
TOPIC:
NORMALISATION PART 2

C230
Database
Systems

FUNDAMENTALS OF
DATABASE SYSTEMS
ELMASRI AND NAVATHE BOOK

See Chapter 14

(in 3rd Edition)

DEFINITION:
Functional Dependency

Functional dependency is one of the main concepts
associated with normalisation and describes the
relationship between attributes.

If A and B are attributes of a relation R, then B is
functionally dependent (FD) on A if each value of A is
associated with exactly one value of B.

i.e., values in B are uniquely determined by values of A

A → B :

FD from A to B

B is FD on A

A B

TERMINOLOGY:
FUNCTIONAL DEPENDENCY (FD)

NOTES ON NOTATION:

A → B does not necessarily imply B → A

A ↔ B denotes A → B and B → A

A → {B, C} denotes A → B and A → C

{A, B} → C denotes that it is the combination of A and B
that uniquely determines C.

TERMINOLOGY:
CANDIDATE KEY (CK)

Every relation has one or more candidate keys. A
candidate key (CK) is one or more attribute(s) in a relation
with which you can determine all the attributes in the
relation.

Recall we pick one such candidate key as the primary key
of a relation.

EXAMPLE 3: FINDING THE FUNCTIONAL
DEPENDENCIES – GIVEN THE PRIMARY KEY

For the company schema, consider the following alternative
schema to hold information on employees and projects:

emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

What are the functional dependencies?

oThink of this question as … “which attribute can be
uniquely determined from another attribute”

oBegin with any known PK or CK

Can represent these FDs graphically:

emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

ssn → ename

pnumber → {pname, plocation}

{ssn, pnumber} → hours

IMPORTANT TO NOTE:

A functional dependency is a property of a relation
schema R and cannot be inferred automatically but
instead must be defined explicitly by someone who knows
the semantics of R

i.e.

You will either be:

• explicitly given all FDs.

• given enough information about the attributes and the
domain to reasonably infer the FDs (perhaps having to
make certain assumptions).

2. Partial Functional Dependency:
A functional dependency {X,Y} → Z is a partial functional
dependency if some attribute (either X or Y) can be removed
from the LHS and the dependency still holds.

Note: There may be any number of attributes on LHS

1. Full Functional Dependency:
A functional dependency {X,Y} → Z is a full functional
dependency if when some attribute (either X or Y) is removed
from the LHS the dependency does not hold.

Note: There may be any number of attributes on LHS

TYPES OF FUNCTIONAL DEPENDENCIES

CONSIDER EXAMPLE 3 AGAIN:
emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

Are the following Full or Partial Functional Dependencies?

See menti.com

{ssn, pnumber} → hours

{ssn, pnumber} → ename

TYPES OF FUNCTIONAL DEPENDENCIES

3. Transitive Dependency:
A functional dependency X → Y is a transitive dependency
in the table/relation R if there is a set of attributes Z that
is neither a candidate key nor a subset of any key of R
and both:

X → Z and

Z → Y

hold.

EXAMPLE 4:
Consider information on employees and
departments

emp_dept(ename, ssn, bdate, address, dnumber,
dname, dmgrssn)

The functional dependencies are:

ssn → {ename, bdate, address, dnumber}

dnumber → {dname, dmgrssn)

EXAMPLE 4:
An example of a transitive dependency

The dependency:

ssn → dmgrssn

is transitive through dnumber because both the following
hold:

ssn → dnumber

dnumber → dmgrssn

But dnumber is neither a key or a subset of the key.

EXAMPLE 5:

Given the following table to hold student data:

student(id, name, course, assocCollege, courseCoordinator)

and the following Functional Dependencies:

id → name

id → course

course → assocCollege

course → courseCoordinator

EXAMPLE 5:
What is the candidate key?
What are the full dependencies?
What are the transitive dependencies?

Given the following table to hold student data:

student(id, name, course, assocCollege,
courseCoordinator)

and the following Functional Dependencies:

id → name

id → course

course → assocCollege

course → courseCoordinator

EXAMPLE 6:
Draw the functional dependency diagram
and find the candidate key

Consider the table R with 5 attributes

R(A, B, C, D, E)

and the following functional dependencies:

A → B

B → A

B → C

D → A

R(A, B, C, D, E)

and the following functional dependencies:

A → B

B → A

B → C

D → A

Inference rules for Functional
Dependencies

Typically the main obvious functional dependencies are
specified for a schema

– call these F.

