website, who came to the website for the same thing every time,
such as tracking a particular train to Galway, or monitoring the DARTs in their local area. It would therefore
be important that this user could save these filter preferences to improve their experience.

2.2 Prototypes

The first prototype that we built was simply a map embedded on a pure-HTML webpage. For this prototype,
OpenStreetMap (a crowdsourced world map built on top of OpenLayers) was used. We quickly decided that
the use of OpenStreetMap was not needed and that we could simply use plain OpenLayers instead.

Figure 3: First Prototype

The first proof of concept was built shortly thereafter using pure HTML and JavaScript. The purpose of this
was to demonstrate that what we wanted to do for the project was indeed going to be possible. Live data was
not used for this POC; instead, a JSON string of data was hard-coded in, which is why if you compare early
screenshots of this project to each other, none of the trains ever move. This proof of concept only displayed
trains, and made no other data available to the user other than the position of the train.

4

IRISH RAIL TRAIN TRACKER

Figure 4: First Proof of Concept

We decided that we wanted a sidebar panel that would appear whenever a given train was clicked. The sidebar
would provide information to the user about the train such as its origin, destination, etc.

Figure 5: Sidebar Panel Proof of Concept

It became clear to us just how beneficial it would be to make the project using a JavaScript framework such as
VueJS instead of just using plain HTML and JavaScript. We migrated all of our existing code to VueJS, which
was a surprisingly challenging process, but well worth it, as it simplified the future development process.

Subsequently, we created basic on-click functionality for each train. When a given train was clicked, text
information about that exact train would be inserted into the webpage.

5

IRISH RAIL TRAIN TRACKER

Figure 6: First Clickable Trains After Migration to VueJS

This on-click action was then changed to make a sidebar panel appear, which contained all the relevant
information for a particular train, although it was not yet in a particularly nice or easy to read format. This
panel would fade in from the side of the screen, rather than just instantly appearing on the map like in the
previous prototypes.

Figure 7: Early Sidebar Panel Prototype

6

IRISH RAIL TRAIN TRACKER

We also began expanding the application into more than just one page. We created the “Insights Page”, which
displayed summary statistics on the current trains at any given point.

Figure 8: Early Prototype of the Insights Page

The square placeholders for the trains on the map were replaced by train icons, sourced under a permissive
license. Originally, each train on the map was represented by a plain black train icon, but we quickly replaced
this with either green or red icons, depending on whether the train was early/on-time or late. Any train that
was late was red, and any other train (including those that were not running, terminated, early, or on-time) was
green. However, we later made not-yet running or terminated train icons black to provide a clearer overview.

Figure 9: Colour-Coded Train Icons

7

IRISH RAIL TRAIN TRACKER

Up until this point, the API was being called manually by the user via a button. This was clearly a sub-optimal
solution, so the button was removed and the API was called on each page load instead, a temporary solution.
Our ultimate plan was to have the API call be done server-side at regular intervals, regardless of how many
people were using our application. This would prevent unnecessary strain on Irish Rail’s API server. We
also began to implement a user system, to which a user could sign up with their e-mail and a password. The
ultimate plan for this user system was to allow the user to save their map filtering preferences, once they were
implemented.

The next two features to be added were the public message ticker along the bottom of the screen and the
“navbar” at the top of the page. The navbar gave the user access to the various other pages that we were
adding to the application, including the insights page, a sign-up/login page, and an account settings page.
The public message ticker idea was as follows: each train has a “public message” data field, which included
up-to-date information about the train’s whereabouts, its origin, its destination, and punctuality. Our idea was
to display this information in a scrolling text bar along the bottom of the screen, as well as being available in
the Sidebar panel.

Figure 10: Screenshot of the Web App with Navbar and Public Messages Ticker

The ticker was later styled to be yellow (intended to be reminiscent of a news broadcast) and the delimiter
between public messages was replaced with the Unicode bullet point symbol, for clarity and aesthetic
purposes.

Figure 11: Styled Public Message Ticker

As time went on, we came to realise that rendering not-yet running and terminated trains as a green icon was
confusing for the user, and was a lost opportunity to provide them with more information in an intuitive,
visual manner. To rectify this, we brought back the plain black train icons that had previously been used for
every train, and now just used them to distinguish trains that were not currently running or terminated. While
we considered using some different kind of colour or pattern for the not-yet running and terminated trains,
ultimately, we decided against it because we didn’t feel that the user would be all too interested, or indeed,
even care at all about the distinction between not-yet running and terminated trains. We felt that these trains
broadly fell under the category of “Not Running”.

8

IRISH RAIL TRAIN TRACKER

Figure 12: Added Black Icons to Distinguish Running and Not Running Trains

After doing this, we also added separate icons for DARTs to distinguish them easily from normal trains. We
opted to use an icon that included the overhead power lines that the DARTs make use of. We followed the
same colouring rules for these new DART icons, red if late, green if running and not late, and black if not
running.