However many others can be inferred from F

– call these closure of F: F+

FOR EXAMPLE:

F = { A → {B, C, D, E}

E → {F, G} }

Some other FDs which can be inferred:

A → A

A → {F, G}

E → F

etc.

Inference Rules for FDs:

1. Reflexive: Trivially, an attribute, or set of attributes, always
determines itself.

2. Augmentation: if X → Y can infer XZ → YZ

3. Transitive: if X → Y and Y → Z can infer X → Z

4. Decomposition: if X → YZ can infer X → Y

5. Union (additive): if X → Y and X → Z can infer if X → YZ

6. Pseudotransitive: if X → Y and WY → Z can infer WX → Z

*Note: Rules 1, 2 and 3 are together called Armstrongs’s Axioms

IMPORTANT CONCEPTS

Duplicated Data versus Redundant Data

Problems with un-normalised tables and maintaining
redundant data

Trade off of un-normalised versus normalised tables

What is functional dependency – how to find it

What are full, partial and transitive dependencies – how
to find them

DEFINITION:
FIRST NORMAL FORM (1NF)

A table is in 1NF if it satisfies the following:

The table must not have any repeating groups

Repeating groups: a group of attributes that occur a
variable number of times in each record (non-atomic)

FIRST NORMAL FORM (1NF)

To ensure first normal form, choose an appropriate
primary key (if one is not already specified) and if
required, split table in to two or more tables to remove
repeating groups

EXAMPLE 7:

Consider information on customers (unique number, name,
address and their credit limit) and invoices issued to them
(unique invoice number, date of invoice and amount in
euros). Note that a customer can have many invoices issued
to them.

customer(cNo, name, street, city,
credLim, invNo, invDate, amount)

Repeating Groups?

First Normal Form?

EXAMPLE 7
customer(cno, name, street, city,
credLim, invno, invDate, amount)

To ensure 1NF, choose appropriate Primary Key ….

cNo and invNo as primary key giving:

customer(cNo, invNo, name, street,
city, credLim, invDate, amount)

check for partial dependencies and remove

DEFINITION:
SECOND NORMAL FORM (2NF)

A relation in 2NF must be in 1NF and satisfy the following:

Where there is a composite primary key, all non-key
attributes must be dependent on the entire primary key.

If partial dependencies exists create new relations to split
the attributes such that the partial dependency no longer
holds

EXAMPLE 7:
customer(cNo, invNo, name, street,
city, credLim, invDate, amount)

EXAMPLE 7:
customer(cNo, invNo, name, street,
city, credLim, invDate, amount)

EXAMPLE 7:
customer(cNo, invNo, name, street,
city, credLim, invDate, amount)

customerInvoice(cNo, invNo)

customer(cNo, name, street, city, credLim)

invoice(invNo, invDate, amount)

EXAMPLE 8:
Consider information on products that customers buy (e.g. the
contents of their online basket). Information stored on customers is:
unique customer number, name and address. The data stored on
the products ordered is: unique product number, product
description, unit price per product and quantity of each product
required by the customer. The schema is:

purchase(CNo, ProdNo, cname, street, city, prodDesc,
price, quantity)

QUESTIONS:

purchase(CNo, ProdNo, cname, street,
city, prodDesc, price, quantity)

 Is this table in first normal form?

 Draw a functional dependency diagram

 Is this table in second normal form?

 If not, what problems occur by the table not being in
2NF?

 If not, create a set of tables in 2NF

1NF?

purchase(CNo, ProdNo, cname, street,
city, prodDesc, price, quantity)

No primary key so not in 1NF.

A suitable primary key (using existing attributes) is a
composite key of CNo and ProdNo

Draw the Functional Dependencies:
purchase(CNo, prodNo, cname, street,
city, prodDesc, price, quantity)

Problems caused by purchase
table not being in 2NF:

purchase(cNo, prodNo, cname, street,
city, prodDesc, price, quantity)

Duplication of data:

•Every time a product is purchased by a customer the
customer name, street etc. is stored again

•Every time a product is purchased, its description and
price is stored again.