Figure 13: Added Distinct DART Icons

9

IRISH RAIL TRAIN TRACKER

Finally, we implemented the search and filtering features on the map. The filtering allowed the user to filter
in or out essentially any category of train imaginable, and it worked in conjunction with the search feature for
extra-precise filtering. The search feature was case-insensitive, and allowed one to search the various fields in
both the train data and the station data, including searching by keywords, codes, and public messages.

Figure 14: Displaying Only Running Mainline Trains and Mainline Stations

Figure 15: Effect of Searching for the Keyword “Galway”

10

IRISH RAIL TRAIN TRACKER

3 System Design

Figure 16: System Design Architecture

As shown above, the web app was created with VueJS and Bootstrap and hosted using Firebase. A client can
view the following pages: map, insights, account settings, login, signup and a catch all 404 for any other
route.

These pages interacted with serverless Firebase cloud functions. Firestore had three collections: train data,
station data, and user map filter preferences. PubSub (publish-subscribe) functions were used to continuously
request data from the real-time Irish Rail API and to then parse and insert this information into our Firestore
database. Train data was requested every minute, while station data was only requested once a day as it was
unlikely it would change.

The frontend client interacted with onRequest and onCall functions via HTTP requests. The map home page
makes continuous GET requests for live train and station data from Firestore. Map filter preferences can
be saved by users and these onCall functions are protected, meaning if the function request is made by an
unregistered user, it stops immediately. These functions are in charge of managing create, read, and delete
operations on user preferences. So, a user can save their preferences, the frontend can read these, and the user
can also delete these if they wish.

4 Core Technologies

4.1 Backend

4.1.1 Firebase Hosting and Firestore Database

We chose to make use of the Firebase ecosystem for our project as recommended by the lecturer, for a
variety of reasons. The first reason was very simple: we had been provided with free credits for Firebase
which saved us from having to pay out of our pockets for hosting. However, this was not the only reason.
One of Firebase’s services is Firestore, a NoSQL database, storing data in a document structure that was
highly similar to JavaScript Object Notation (JSON). This was rather convenient for us, as we were treating
each train & station as a JavaScript object. Being able to store each train’s data in the database as what is
essentially a JSON object saved us from constructing and de-constructing objects as they were read/written
to/from the database, and prevented unnecessary logic and overhead.

We obtained a nice and memorable URL from the Firebase hosting: irishrailtracker.web.app.

Firebase also allowed easy manual deployment by simply entering npm run build && firebase deploy
in a terminal, and it also integrated nicely with out CI/CD pipeline using GitHub Actions.

11

https://irishrailtracker.web.app/

IRISH RAIL TRAIN TRACKER

Firebase has a useful suite of user system technologies that made managing users convenient. It handles the
hashing of user passwords, meaning that we did not have to implement that ourselves and ensured that user
data was secure. Firebase also has some built-in password strength rules, and would throw an error if a user’s
password was too simple, which again, saved us from having to implement that ourselves and ensured that the
user data was secure. It has a similar set of utilities for user e-mail addresses. When a user signs up, Firebase
ensures that their e-mail is valid and that it is not already in use, which simplifies the process greatly. It also
handles sending the password reset e-mails, which saves us from having to set up our own e-mail server, etc.

Figure 17: Firestore liveTrainData, Stations, and Preferences collections

Shown above are the NoSQL collections stored in Firestore. liveTrainData stores all the train objects,
stations stores all the station objects, and preferences stores the map filter preferences for each user who
saved them.

4.1.2 Serverless Functions

As mentioned in the System Design section, we used three types of Firebase serverless functions to essentially
act as the backend. We needed to fetch new data from the Irish Rail API on a regular basis, which in our
case was every minute for trains and every day for stations. Firebase offers PubSub (publish-subscribe)
functions as a method to achieve this functionality. The Firebase emulator does not support PubSub functions,
so regular onRequest functions that had the same logic we also implemented for local development. For
example to specify that a function should run every minute, we can structure the function as follows:
1 exports.scheduledPostLiveTrainData = functions.pubsub.schedule(’every 1 minutes ’)

.onRun(async (context) => {}

Irish Rail’s API returns data in XML format, which was more complicated than JSON. Given this, we
converted the XML to JSON using the xml2js library. All HTTP requests were made using axios.

onRequest functions could be called anytime from anyone. onCall functions acted as secure functions that
only ran when requested from a source where the client is a logged in user. These two types of functions
were called from the client side.

A comprehensive list of the functions that were created are as follows:

• getStationData: onRequest. To fetch station data from Firestore
• postStationData: onRequest. To populate Firestore with station data from the Irish Rail API (for

local development)
• scheduledPostStationData: PubSub. To populate Firestore with station data from the Irish Rail API

(for production)
• getLiveTrainData: onRequest. To fetch train data from Firestore

12

IRISH RAIL TRAIN TRACKER

• postLiveTrainData: onRequest. To populate Firestore with train data from the Irish Rail API (for
local development)

• scheduledPostLiveTrainData: PubSub. To populate Firestore with train data from the Irish Rail API
(for production)

• getPreferences: onCall. A secure function to fetch a user’s preferences from Firestore
• postPreferences: onCall. A secure function to set a user’s preferences into Firestore
• deletePreferences: onCall. A secure function to delete a user’s preferences from Firestore

Each of these functions log messages back to Firebase depending on the progress it makes. These were speci-
fied by calling the functions.logger.log("") methods. Logging the functions sped up our debuggging
process when an unknown error occured.

The onRequest functions had to handle cross-origin resource sharing (CORS). CORS is a set of browser
rules where certain headers must be added to HTTP requests to access resources from a different domain.
Using the object return by calling "require(’cors’)(origin: true)" and calling "response.set(’Access-Control-
Allow-Origin’, ’*’)" and "response.set(’Access-Control-Allow-Credentials’, ’true’)" we can make CORS-safe
requests to external domains from the browser.

4.2 Frontend

4.2.1 VueJS Framework and Libraries

The frontend was written entirely in VueJS, although earlier prototypes were written in pure HTML. We
made use of the vue3-openlayers library for sourcing the map tiles used in the map, and for plotting on the
map. The website functions as a single page application (SPA), giving the illusion of multiple pages using the
VueJS Router.

Through using the VueJS framework, we were able to split up our code into components. For example, the
sidebar started out as part of the main page in earlier versions of the project, but it eventually became its own
component. This made it far more manageable to make small adjustments as the codebase increased towards
the end of the project. The use of components was also exceptionally beneficial for reducing repetition in
the code. The navbar which features at the top of every page was made into its own component, instead of
hardcoding it into every page. This also meant any changes we made to the navbar would be instantly applied
to all pages, greatly saving time.

The VueJS framework opened many doors into different libraries which we utilised to better our project.
There was the aforementioned vue3-openlayers which was integral to the idea of the project. There was
also vue-chartjs, which we see in action on the “Insights” page. This library allowed us to easily visualise
the train data, and make the experience more engaging and aesthetically pleasing for the user. Along with
vue3-chartjs, we were also able to use vue-bootstrap to further improve the UI of the site. We used
Bootstrap in conjunction with CSS to deliver the cleanest user experience we could. All the dropdown menus,
slider buttons, and normal buttons were taken directly from the vue-bootstrap library. Small additions
such as these really helped to tie the site together and give it a more modern look in comparison to the official
Irish Rail counterpart.

4.2.2 Router

The links in the navbar worked through the use of the Vue “router”. The router would simply load the desired
page when activated. The navbar would not display the option to go to the accounts page if the user wasn’t
signed in, however a user could still try to access the page by using the URL for the page. To combat this, we
made sure to check if the user was logged in before loading the accounts page. If the user wasn’t logged in
then they would be returned to the home page.

This check was implemented by marking the /account route with a beforeEnter, as shown:
1 { path: "/account", component:loadPage(’AccountPage ’), beforeEnter: isAuth }

13

IRISH RAIL TRAIN TRACKER

beforeEnter was a function that decided if the user would be allowed to access this route or whether they
would be sent back to the home page. This is implemented below:
1 function isAuth(to, from , next) {
2 const auth = getAuth(app)
3 onAuthStateChanged(auth , (user) => {
4 // user is logged in, continue to page
5 if (user) {
6 return next()
7 }
8 // user is logged out , send back to home page
9 else {

10 return next({path: "/"})
11 }
12 })
13 }

Figure 18: 404 Error Message

As shown above, a 404 page was implemented as a catch all route, which was activated if a client tried to
access any route that was not already specified. This page would display “404 - You’ve been derailed”, and
have the navbar at the top to allow the user to return to whatever page they wished. This was implemented by
simply specifying:
1 { path: "/: catchAll (.*)", component:loadPage(’404 Page’) }

4.2.3 Store State Management

A VueJS store can be created by instantiating a reactive object. We use to store to have global access to
variables across different components. This was essential to implement, as various components use the same
data, and a mechanism was needed to have a central location where any component could access vital data.
Any variables stored here, such as the loggedIn status, could get got or set from any component.

4.2.4 Responsiveness

The responsiveness in this project was achieved through CSS and Bootstrap. We used the in-built mobile view
on Chrome to test the look of the site on mobile, as well as using our own phones. Conveniently, Bootstrap
components often are responsive by default. For example, the navbar would offer a hamburger dropdown
menu when the screensize became too small. For the rest of the CSS, we decided on a uniform cutoff point of
850px. Once the screen size was smaller than this we changed the website layout. This was implemented
using CSS media queries.

The first issue we had was with the sidebar. We initially tried to keep the sidebar to the side on smaller
screens, but as a result the information was harder to read. Eventually we came to the decision that it should
take up a majority of the screen to be more readable. On mobile, the search bar moves from the center of the
page to the left to make space for the sidebar.

14

IRISH RAIL TRAIN TRACKER

Figure 19: Sidebar on Desktop

Figure 20: Sidebar on Mobile

The insights page changes entirely on screen sizes lower than 850px. We initially considered not showing
the graphs on mobile, but we eventually realised that they are the salient features of the page. We then tried
keeping them horizontally in line with each other and reducing their size, but this just made them harder to
read and interpret. As a result we decided to stack them on top of each other on mobile and allow the users to
scroll down through them.

15

IRISH RAIL TRAIN TRACKER

Figure 21: Graphs on Desktop

Figure 22: Graphs on Mobile

Along with the graphs, we also had the leaderboard to address. We really liked the design of it on desktop
and tried our best to keep it congruent on mobile, but sadly it was once again hard to read when made smaller.
To combat this, we removed the table design on mobile and instead put the headers in line with the data for
each item in the leaderboard.

16

IRISH RAIL TRAIN TRACKER

Figure 23: Leaderboard on Desktop

Figure 24: Leaderboard on Mobile

4.2.5 Map Page

OpenLayers
The map is sourced from OpenLayers. At the start of the project, we considered alternatives to OpenLayers

including Google Maps, but we decided in favour of OpenLayers for a variety of reasons. One such reason
was that acquiring an API key for Google Maps required payment and since we intended to make no money
from the project, we favoured the free option. In addition to this, the licensing of the OpenLayers map tiles
was far more permissive than Google Maps, and allowed us to do essentially whatever we wanted with them
so long as we didn’t masquerade as OpenLayers themselves. OpenLayers actually allows anyone to use their
Content Delivery Network (CDN) to obtain the map tile images on the fly, free of charge, so long as they are

17

IRISH RAIL TRAIN TRACKER

not putting excessive pressure on the CDN. Taking the scope and the scale of our project into consideration,
we decided that our project was not in any way close to a scale that would put any noticeable pressure on
OpenLayers’ CDN.

OpenLayers also provided a superior plotting library, complete with plentiful and in-depth documentation.
OpenLayers allowed us to easily plot the icons using the longitude and latitude provided to us by the Irish
Rail API. Furthermore, we also decided that we preferred the aesthetic appearance of OpenLayers, as it
showed the trainlines on them, which we felt contributed to an easier to follow user experience.

Train Icons and Sidebar
The icons used on the map are simple PNG or SVG files sourced from the internet under permissive

Creative Commons licenses which allowed us to use them without any attribution or copyright issues. The
train icons were originally plain black PNG files, but we made a red and a green version ourselves which
were to be used to represent late and early trains. We considered the possibility of using SVG files for this,
the benefit being that we could have only one icon which we changed the colour of programmatically on the
fly, but re-colouring the icon for each train icon was computationally expensive. As we were only using three
different colours for each icon, it made far more sense to just generate PNG files of the three different colours
once, and then point to these files in the code.

The icons are clickable and increase in size on mouse hover. Clicking an icon reveals the sidebar. The sidebar
is comprised of the Train Code (the unique Irish Rail ID for the train) at the top, an appropriately-coloured
icon below it, and all the other data on that particular train below that. The train sidebar also shows the Origin
and the Destination of the train beside its icon. It also includes an “X” button to close the sidebar. An issue
appeared in the sidebar with trains that were not running, as they had no punctuality data. That is to say, a
train that isn’t running can’t be late or early. To combat this we used a v-if statement to see if a train was
running, if it wasn’t then we moved the public message div to where the punctuality one would have been.

Figure 25: Sidebar for a Non-Running Train

18

IRISH RAIL TRAIN TRACKER

Public Message Ticker
At the bottom of the page is the live ticker. This was a pre-existent component that we imported for use in

our project from the vue-marquee-text-component library. We coloured it yellow and black to make it
visually reminiscent of a news ticker such that you might see on BBC News or similar news stations. The
text displayed in it is simply all the public messages from the trains in the Irish Rail API, with a Unicode
bullet point character appearing in-between the messages to show where one message ends and a new one
begins. Although the text is ordinarily constantly moving, a user can hover their mouse over the ticker to
temporarily prevent the text moving from moving, so that they can read it. To restart the text stream, the user
can simply stop hovering over the ticker by moving their mouse away. This function also works on mobile,
however, as there is no mouse on mobile, the user is required to hold down on the ticker instead.

Figure 26: Live Ticker with Text

Map Search and Filtering
We were cognizant that having all the data/icons appear at once on the map page appears very daunting

for the user, so we worked on implementing some filtering methods. The first, and most concise, method of
filtering is the search bar. The search bar allows a user to input text, the text is then used to search through
the public message of all the trains in the database. This means a user could search by origin, destination, or
even train code very easily.

Along with the search bar, we also have filter buttons which can work in conjunction with the search bar. For
example, if a user typed in “Dublin” and had the buttons set to only show late trains, then the user would see
all late trains leaving or going to Dublin along with all stations with “Dublin” in the name (such as Dublin
Heuston or Dublin Connolly).

Figure 27: Map with Filters Applied

Finally, there are the dropdown menus that are implemented through the use of vue-bootstrap. The filters
menu is one of these, and the other is the legend dropdown menu. They are activated when the button is
clicked, and then deactivated once the button is clicked, or if another element is clicked.

19

IRISH RAIL TRAIN TRACKER

4.2.6 Insights Page

Figure 28: Insights Page (Zoomed Out)

The insights page is shown above. It makes great use of the vue-chartjs library. The pie charts and bar
chart that take up the top of the page are created with this library. The graphs themselves are their own
components. The pie chart component takes a Boolean input to decide whether it is to display the train insight
pie chart, or the station insight pie chart. This Boolean input allowed us to use the same component for both
pie charts, reducing code repetition. The charts take their data from the “store”, which is a feature of VueJS.
The train pie chart shows the amount of trains currently in service, this includes not yet running trains but not
those that are terminated. On the other hand, the bar chart only includes the running trains. Once again, this
updates in real time, changing whenever an ontime/early train becomes late or vice-versa.

The leaderboard utilises a JavaScript function which takes all trains sorted in descending order from earliest
to latest. By default it will only show the top 3 latest and earliest trains. However, the user can toggle it to
show all trains that are actively running. We also decided it would be beneficial to colour the text green for
early and red for late to keep with our vision for as much information to be interpreted as easily as possible.

20

IRISH RAIL TRAIN TRACKER

4.2.7 Login and Sign Up Pages, and JWT Tokens

Figure 29: Login and Sign-Up Components

The above image showcases login and sign up components. The forgot password panel is part of the login
component and becomes visible if the client clicks "Forgot password?". These components make use of
Firebase methods, such as createUserWithEmailAndPassword(), resetPasswordEmail() and signInWithEmai-
lAndPassword(). Using these pre-built methods spec up our development process. We just needed to pass the
necessary parameters, such as the client’s entered email or password for example. The image below shows
the password reset email sent by Firebase to a registered user if they requested it.

Figure 30: Password Reset Email

When a client logs in or signs up, Firebase will generate and send the client a JSON Web Token (JWT), which
is used for identification. Structurally, this token is hashed and has a header, payload and signature. After
this JWT is returned to the client’s browser and stored from Firebase, their browser would send this token to
Firebase if they were interacting with a part of our site that required it, such as changing your password. At
which point, Firebase would send the appropriate response back to the user, where this is handled.

21

IRISH RAIL TRAIN TRACKER

4.2.8 Account Settings Page

Figure 31: Account settings page

The above images shows the account settings page. A core feature of this page is that a user should not
be able to instantly delete their account or change their password without some re-authentication. To
solve this problem, we made use of the reauthenticateWithCredential() Firebase method, which requires
a user object and a credential object. The credential object can be obtained asynchronously by calling
EmailAuthProvider.credential() and passing the user’s email and in our case the result of the current password
input box. Other features that users have on this page is the ability to change their email or password, and to
delete their map preferences.

4.2.9 Custom Error Handling with Toasts

The mosha-vue-toastify library was used to show user friendly error and success messages on the screen
for some time interval. Using this library, we could specify the amount of time a message should be shown
for, as well the text it displays and its background colour. Errors specific to Firebase authentication were
caught, parsed and then displayed. In other situations, we just wrote our own toast messages. Sample toasts
are shown below:

Figure 32: Sample Toast Error & Success Messages

4.3 Unit and Integration Testing

Mocha is a JavaScript-based test runner and Chai is a JavaScript-based assertion library. These were used for
both Vue.js unit tests and Firebase function integration tests.

22

IRISH RAIL TRAIN TRACKER

Unit tests are a testing method that checks individual units or components of code. In our case, we created
unit tests for Vue.js components.
1 it(’Not logged in test’, () => {
2 expect(wrapper.text()).to.include(’Irish Rail Tracker ’);
3 expect(wrapper.text()).to.include(’Home’);
4 expect(wrapper.text()).to.include(’Insights ’);
5 expect(wrapper.text()).to.include(’Login’);
6 expect(wrapper.text()).to.include(’Sign Up’);
7 }),
8

9 it(’Logged in test’, () => {
10 // re-render the component
11 wrapper.setData ({ isLoggedIn: true})
12 nextTick (() => {
13 expect(wrapper.text()).to.include(’Irish Rail Tracker ’);
14 expect(wrapper.text()).to.include(’Home’);
15 expect(wrapper.text()).to.include(’Insights ’);
16 expect(wrapper.text()).to.include(’Account Settings ’);
17 expect(wrapper.text()).to.include(’Logout ’);
18 })
19 })

Shown above is sample of code taken from the Navbar.vue component unit test. The first test makes assertions
when the client is logged out. Then, the second test makes assertions when the client is logged in. If these
assertions fail, then the test fails. The wrappper object refers to a "mount" of the component for testing
purposes. Unit tests were created for thr 404Page, LoginPage, Navbar, and SignUpPage components. As a
future development, more unit tests would be created.

Integration tests are a testing method that checks multiple units acting together. In our case, we created
integration tests for Firebase functions.
1 it(’Test /getStationData ’, async() => {
2 const result = await chai.request(’https ://us-central1 -irishrailtracker.

cloudfunctions.net’) .get(’/getStationData ’)
3 expect(result.statusCode).to.equal (200);
4 expect(result.body.data).to.be.an(’Array’);
5 expect(result.body.data [0]).haveOwnProperty(’StationDesc ’);
6 expect(result.body.data [0]).haveOwnProperty(’StationLatitude ’);
7 expect(result.body.data [0]).haveOwnProperty(’StationLongitude ’);
8 expect(result.body.data [0]).haveOwnProperty(’StationCode ’);
9 expect(result.body.data [0]).haveOwnProperty(’StationId ’);

10 expect(result.body.data [0]).haveOwnProperty(’StationType ’);
11 })

Shown above is sample code taken from the integration test that checks the result of making a GET request to
the /getStationData cloud function. If the result does not pass all these assertions, then the test fails.

These are white box tests as they involve the test writer having a strong understanding of the underlying code
to create them, whereby they write assertions that these tests must pass. Testing is important as it ensures the
quality and robustness of our system whenever we make a change to it. We integrated these tests into our
CI/CD deployment.

23

IRISH RAIL TRAIN TRACKER

4.4 Continuous Integration and Deployment (CI/CD)

Figure 33: GitHub Actions Flowchart

GitHub Actions was used to create an automated CI/CD pipeline. Two YML scripts were created and
placed into a /workflows directory, which GitHub ran depending on their configuration. The above image
showcases the flow that the each of the CI and CD builds took respectively.

The first script, integrate.yml, handled continuous integration (CI), and ran whenever a pull request was
made to a branch that pointed to main. The CI script succeeded if it successfully ran the Vue.js unit tests and
Firebase integration tests, and built without error.

The second script, deploy.yml, handled continuous deployment (CD), and ran whenever a branch was
pushed into main. The CD script succeeded if it successfully ran the VueJS unit tests, built without error,
deployed to Firebase and ran Firebase integration tests, and updated the Firestore database with new train and
station data (this final step was included as sometimes a code change might alter future database schemeas,
and if so, the production database needed to also have these changes).

24

IRISH RAIL TRAIN TRACKER

Figure 34: GitHub Actions Workflows

This CI/CD pipeline increased the team’s efficiency by automating repetitive tasks handling Firebase deploy-
ment and accurately testing our code to catch errors before they became a production issue. The image above
showcases sample completed GitHub Actions workflows taken from GitHub. These workflows can be viewed
in real-time as they execute that their results are stored in the Actions tab in the repository.

25

IRISH RAIL TRAIN TRACKER

4.5 Version Control and Project Management

4.5.1 Git and Github

We made extensive use of Git & Github throughout the project. From the very beginning, we hosted our
source code on a Github repository. We had strict rules for committing to the repository.

Figure 35: Release of a New Feature Flowchart

The image above illustrates the steps that were taken when adding a new feature to the source code. These
steps include:

1. Create a new branch for the new feature, with a descriptive name.
2. Make the changes on this new branch.
3. Commit these changes with a descriptive commit message.
4. Push these changes to the branch.
5. Submit a pull request on Github. This pull request cannot be accepted and merged into main branch

by the person who submitted it, instead it must be reviewed and manually tested by at least one other
team member before it is accepted and merged into the the main branch.

4.5.2 Jira, Agile, and Scrum

From the very beginning of the project, we endeavoured to follow Agile and Scrum methodologies. We had a
weekly stand-up every Thursday, in which we each discussed what we had been working on, what we were
going to work on this week, and if there were any issues blocking us. This was extremely helpful for keeping
the project on-track, ensuring that everyone got a fair share of work to do, and that everyone got the help that
they needed on any issue that was blocking them.

26

IRISH RAIL TRAIN TRACKER

Figure 36: Completed Issue on Jira

As shown above, we used Atlassian’s Jira to track any issues that were brought up at the stand-up. These
issues would be added to a Kanban board, first being put in the “To Do” section. Each issue would then
be assigned to someone, usually by themselves. The person assigned to the issue would move it to the “In
Progress” section once they had begun to make progress on the issue. Finally, once the issue had been
completed, it would be moved to the “Done” section. We found that this was massively beneficial to us to
ensure that no issue that was brought up was ever forgotten, and it helped us to stay accountable for our work.
It was also always very satisfying to be able to move an issue to the “Done” section of the Kanban board. In
total 46 issues were created and completed.

5 Key Challenges

• One of the key challenges that we faced in this project was our initial migration from the prototype
written in pure HTML + JavaScript to VueJS. This proved to be a lot more challenging than expected,
as it required that the way in which the original map was implemented to be entirely re-invented
to make proper use of VueJS templates, scripts, and data. Initially, we just attempted to insert our
existing HTML into a VueJS component, but this didn’t work properly. After much trial and error,
we finally got a working prototype in VueJS. It was almost immediately worth it, as the new, properly
set-up version which utilised all the proper VueJS best practices such as “component-isolation”
immediately offered a clearer way to manage the data on the Map Page.

• Another key challenge was managing the order of external web requests that needed to be created
when loading the map home page for example. This problem had an extra layer of complexity as
since we were using the Firebase Emulator, reading from the database only would fail locally, as
the local Firestore instance would first need to request data from Irish Rail. As already mentioned,
this is why we have both PubSub and onRequest functions for getting and posting Irish Rail data
to/from our database. That being said, using the created() VueJS lifecycle method, the home page
will populate the database with new Irish Rail data if the host URL is local-based. Regardless, it will
then fetch data from the database, and afterwards fetches the user’s preferences if the client’s session
is logged in.

• Another challenge was if a user had map filter preferences saved, we had to ensure only trains/stations
specific to those filters were always shown, regardless if the user logged out and logged back in for
example. At the start there was a bug where all trains/stations would show for a second and then

27

IRISH RAIL TRAIN TRACKER

disappear after the user’s preferences were fetched. This resulted in an awkward display for the user.
To solve this.

• A challenge arose when it came to making the whole website responsive. There are a lot of elements
on each page of the website, and we tried to keep as many of them as possible. This became quite
difficult as we had less space to work with on smaller devices. To achieve this we had to make
extensive work of options such as the z-index of elements to allow them to appear over/under other
elements. We had to work with resizing elements, and adjusting their positions based on percentages.
As we added more items to the project, we slowly reduced the space we had to work with, this
resulted in us having to change the layout of some pages entirely. Overall we believe we dealt with
this challenge exceptionally well, and we are pleased with the final look of the project.

6 Future Developments

Although we achieved all of the goals that we set out to achieve at the start of the project, there are still future
developments and enhancements that could be made to the project:

• One such future development would be to expand the scope of the project beyond just Irish Rail
trains. There is no reason why we need only obtain data from the one API. We could perhaps obtain
bus data from public APIs, or indeed expand our scope to other countries as well, plotting, say for
example, British or French trains on the map as well.

• We could also expand the search feature for more advanced users. At present, the focus of the search
bar is on ease of use, so you can only search for keywords in the data of each train. However, a
more advanced user might be able to make use of a search box that allows the user to enter their own
regular expression, and only displays the trains that match that regular expression.

• At present, we are using publicly available map tiles provided by OpenLayers. However if this project
were to grow to a commercial size, we would no longer be permitted to make use of OpenLayers’
Content Delivery Network (CDN), and we would have to host the map tiles ourselves, although we
could still use OpenLayers tiles.

• Another feature that could be useful to the users of our website would be to make the train timetables
available on our website.

• We could implement the search and filtering features on the Insights page.
• More unit tests could be added to the project to achieve a higher code coverage. Likewise, other

forms of testing such as frontend end-to-end tests could be made to simulate user actions in a test
environment.

7 Individual Contributions

7.1 Andrew Hayes

• ”Scrum Master” of the project, coming up with the initial idea for the project, selecting the Irish
Rail API, selecting OpenLayers as the map tiles source, selecting the map projection to be used,
overseeing the weekly stand-ups, and creating & managing the “Train Enthusiasts” Jira Board.

• Made the first working prototype which plotted circles on an OpenLayers map, originally without the
use of any framework, just HTML & JavaScript, and using a JavaScript function written by Conor to
fetch the data to the client.

• Set up the Firebase hosting, including obtaining a unique project name to facilitate a memorable
URL.

• Migrated the existing code to use VueJS and a VueJS library called vue3-openlayers for the map.
• Implemented the feature that would make the train icons red or green depending on whether or not

they were late, including a function that would tell if any given train was late. Also added a feature

28

IRISH RAIL TRAIN TRACKER

that would give a train a black icon if it was not yet running or terminated, to distinguish it from the
running trains and implemented the icon colouring feature in the sidebar component.

• Implemented the feature that would use distinct icons for DARTs & normal trains.
• Created the green/red versions of the train & DART icons using photo editing software and free-to-use

plain black icons sourced under a permissive Creative Commons license as the base.
• Implemented the handling of the \n escape sequences to improve readability.
• Implemented a filtering feature that allowed the user to filter which trains appeared on the map by

whether the trains were Mainline or DART, On-Time, Late, or Early, Not-Yet Running, Running, or
Terminated, including a meta-toggle that would toggle on or off each other toggle.

• Implemented a filtering feature that would allow the user to filter which stations appeared on the map
by type, either Mainline or DART, including a meta-toggle that would toggle on or off each other
toggle.

• Wrote a variety of utility methods that returned data on a given train or station, primarily used in
the Boolean algebra expressions that were evaluated for each train to determine whether or not they
should be displayed on the map, including isTrainLate(i) (which used logic written by Conor),
getTrainType(i), and getStationType(i).

• Implemented a case-insensitive search feature that would allow the user to search for specific trains
or stations on the map by keyword such as “Dublin“ or “roscommon [sic]”.

• General cleaning up, such as making the tab titlebar display "Irish Rail Tracker", fixing incorrect
labelling of latitude as longitude, writing the README.md, making the map size responsive to viewport
size, fixing the positioning of the train icon, changing the favicon, etc.

• General maintenance of the Git repository, manually testing & approving PRs, resolving merge
conflicts in the PRs of others, etc.

7.2 Conor McNamara

• Created the onRequest, onCall and PubSub cloud functions, which included the parsing of data from
the Irish Rail API, interacting with Firestore and error handling.

• Managed the storage and retrieval of data from the database from the front and backend.
• Setup the raw data pipelines needed on each page, including the map, insights charts and leaderboard,

and train/station sidebars.
• Implemented user authentication on Firebase, the storage of user map preferences in Firestore, and

the ability to login, logout, signup, change a password or email, request a password reset email,
delete an account or map preferences.

• Setup and implemented the VueJS store state management, router, including the 404 catch all route.
• Setup the Firebase emulator for local development.
• Created the Mocha and Chai unit tests for VueJS components and integration tests for Firebase

functions
• Created and wrote the YML scripts for the GitHub Actions CI/CD pipeline.
• Implemented the public message ticker and toast system for error and success messages, as well as

custom error handling on every page.
• Got the first uniquely clickable map icons working, and implemented logic to determine how much

trains were late by, as well as general parsing including origin and destination extraction amongst
others.

• Contributed to the design of the insights and map pages and general responsiveness of the site.
• Created the report diagrams amongst other writings.

29

IRISH RAIL TRAIN TRACKER

7.3 Jack Lennox

• Created the first basic layout for the page in HTML including login page, and basic map page without
any features. Created early prototype for sidebar with different data for different buttons. Animated
the sidebar prototype to slide in when called and slide out when closed.

• Managed the styling for the login, signup, account settings, and insights pages; keeping the aesthetic
consistent for all these pages. Implemented and styled the navbar at the top of every page, including
creating the logo and applying effects to active links. Fixed issues where the live ticker wouldn’t stay
stuck to the bottom of the page. Created the “legend” dropdown and a non-functioning version of the
preferences dropdown menu including all the text and buttons.

• Consistently updated stylistically both the station and train sidebar component to where it is in the
final project. Fixed layout issues caused by non-running or terminated trains having no punctuality
data.

• Implemented small quality-of-life features such as icons increasing in size on hover, eye icons
changing to represent hiding/showing the users password, and colouring items on the insights page
to make information clearer.

• Implemented the graphs on the insight page. This includes passing in data, the general layout of them,
and general styling such as the change on hover etc. Also worked on the layout of the leaderboard on
the insights page.

• Overall made everything responsive, changing the site layout where needed for screen sizes smaller
than 850px. Sometimes implementing complete design changes for smaller screen sizes as seen on
the insights page.

7.4 Owen Guillot

• Implemented a zoom limit feature on the map, constraining the amount a user can zoom in or out
based on what would be relevant to the user.

• Implemented some of the early styles on the website, namely on the Accounts Page.
• Implemented a border limit feature on the map also, which disallows the user from scrolling around

the entire globe, this type of feature seemed to be missing from similar sites to ours. Fixed layout
issues related to this with the map not wanting to be centered where we needed it.

8 Conclusions

We are happy to say that we achieved all of the goals that we had, including both goals that we had from the
beginning of the project, and goals that we added in over time. We:

• Successfully created a live train tracker that presents only data that is as accurate as possible, with no
conjecturing.

• Created an intuitive, easy to use, and reasonably visually pleasing user interface that can be understood
and made use of by almost anyone, regardless of their technical ability.

• Created a map that has clear visual distinctions between normal trains and DARTs, late trains and
early trains, running and not running trains, etc.

• Implemented a clear and precise data insights page on the website that gives data in a more objective
format than the visual format of the map.

• Created a powerful filtering system for the trains shown on the map so that the user may choose
exactly which categories they want to see.

• Implemented a robust user system that allows the user to save their map filter preferences, allowing
them to re-use them whenever they visit the site, regardless of the device that they are on and without
having to re-select them each time.

30

IRISH RAIL TRAIN TRACKER

• Implemented a search feature so that the user may search for individual trains or stations on the map,
only displaying those which contain the searched-for keyword.

• Managed and planned our project using Scrum and Agile methodologies, and made extensive use of
software such as Atlassian’s Jira.

• Made extensive use of web development frameworks such as VueJS and Bootstrap, and got a lot out
of using Firebase hosting and cloud functions.

• Used Git source management, made extensive use of branching and pull requests, and never merged
a pull request to the master branch without first getting a review from another teammate.

• Designed and implemented a good testing environment using the Firebase Emulator to ensure that
our functions were working as intended.

• Implemented an effective CI/CD pipeline that automatically runs tests and deploys to Firebase if the
code passes the unit and integration tests.

31

	Introduction
	Problem Statement and Project Description
	Project Goals

	User Requirements
	User Stories
	Real-Time Train Plotting
	Real-Time Data Insights
	Map Search and Filtering
	User Authentication and Management
	User Map Preference Storage

	Prototypes

	System Design
	Core Technologies
	Backend
	Firebase Hosting and Firestore Database
	Serverless Functions

	Frontend
	VueJS Framework and Libraries
	Router
	Store State Management
	Responsiveness
	Map Page
	Insights Page
	Login and Sign Up Pages, and JWT Tokens
	Account Settings Page
	Custom Error Handling with Toasts

	Unit and Integration Testing
	Continuous Integration and Deployment (CI/CD)
	Version Control and Project Management
	Git and Github
	Jira, Agile, and Scrum

	Key Challenges
	Future Developments
	Individual Contributions
	Andrew Hayes
	Conor McNamara
	Jack Lennox
	Owen Guillot

	Conclusions