Create a set of tables in 2NF

Removing the partial dependencies means:

o Attributes that are partially dependent on the PK should
move to a new table;

o The attribute on which they were dependent should be
the PK of the new table but this attribute should not be
removed from the original table

Giving the tables:
purchase(cNo, prodNo, quantity)

customer(cNo, cname, street, city)

product(prodNo, prodDesc, price)

N.B. Make sure each table has its own PK

DEFINITION:
THIRD NORMAL FORM (3NF)

A relation is in 3NF if it is in 2NF and there are no
dependencies between attributes that are not primary
keys. That is, no transitive dependencies exist in the table.

EXAMPLE 8 extended:

Consider the following information stored per product: unique
product number (PK), product description and unit price and
the number of the product in stock; also stored is the unique
ID of the supplier of the product, and the supplier’s details:
name and address details:

product(prodNo, desc, price,
qty_in_stock, supplierNo, Sname,
Sstreet, Scity, SPostcode)

QUESTIONS:
EXAMPLE 8 extended
product(prodNo, desc, price,
qty_in_stock, supplierNo,Sname,
Sstreet, Scity, SPostcode)

 Is this table in first normal form?

 Draw a functional dependency diagram

 Is this table in second and third normal form?

 If not, create a set of tables in 3NF

DEPENDENCY DIAGRAM FOR EXAMPLE 8 EXTENDED

Creating tables?

prodNo, desc, price, qty_in_stock, supplierNo, Sname,
Sstreet, Scity, SPostcode

DEPENDENCY DIAGRAM FOR EXAMPLE 8 EXTENDED

Creating tables?

product(prodNo, desc, price, qty_in_stock, supplierNo)

supplier(supplierNo, Sname, Sstreet, Scity, Spostcode)

Note: how we are
creating links
between the tables
with Foreign Keys

BOYCE-CODD NORMAL FORM (BCNF)

Only in rare cases does a 3NF table not meet the
requirements of BCNF.

These cases are when a table has more than one
candidate key - depending on the functional
dependencies, a 3NF table with two or more overlapping
candidate keys may or may not be in BCNF.

If a table in 3NF does not have multiple overlapping
candidate keys then it is guaranteed to be in BCNF

SUMMARY: Steps to normalise to 3NF

 Identify appropriate Primary Key if not already given (this puts
table in to 1NF)
Draw diagram of Functional Dependencies from the primary key.
 Identify if dependencies are Full, Partial or Transitive.
Using diagram of functional dependencies from previous step:
Normalise to 2NF by removing partial dependencies – creating
new tables as a result. Ensure all new tables have Primary Keys
Normalise to 3NF by removing transitive dependencies (if they
exist), creating new tables as a result. Ensure any new tables
have Primary Keys and are in 2NF
Check that all resulting tables are themselves in 1NF, 2NF and
3NF (in particular, make sure they all have PKs of their own)

EXAMPLE 9:
An un-normalised staff relation has the following structure and
description (next slide):

staff(sNo, sName, sAddress, deptNo,
deptName, managerNo, skilliD, skillName,
sCourseDate, sCourseDuration)

9.1. Where does duplication result from this relation design?

9.2. What is a suitable Primary Key to ensure the staff table
is in 1NF?

9.3. What attributes are fully functional dependent on the
Primary Key?

Description 9(a):

staff(sNo, sName, sAddress, deptNo, deptName,
managerNo, skilliD, skillName, sCourseDate,
sCourseDuration)

A staff member has an associated number (sNo, which is unique for each
staff member), a name and an address and works in a particular
department. Each department has a number (unique), name and manager.
A department has many staff but a staff member can only work for one
department. A staff member can undertake a number of courses to gain
new skills for their job. skilliD uniquely identifies the skill, which has also a
name (skillName). For each skill, courses are offered on a regular basis
and staff can take the course at a date that suits them and complete the
course at their own pace. sCourseDate describes the date when a staff
member undertakes the course for a particular skill and sCourseDuration
describes the time that the staff member took to complete the course. A
staff member cannot undertake more than one course to acquire a new
skill.

FUNCTIONAL DEPENDENCIES

For each skill, courses are
offered on a regular basis and
staff can take the course at a
date that suits them and
complete the course at their own
pace

Description 9(b)

staff(sNo, sName, sAddress, deptNo,
deptName, managerNo, skilliD, skillName,
sCourseDate, sCourseDuration)

A staff member has an associated number (sNo, which is unique for
each staff member), a name and an address and works in a particular
department. Each department has a number (unique), name and
manager. A department has many staff but a staff member can only
work for one department. A staff member can undertake a number of
courses to gain new skills for their job. skilliD uniquely identifies the skill,
which has also a name (skillName). For each skill, courses are offered
once at a certain date and for a certain duration and staff must take
the course on that date: sCourseDate describes the date of the course;
sCourseDuration describes the length (in days) of the course. A staff
member can undertake as many different courses as they wish.

FUNCTIONAL DEPENDENCIES

For each skill, courses are
offered once at a certain date
and for a certain duration and
staff must take the course on
that date

EXAMPLE 10: Winter 2019 Exam Paper
question on Normalisation
A courier company keeps track of packages that are to be delivered to recipients,
by couriers, in the following table:

courier(packageID, recipientCode, recipientName,
recipientAddr, recipientMobile, instructions, dateRec,
dateDelivered, courierID, cName, cMobile)

Stored in the courier table are: a unique package id (packageID) which is
the primary key of the table, a code (recipientCode) which is unique to each
recipient, and the name, address and mobile number of the recipient of the
package (recipientName, recipientAddr and recipientMobile),
delivery instructions (instructions), the date the package was received by
the courier (dateRec), the date the courier delivers the package
(dateDelivered), and details of the courier who delivers the package: an ID
(courierID) which is unique to each courier, in addition to the courier’s name
(cName) and phone number (cMobile).

courier(packageID, recipientcode,
recipientname, recipientaddr, recipientmobile,
instructions, daterec, datedelivered,
courierid, cname, cmobile)

(i) By using the primary key given in the courier table, draw a functional
dependency diagram showing the functional dependencies between all
attributes and the key attribute. Clearly indicate on the diagram any full,
partial or transitive dependencies and state any assumptions made. (8)

(ii) Normalise the courier table to third normal form, explaining the steps
involved at each stage. (8)

	Topic: 	�Normalisation Part 2
	Fundamentals of �Database Systems�Elmasri and Navathe Book
	Definition: �Functional Dependency
	Terminology: �Functional Dependency (FD)
	Notes on Notation:
	Terminology:�Candidate Key (CK)
	Example 3: Finding the functional Dependencies – given the Primary Key
	�Can represent these FDs graphically:�
	Important to Note:
	Types of Functional Dependencies
	Consider Example 3 again:�emp_proj(ssn, pnumber, hours, ename, pname, plocation)�
	Types of Functional Dependencies
	Example 4: �Consider information on employees and departments
	Example 4: �An example of a transitive dependency
	Example 5:
	Example 5: �What is the candidate key?�What are the full dependencies?�What are the transitive dependencies?
	Example 6:�Draw the functional dependency diagram and find the candidate key
	Slide Number 18
	Inference rules for Functional Dependencies
	For example:
	Inference Rules for FDs:
	ImportAnt Concepts
	DEFINITION: �First Normal Form (1NF)
	First Normal Form (1NF)
	Example 7:
	Example 7�customer(cno, name, street, city, credLim, invno, invDate, amount)
	DEFINITION: �SECOND Normal Form (2NF)
	Example 7:�customer(cNo, invNo, name, street, city, credLim, invDate, amount)
	Example 7:�customer(cNo, invNo, name, street, city, credLim, invDate, amount)
	Example 7:�customer(cNo, invNo, name, street, city, credLim, invDate, amount)
	Example 8:
	Questions:
	1NF?
	Draw the Functional Dependencies:�purchase(CNo, prodNo, cname, street, city, prodDesc, price, quantity)
	Problems caused by purchase table not being in 2NF:
	Create a set of tables in 2NF
	DEFINITION: �Third Normal Form (3NF)
	Example 8 extended:
	Questions:�Example 8 extended
	Dependency Diagram for Example 8 extended
	Dependency Diagram for Example 8 extended
	Boyce-Codd Normal FoRM (BCNF)
	Summary: Steps to normalise to 3NF
	Example 9:
	Slide Number 45
	Functional Dependencies
	Slide Number 47
	Functional Dependencies
	Example 10: Winter 2019 Exam Paper question on Normalisation
	courier(packageID, recipientcode, recipientname, recipientaddr, recipientmobile, instructions, daterec, datedelivered, courierid, cname, cmobile)�

