NYFZANYIANYI AN

ﬂ\ﬂ“ﬂQﬂQﬂQ 7
NN\ Y4
ZaN\YZA\YZA\YZANY/A\V/
NN\ Y4

TJANVIANVIANVIANVIANY Y

Intfroductions
(T230 DATABASE SYSTEMS | eeeeeeee :
2022

NYFZANYIANYIANYIANYI AN

ZaN\YZA\YZA\Y/ANY/A\Y/,
NN\ Y4
ZaN\YZA\YZA\YZANY/A\V/
NN\ Y4

TJANVIANVIANVIANVIANY Y

WELCOME! &

Failte roimh go |éir! Database

sssssss

LECTURE TODAY ... INTRODUCTIONS

°* Me
* You

* CT230:

*Learning outcomes and course outline
*Systems and tools we will use

*Some information on how lectures, labs, assessment and exam
will work this year

*Introduction to Database Systems

Dr Josephine Griffith (She/Her)

Room 405 Computer Science Building (formerly IT building)
School of Computer Science

College of Science & Engineering
Josephine.Griffith@universityofgalway.ie

mailto:Josephine.Griffith@universityofgalway.ie

YOU ... 140 students taking this class
at the latest count |

2BCT

2BA, 2BDA, 2BDS, 2BFD, 2BFS, 2BGM, and possibly others
once registration is finished

3CSM
3BP, 3BLE
Erasmus Visiting Students: TEM

\ VA | T DA T S
\ VR | I PO [SO

Y--- U | I PO RS P
You all belong herel

HOW ARE “WE" GOING TO DO THIS ...

* We are required to exclusively deliver on-campus
lectures and on-campus labs

* Attendance at lectures will be logged — though won’t
be correct until probably week 3 when registration is
hopefully finalised - please only sign in if you really
are herel

* | generally provide summary videos of core concepts
as a study /revision aid.

BLACKBOARD “QWICKLY” SIGN IN ...

OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

* Need to be registered and on
Blackboard to sign in

* | know not everyone will be
registered fully today — that’s
ok.

* Go to Blackboard and CT230

and click on “Quickly
Attendance” in Content Area

* | will give code ...

2223-CT230 Database Systems |

2223-CT230 Database
Systems |

Announcements

Module Information

—.

Lectures

C/A: Labs and Tests

Setting up your Databases @
®
®

Exam Information

Qwickly Attendance

Announ

Announcemi

New Announcemenn
prevent new annoul

Create Announc

New annou

Welcome ¢

Posted on: Mc

USING MENTI FOR QUESTIONS

We will use menti.com to ask questions (2-
wayl).

| will try take a regular break from
lectures to try answer some of the
questions but all valid questions will be
answered eventually.

Note to treat each other (and me!) with
respect and be careful of our tone. We
have a diverse group — which is fantastic!
— let’s make sure everyone feels they
belong and that we don’t waste anyone’s
time.

COMMUNICATION IN
DISCUSSION BOARDS

Rule of thumb: If you wouldn’t say something

in a face-to-face setting, then don't say it

4
™

¢ B

B

online either.

TONE

Typed messages are very different to face-to-
face conversations as they can lack the vocal
and nonverbal cues such as your tone of voice.
Satire or sarcasm can often come across in a
very different way in written form. It is important
to make it clear to your peers when you're
joking.

SPELL-CHECK

Itis a good idea to have a quick review and
spell-check of your messages before posting
them, it will only take a minute and can make a
big difference.

AVOID ALL CAPS

Avoid typing in ALL CAPITAL LETTERS! Not
only is it difficult to read but it is usually
interpreted by readers as the text form of
shouting.

At the same time, be forgiving of your
classmates’ mistakes or typos as we all know it
can be easy to make spelling or grammatical
errors.

CAUTION

Unless you are explicitly given permission,
don't publicly post email or other messages,
that have been sent to you in private.

RESPECT

Respect the opinions of your classmates,
even if you disagree with them it is important
to acknowledge that others are entitled to
have their own perspective on issues.

CHECK FAQ

Before you post a question to a discussion
board, be sure to check that someone hasn't
already asked it already and received a reply.
It is also worth checking the course FAQs.

FOR NON-PUBLIC QUESTIONS

| will try finish 5 minutes early for the first few weeks so | will
have extra time for questions.

As we have to vacate the lecture theatre in time for the next
class, | can wait outside the lecture theatre (downstairs) if we
run out of time.

Email is always an option:
josephine.Griffith@universityofgalway.ie

You can arrange to come talk to me in person by setting up
an appointment.

| will also attend some labs and you can ask me questions
there.

LET'S NOW START TALKING ABOUT THE
MODULE ...

(1230 DATABASE SYSTEMS

LEARNING OUTCOMES

— A folder for each of these on Blackboard
— A number of lectures associated with each

LO1|Define and explain terms, concepts, properties and constraints of Relational
Database Systems

LO2 |Identify the theoretical and practical issues in the storage, manipulation,
organisation and indexing of large quantities of data

LO3|Program a database management system for database creation and
manipulation

LO4 |Use Relational Algebra for relational database retrieval

LO5|Program using SQL for relational database retrieval and manipulation

LO6 |Create and apply Entity Relationship Diagrams (ERD) as part of database
development

LO7 |Specify functional dependencies and differentiate between relations in 1st
Normal Form, 2NF, 3NF. Apply the process of normalization

LO8|Define and explain the process of query processing and optimisation. Apply
guery optimisation heuristics to develop a query tree that represents an
efficient evaluation strategy for a given query.

COURSE TOPICS

(not the order we will follow)

°LO1: Database fundamentals:

*Dataq, Information & Database Systems

*The Relational Model

*LO2: Database fundamentals: File Organisations

*LO3: Database programming: SQL for database creation and
manipulation (DDL)

°LO4: Database fundamentals: Relational Algebra

°LO5: Database programming: SQL for database retrieval and
manipulation (DML)

*LO6: Database design: Entity-Relationship Modelling
*LO7: Database design: Normalisation

°LO8: Database programming: Query Processing and Optimisation

Lectures

Lecture materials will be

posted before lectures on
Blackboard

In person lectures for 12
weeks in AM200 (Fottrell
theatre)

*Tuesday 2-2.50pm
*Wednesday 12-12.50pm

(OLLSCOILNA GAILLIMHE
UNIVERSITY OF GALWAY

Announ

Announcemt

New Announcemeni
prevent new annoui

2223-CT230 Database
Systems |

Announcements

Module Information
Create Announc

—.

Lectures -

C/A: Labs and Tests ~ New annou

Setting up your Databases@®

Exam Information ~

Qwickly Attendance ® Welcome ¢

Posted on: Mc

LECTURE NOTES

CT230 module on Blackboard will contain all the
materials.

Note that there will be a mixture of notes, videos,
worked examples, code, etc. for this module.

Ideally use a (paper or electronic) notebook for the

course or have a good process for working on exercises
on laptop.

Notepad++ is a good editor (rather than using MS word
or equivalent)

C/A: Labs and Tests
Starting week 3 (19/09/2022)

Each lab session will have a lab tutor
3BP, 3BLE: Mon 4-6 IT101

2BCT: Tue 3-5 IT101

3CSM: Thur 10-12 IT106

2BA and other BA programmes: Thur 10-2 IT106
— any 2 hours — to be organised

Visiting Students: Pick any time that suits and let
me know please (by email)

IMPORTANT RE LABS

*Physical Labs will not start until week 3.

*You can start getting prepared for labs based
on our lectures.

°It is important that you have your CS account
set-up and are able to connect to the CS
server before labs begin.

*A schedule of labs and tests will be available
soon on Blackboard and | will discuss in detail
once available.

RETRIEVING YOUR AccouNTt DETAILS

(S ACCOUNTS

Check If you have an account and retrieve the details: please enter you student id (cao ref) And Date of
birth.

Studentid - Date of Birth:[1 v [January +[2004 v |

CHECK MY ACCOUNT STATUS

*Everyone should have an ISS account which OLLSCOIL M GATLLIMAE

UNIVERSITY oF GALWAY

you use to access Blackboard, Library,
Computer Suites, etc.

*For this module you also need a CS account to N
access the CS intranet to get your own mySQL BEZTammm -

prevent new annoui

database: —
. . . . Create Announc

*http: / /www2.it.nuigalway.ie /accounts/ .
C/A: Labs and Tests [] New annou

*All information will be in “Setting up —

Exam Information ®

yo U r D q 1.0 b q S e S ” Quwickly Attendance ™~ Welcome ¢

Posted on: Mc

ASSESSMENT INFORMATION

CT230 is assessed via a Semester 1 written exam and C/A
throughout the semester.

The breakdown of the final mark is:
o 20% C/A
o 80% Exam

EXAM

Examined in December 2022 (Exams office
will generate exam timetable in November)

Exam will be two hours duration™ and will be
in person (not online).

Will discuss the format of the exam closer to
the time - many past exam papers exist as
examples.

* unless you have a LENS report

ATTENDANCE AT LECTURES, LABS,
COMPLETION OF ASSIGNMENTS AND TESTS

In addition to gaining up to 20% of the final mark,
some exam questions become much easier if you
have completed the assignment work

Plagiarism is not acceptable and will result in a O
mark

RECOMMENDED BOOK

Fundamentals of database systems

By Ramez Elmasri and Sham Navathe
* Any edition is fine
* Editions 3, 5 and 6 available in library at

Main Library Open Access (005.74 ELM)

FUNDAMENTRLS OF P ——
D"]‘HB«HS[ngms Fundamentals of
DATABASE
R SYSTEMS l rcemenik
-::'_"';:".";‘-: FOURTH EDITION B St AL Database

Systems

Elmasri / Navathe

SOME GENERAL COMMENTS ON THE YEAR

It starts now!

If you have problems, the sooner | (and in general
“we”) find out the more we can help.

Spend some time now:

" thinking of your priorities and time commitments and how you
will manage these for the semester.

* Thinking of your triggers — how you will know if things are
going well or not going well — and what you will do.

* Thinking about how to organise your notes and materials and
lecture sessions and meet your deadlines.

TOMORROW'S LECTURE

°* 12 noon here in AM200

* Topic: Introduction to Database Systems

°* Have a great day!

NYFZANYIANYIANYIANYI AN

ﬂ\ﬂ&ﬂ%ﬂ“ﬂ& /
NN\ Y4
ZaN\YZA\YZA\Y/ANY/A\Y/,
NN\ Y4

TJANVIANVIANVIANVIANY Y

TOPIC: | c220
THE RELATICONAL MODEL | 2otabase

sssssss

Recall ...
why learn about relational DBMS?

90% of industry /enterprise /business applications
are STILL Relational DBMS or Relational DBMS

with extensions (e.g. OO Relational).

Maijority of industry applications require:
*Correctness
"Completeness

(Complex optimisation techniques and
complex Indexing structures).

Relational DBMS provide this.

{d © mydb2974 works_on

2 essn : bigint(20) a
@ pno : int(11)

hours : double

{ © mydb2974 dept_locations

@ dnumber :int(11)

@ dlocation : varchar(20)
{ @& mycb2974 department
¢ dnumber :int(20)

case not significant; e
spaces not allowed

g & mydb2974 project
2 pname - varchar(20)

2 pnumber : int(11)

2 plocation : varchar(20)
dnum : int(11)

{1 & mydb2974 employee
@ fname - varchar(50)
@ minit : varchar(1)
\ | @ Iname : varchar(50)
T @ ssn : bigin{(20)
@ bdate : date
= address - varchar(100)
@ gender : varchar(50)
salary : double
{ # superssn - bigint(20)
dno - int(11)

Ao mydb2974 dependent

@ essn - bigint(20)

dependent_name : varchar(50)
@ gender : varchar(50)

m bdate - date

& relationship - varchar(50)

employee(fname, minit, Iname, ssn, bdate, address, gender, salary,
superssn, dno)

department(dname, dnumber, mgrssn, mgrstartdate)

dept_locations(dnumber, dlocation)

project(pname, pnumber, plocation, dnum)

works_on(essn, pno, hours)

dependent(essn, dependent name, gender, bdate, relationship)

DATABASE SCHEMA

SETTING UP YOUR DATABASE ...

See supplemental notes and video will be
added before labs next week

TOPIC:

Defining and working with the
Relational Model

IDRMENTALS OF
. WS s

rd Fdlilon

Elmasri and Navathe book

Chapter 7

ELMASRI S AVATITRBLE

RELATIONAL DATA MODEL

* Collection of relations (often called tables) where
each relation contains tuples (rows) and attributes
(columns).

* Closely related to file system model at (we use in our
own programming)

* Relations are named: e.g., relation ‘employee’:

employee(fname, minit, Iname, ssn, bdate, address, gender, salary, superssn, dno)

N N S S P2 A

John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx 55250 333445555 5
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX Woman 44183 333445555 5
Ramesh K Narayan 666884444 1995-09-15 975 Fire Oak, Humble, TX Man 60000 333445555 5
James E Borg BBB665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL 1
Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4
Ahmad Y Jabbar 987987987 2000-03-29 980 Dallas, Houston, TX Man 44183 987654321 4
Alicia] Zelaya 999887777 1998-07-19 3321 Castle, Spring, TX Non-binary 44183 987654321 4

Relation = table

Attributes = columns and these are (mostly always) fixed
(e.g., fname, minit, Iname ...) and do not change

* The number of attributes of a relation is referred to as its grade or
degree

Tuples = rows which contain the data and there is
variable number of these

* The number of tuples of a relation is referred to as its cardinality.

ATTRIBUTES/COLUMNS

Each attribute belongs to one domain and has a single:

“hame
data type Lo Lo,
fname varchar(50) NULL
“format
minit varchar(1) NULL
Iname varchar(50) NULL
bigint(20)
e. [] SS"
g ! bdate date NULL
Name : b Date address varchar(100) NULL
gender varchar(50) NULL
Type: date salary double NULL
superssn bigint(20) NULL
Format: vyyy/mm/dd dno int(11) NULL

[coumn [

fname varchar(50) NULL

N A M I N G c 0 LU M N S minit varchar(1) NULL
varchar(50) NULL

Iname

(ATTRIBUTES) A

bdate date NULL

address varchar(100) NULL

gender varchar(50) NULL

salary double NULL
* case not Slgnlflcan 18] SQL superssn bigint(20) NULL
dno int(11) NULL

° no spaces allowed

no reserved keywords (e.g. date) allowed

as usual, if picking names yourself - choose meaningful
variable name

* if given the names of relations and attributes, use exactly
what you are given

DATA TYPES

As with many programming languages must specify the data
type of all attributes (columns) defined

common data types used are: o [

o varchar(N), N an integer (for strings) fname varchar(50) NULL
minit varchar(1) NULL
O dq’re Iname varchar(50) NULL
O int ssn bigint(20)
bdate date NULL
O double address varchar(100) NULL

gender varchar(50) NULL

Often specify the sizes especially for

. . salary double NULL
m’regers cmd s’rrlngs

superssn bigint(20) NULL
Will discuss in more detail when we start to | dno int(11) NULL

create tables

o e .
N U |- |- fname varchar(50) NULL

minit varchar(1) NULL

Iname varchar(50) NULL
Null valued-attributes: values of some ssn bigint(20)
attribute within a particular tuple may be Dot i, b

H dd char(100) NULL
unknown or may not apply to a particular By varchar(100)

. gender varchar(50) NULL
tuple ... null value is used for these cases.

salary double NULL
. . . superssn bigint(20) NULL
is a special marker used in SQL to e T

denote the absence of a value

oln some cases we wish to allow the possibility of a NULL value

although they will often require extra handling (e.g. checking for
=NULL).

oln other cases we want to prevent NULL being entered as a value
and specify as a constraint on data entry.

o e

fname varchar(50) NULL
minit varchar(1) NULL
ATOMIC ATTRIBUTES T
ssn bigint(20)
bdate date NULL
An iS an GTTribUTe WhiCh address varchar(100) NULL
. . . gender varchar(50) NULL
contains a single value of the appropriate e T
type. Generally meaning, “no repeating superssn _ bigint(20) NULL
values of the same type” dno int(11) NULL

The relational model should only have atomic
values

Example: Attribute address of type varchar(100) Null
Should only contain address “3 Cherry Road, Carlow”

Rather than “3 Cherry Road, Carlow; Apt 12 Corrib Village,
Galway”

o Je

fname varchar(50) NULL
COMPOSITE ATTRIBUTES
Iname varchar(50) NULL
ssn bigint(20)
bdate date NULL
A composite aftribute is an attribute that is | address varchar(100) nuiL
composed of several more basic/atomic gender varchar(50) NULL
attributes. salary double NULL
superssn bigint(20) NULL
Exqmple: dno int(11) NULL

*Name = FirstName, Middle Initial, Surname

We often want to decompose a composite attribute into atomic
attributes unless there is a very good reason not to (e.g. why is
address not decomposed in to street, city, county, etc.?)

MULTI-VALUED ATTRIBUTES

A multi-valued attribute is an attribute which has lower and
upper bounds on the number of values for an individual entry.

(the opposite of an atomic attribute) [coumn [pe [

fname varchar(50) NULL
minit varchar(1) NULL

EXG m p I e: Iname varchar(50) NULL
ssn bigint(20)

qualifications bdate date NULL
address varchar(100) NULL

phone num be rs gender varchar(50) NULL
salary double NULL
superssn bigint(20) NULL
dno int(11) NULL

The relational model should NOT store multi-valued attributes —
database design/re-design should be used to deal with this
issue by creating more attributes (columns) or more tables.

DERIVED ATTRIBUTES

A derived attribute is an attribute whose
value can be determined from another
attribute

Example:

from bdate can derive age

It is a good idea to not directly store
attributes which can be derived from other
attributes.

oL

fname varchar(50) NULL
minit varchar(1) NULL
Iname varchar(50) NULL
ssn bigint(20)

bdate date NULL
address varchar(100) NULL
gender varchar(50) NULL
salary double NULL
superssn bigint(20) NULL
dno int(11) NULL

RECALL

* We said that the Relational Data Model consists of a
collection of relations (tables)

* Tables are cross-linked

COLLECTION OF RELATIONS

A relational database usually contains many relations
(tables) rather than storing all data in one single
relation.

A relational database schemaq, S, is a definition of a
set of relations that are to be stored in the database,
i.e.,

S={R,,R,,,R}

e.g., S = {employee, department, works_on,
dept_locations, project, dependent}

Formal definition of “schema”

A relational schema R is the definition of a table in
the database. It can be denoted by listing the table
name and the attributes:

R(A A, L A

where Ai is an attribute.
e.g. with n=3, that is, 3 attributes:

works_on(essn, pno, hours)

RECALL:
Database schemas and instances

Similar to types and variables in programming
languages.

Schema: the logical structure of a database.

Instance: the actual content of the database at some
point in time

LINKING TABLES ...

Two VERY (very, very) important concepts within the

relational model which allow tables to be linked and
cross-referenced are:

o PRIMARY KEY attributes

We will define
and discuss
these
tomorrow!

o FOREIGN KEY attributes

QUESTIONS?/ISSUES?

PRIMARY KEYS o ¥

Fundamental concept of Primary Keys:

To ensure this must have:

**_one of more attributes/columns whose data values will
always be unique for each tuple - these attributes are called

key attribute(s) and are used to uniquely identify a tuple in the
relation.

There may be a few possibilities for primary key — these are
called Candidate keys

One candidate key is ultimately chosen as the primary key as
part of the Design stage

DEFINITION: Lo
PRIMARY KEY

A primary key is defined as one or more attributes, per table
where:

O there can be only one such primary key per table
O the primary key can never contain the NULL value

o all values entered for the primary key must be unique (no
duplicates across rows)

* Often primary keys are used as indexes (*will discuss later)

* We use the convention (in writing) that attributes that form the
primary key are underlined

EXAMPLES

(Company schema):
Adminer

— — —

Table: employee

Select data Show structure Alter table

fname wvarchar(50) NULL
minit varchar(1) WULL
Iname wvarchar(50) NULL
s5N bigint(20)
bdate date NULL
address varchar(100) NULL
sex wvarchar(1) NULL
salary double NULL
superssn bigint(20) NULL
dno int{11) NULL
Indexes

PRIMARY ssn

What is the primary key of
these tables?

See menti.com

Table: dept_locations

Select data Show structure Alter table n

dnumber int{11)
dlocation wvarchar(20)
Indexes

PRIMARY dnumber, dlocation

MySQL » mysqll.it.nuigalway.ie » mydb2974 » Table:

Table: works on

Select data Show structure Alter table m

essn bigint(20)
pno int(11)
hours double NULL

Indexes

PRIMARY essn, pno

Consider the works on table:

A table to hold details on which projects an
employee works on and the number of hours
worked on each project:

works on(essn, pno, hours)

“ one of more attributes/columns whose data values
will always be unique for each tuple.”

Primary Key?

SOME SAMPLE DATA FROM works__on

TABLE

essn pno

hours

32.5

7.5

333445555

10

An employee can work
on more than one

project

A project can contain more

than one employee

ALL DATA FROM THE
works on TABLE

1 32.5

123456789

123456789 2 7.5
123456789 3 3
333445555 | 2 10
333445555 | 3 10

333445555 10 10
333445555 | 20 10

453453453 1 20
4534534532 | 2 20
666884444 3 40

888665555 20 0
987654321 20 15
087654321 20 20
ogy7as7o87 10 35
Q87987987 | 30 =
999887777 20 20

QUESTION: What are suitable primary
keys for the following tables?

module (code, name, department, semester,
exam duration, ECTS)

student (ID, FirstName, LastName, HomeAddress,
HomePhone)

car (EngineNo, CarReg, Make, Model, Year)

FOREIGN KEYS

plocation
—dnum

——dnumber
dlocation

dept_locations

department

Fundamental concept of Foreign Keys:

»dnumber
dname

—mgrssn

mgrstartdate

o Allows data in tables to be linked and cross-
referenced by matching the same data values in both

tables

Note:

O Matching must take place to primary or candidate keys

O There may be a few different links across the same

tables

DEFINITION: FOREIGN KEY

A foreign key is an attribute, or set of attributes,
within one table that matches or - links to - the

candidate key of some other table (possibly the same
table)

More formally - Given relations r; and r,, a foreign
key of r, is an attribute (or set of attributes) in r,
where that attribute is a candidate key in r,. relations
r, and r, may be the same relations

FOREIGN KEY TERMINOLOGY

Often use the terminology of:

“parent, master or referenced table /relation for the
relation containing the candidate key(s)

“child or referencing table /relation for the relation
containing the foreign key
For example:

In company schema, department is parent/master
table (containing PK dnumber) and employee is
child /referencing table (with FK dno)

Foreign keys

departme t(d umber) RESTRICT RESTRICT Alter

employee
fname
minit

EXAMPLE: FOREIGN KEY YT

bdate
address
gender
salary
superssn

employee —dno

N N I T N T ET T
—1*dnumber

O edit John B Smith 123456789 1975-0 731 Fondren, Houston, Tx 55250 333445555 dname

O edit Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 —mgrssn

0 edit Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX Woman 44183 333445555 5 mgrstartdate
[edit Ramesh K Narayan 666884444 1995-09-15 975 Fire Oak, Humble, TX Man 60000 333445555 5

0 edit James E Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL 1

O edit Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4

O edit Ahmad vV Jabbar 987987987 2000-03-29 980 Dallas, Houston, TX Man 44183 987654321 4

O edit Alicia J Zelaya 999887777 1998-07-19 3321 Castle, Spring, TX Non-binary 44183 987654321 4

depa rtment

cho i a foreign key n

(O edit Headquarters 888665555 2019-06-19 I‘equlon employee
O edit 4 Administration 987654321 2015-01-01 Iinking -l-o dnumber in
O edit 5 Research 333445555 2018-05-22 depdrfmenf

EXAMPLES (COMPANY SCHEMA): SEE menti.com

What is/are the foreign key(s) in the dependent table?
What is/are the foreign key(s) in the employee table?

employee
fname
minit
Iname
Fssn
bdate
address
gender
salary
project +—superssn

pname dno
* pnumber

plocation dependent
—dnum —essn
dependent_name
gender
bdate
relationship

dept_locations
dnumber
dlocation

department
»dnumber

dname
—mgrssn
mgrstartdate works on

—essh
pno
hours

SUMMARY: RELATIONAL MODEL

*Terminology and definitions associated with main
concepts of the relational model very important

*Company schema will be used extensively for much
of the course so a good understanding of it from
these lectures is very important

*VERY important you get access to the CS Intranet and
MySQL and import the company database this week
if you are registered.

*Next ... how to create tables and add data to
tables...

NYFZANYIANYIANYIANYI AN

ﬂ\ﬂ“ﬂ%ﬂ%ﬂ& /
NN\ Y4
ZaN\YZA\YZA\Y/ANY/A\Y/,
NN\ Y4

TJANVIANVIANVIANVIANY Y

INTRODUCTION TO SQL AND DATA ng3:
DEFINITION LANGUAGE (DDL) | g ohiee

LABS NEXT WEEK

Mon 19 4-6 in IT106

Tue 20™ 3-5 in IT10]
Thur 2310-2 in IT106 — will have assigned time before

then

Please attend if you are able!

Nice working environment and you can get help if needed.
Main goals of the lab next week are:

*Becoming familiar with phpMyAdmin and/or Adminer.

*Becoming familiar with the company database.

*Creating tables — GUI and DDL CREATE TABLE
*Adding data using INSERT INTO

SQL AND DDL

IDAMENTALS OF

Relevant chapter in
recommended book:

Elmasri and Navathe

Chapter 8 (3" Edition)

QUESTIONS?

SQL:

= Structured

"Query

"Language

A special purpose programming language for
relational database systems

FEATURES OF SQL:

o SQL is based on relational algebra:

“*All relational, set and hybrid operators are supported but
SQL has additional operators to allow easier query
development.

o SQL has been standardised since 1987 (SQL-86/SQL-87)

O The American National Standards Institute (ANSI) and the
International Standards Organization (ISO) form SQL
standards committees. Many vendors also take part.

O Recent standards include XML-related features in addition to
many others (e.g., JSON data types etc.)

ANSI/ISO SQL

Despite standards there can be lack of portability between
database systems due to:

" Complexity and size of standards (not all vendors will
implement all of the standard).

“Vendor wants to keep syntax consistent with their other
software products/OS or develop features to support user
base.

* Want to maintain backward compatibility.

* Want to maintain “Vendor lock-in".

ANSI/ISO SQL

We will concentrate on the standardised SQL syntax that
should work across vendors:

Comprises three components:
DDL — data definition language
DCL — data control language

DML — data manipulation language

DCL: DATA CONTROL LANGUAGE

Used to control access to the database and to database
relations.

Role of database administrator.
Very important in multi-user systems.
Typical commands:

* GRANT
" REVOKE

Each of these can be used to:
Grant/revoke access to database.

Grant/revoke access to individual relations.

DDL:
DATA DEFINITION LANGUAGE

Standardised language to define the schema of a database.
Back-end of “Design” options on Interface (e.g. Create options).

Typical tasks: create, modify, and remove database objects such
as tables and indexes.

Common DDL keywords are:
CREATE

ALTER

DROP

ADD

CONSTRAINT

DML:
DATA MANIPULATION LANGUAGE

4 DML statements:
INSERT insert data
SELECT query data
UPDATE update data

DELETE delete data

BACK TO DDL COMMANDS:

We use the DDL commands to mostly create tables
and add constraints to our database:

Common DDL keywords are:
CREATE

ALTER

DROP

ADD

CONSTRAINT

Create a table and it’s indexes and

constraints
Steps:
1. Specify table (relation) name. Recall:
2. For each attribute in the table specify: what is a

* Attribute Name (e.g., ssn) primary
* Data Type (e.g., bigint).

key?

* Any constraints (e.g. not null).

3. Specify Primary key of table: choose one or more attributes.

4. Specify Foreign keys if they exist and assuming the attributes and table you

are referencing exists (may have to return to this step). Recall:

“* Steps 1-3 MUST be completed for all tables. what is

a foreign
key?

DATA TYPES
3 MAIN TYPES: strings, numeric and date/time

The main ones you will use:

*char(size)

*varchar(size)

*bool /boolean

*tinyint, smallint(size), mediumint(size), int(size)/integer(size), bigint(size)
*double(size, d)

*float()

*decimal(size, d)

*date, datetime, timestamp, time, year

Important to pick a suitable data type and a
suitable size (based on the sample data)

can contain letters, numbers, and special characters

char (size) FIXED length. size can be from O to 255. Default is 1

varchar (size) VARIABLE length. size can be from O to 65535

text string
Dateftime |
date Format: YYYY-MM-DD
time Format: hh:mm:ss
datetime Format: YYYY-MM-DD hh:mm:ss

year A year in four-digit format

... Important to pick a suitable data type and a
suitable size (based on the sample data) ¢/d.

Max size value is 255

(mySQL supports UNSIGNED numeric types but not all DBMS

do)
Integers See next slide
Bool/Boolean 0 is False; non zero is True
FLOAT Floating point number. 4 bytes, single precision
DOUBLE Floating point number. 8 bytes, double precision
DECIMAL (size, d) An exact fixed-point number.

or dec(size,d) size = total number of digits (max 65, default 10)

d = number of digits after the decimal point (max 30,
default 0).

INTEGERS

tinyint 1
smallint
mediumint

int

o AN W N

bigint

Note:

-128 to 127
-32768 to 32767
-8388608 to 8388607
-2147483648 to 2147483647

-9223372036854775808 to
9223372036854775807

Number in brackets (for integers) only refers to display

not size

| OTHERS

Unicode Char/String
Binary

Blob, Json etc.

AUTONUMBER

AUTO INCREMENT in mySQL

Specifying an attribute to be “AJTO-INCREMENT” tells the DBMS to
generate a number automatically when a new tuple is inserted into a
table.

Often this is used for an “artificial” primary key value which is
needed to ensure we have a primary key but has no meaning for the
data being stored — using auto-increment means that the DBMS
takes care of inserting a unique value automatically every time a
new tuple is inserted.

By default, AUTO INCREMENT is 1, and is incremented by 1 for each
new tuple inserted.

department &[] Browse H#i Structure ‘& Search 3t Insert @ Empty @ Drop 3 InnoDB latin1_swedish_ci

U S I N G Table Action Rows & Type Collation Size Overhead
‘ i 32.0 KiB -

(@]
° 0 dependent 7 || Browse i Structure & Search Fi Insert i Empty @ Drop 7 InnoDB latin1_swedish_ci 16.0 kiB
(0 dept_locations 7 || Browse i4i Structure % Search 3 Insert §§ Empty & Drop 5 InnoDB latin1_swedish_ci 32.0 kiB
p p y m I n [J employee 7 || Browse i Structure & Search Fi Insert i Empty @ Drop 8 InnoDB latin1_swedish_ci 48.0 kiB
O project T,Z |=] Browse 4 Structure & Search 3t Insert @ Empty @ Drop 6 InnoDB latin1_swedish_ci 32.0 ki8
(J works_on 13 [=] Browse i Structure & Search }E Insert @ Empty @ Drop 15 InnoDB latin1_swedish_ci 32.0 KiB

T O c r e u T e u T u b I e 6 table(s) Sum 44 InnoDB latin1_swedish_ci 192 kiB °B
+ O cCheckall With selected: v
(&) Print 5 Data dictionary
u n d P I(| o Create table

Name: ‘product Number of columns: | 4

Steps:

1: In the “Structure” view, in the “Create table” section, enter the new table
name and number of columns and click the “Go” button.

2: In the new window, enter details of attributes (hame and data types).
Specify the keys in the Index option — “Primary” (for primary keys) and “Index
for Foreign keys (if they exist) and choose “Save”. Note you may wish to view
the SQL generq'red by choosing the “Preview SQL” option.

B 7] Server mysqll.itnuigalway.ie » @ Database: mydb6166 » [Table: product

] Browse W Structure [SQL 4 Search ¥¢ Insert |=} Export [il Import J* Operations 2 Triggers
Table name: | product Add |1 column(s) Go
Struct ©
Name Type & Length/Values & Default Collation Attributes Null Index A_l Comments
INT 82 None b i vl PRIMARY ud O
VARCHAR v [20 | eASEindSs »] o [= < O
O
unitPrice DECIMAL 8 Index name: @ M = i =
description VARCHAR v| (250 |GGIELY v| o [= v O
Table comments: Index choice: &
PRIMARY X
+ Advance d Opti
PARTITION definition: Column Size
Partion by: v| (|Expressiono | id [int] v

Partitions:

USING phpMyAdmin GUI to create
Foreign keys

Steps:

3. Specify the FK by choosing the “Relation view” and choose the name, table
and attribute that the FK references. Keep the ON DELETE and ON UPDATE as
the default “RESTRICT” and choose save. (Note you might want to check
“Preview SQL” again).

4. Look in Designer View to see the changes made.

| Browse & Structure L[SQL » Search }E Insert | =} Export |« Import ~ Operations 2= Triggers

¥ Table structure €2 Relation view

Foreign key constraints

Actions Constraint properties Column Foreign key constraint (INNODB)
Database Table Column
fk_empOrder ON DELETE RESTRICT ~ | ONUPDATE RESTRICT v ssn v mydb6166 v employee v ssn v

+ Add column
+ Add constraint

Preview SQL Save

Indexes &
Action Keyname Type Unique Packed Column Cardinality Collation Null Comment
. = productlD 0 A No
? Edit @ Drop PRIMARY BTREE Y N
& @ i s ° ssn 0 A No

Create an indexon 1 columns | Go

USING GUI TO CREATE A TABLE

MySQL » mysqll.it.nuigalway.ie:3306 » mydb5526 » Create table

° ° &
W It A m I n e r Adminer 4.7.7 Create table
g Table name: [] (enaine) v (coliation) o s--

O (+]AlV]X]

Export Create table

Auto Increment: ["|Default values [|Comment

Steps:

1 and 2: Choose Create Table option and enter table name and details on
attributes (name and data types). Choose the Save option.

3. Click on the table you created and choose the Alter Indexes option and
specify Primary Key Index. Choose the Save option.

4. If there are foreign key(s) and the table being referenced exists, choose
Add foreign key option and specify foreign keys. Choose the Save option. Else
return to this step when other table(s) are created.

MySQL » mysqll.it.nuigalway.ie:3306 » mydb6166 » empOrder » Foreign key

Indexes: empOrder Foreign key: empOrder

Target table: product ~ DB: mydb6166 v
PRIMARY v productlD v ssn_productiD productiD ~ d o
| - v Ki v id v
ON DELETE: RESTRICT v ON UPDATE: [RESTRICT v’

Using SQL DDL to create a table with index and
constraints — when only one attribute is part of
primary key

Syntax 1 (equivalent when only one Primary Key):
CREATE TABLE tablename

(attribute1 datatype [NOT NULL] [PRIMARY KEY],

attribute2 datatype [DEFAULT NULL],

attribute3 datatype,

eee

FOREIGN KEY (atributename) REFERENCES tablename(atiributename)

)i

Using SQL DDL to create a table with index and
constraints — when more than one attribute is
part of primary key

(See company2022.sql for examples!)

Syntax 2:

CREATE TABLE tablename

(attribute1 datatype [NOT NULL],
attribute2 datatype [DEFAULT NULL],

attribute3 datatype,

e

PRIMARY KEY (attributename(s)),
FOREIGN KEY (attributename) REFERENCES tablename(attributename)

)i

Naming the constraints ...

Syntax 3 (name the constraints):
CREATE TABLE tablename

(attribute1 datatype [NOT NULL],
attribute2 datatype [DEFAULT NULL],

attribute3 datatype,

e

CONSTRAINT constraintname PRIMARY KEY (attributename),

CONSTRAINT constraintname FOREIGN KEY (attributename)
REFERENCES tablename(attributename)

)i

Looking at DDL code for department

CREATE TABLE “department” (

“dnumber” int(20) NOT NULL PRIMARY KEY,
“dname’ varchar(50) DEFAULT NULL,
“mgrssn’ bigint(20) DEFAULT NULL,
‘mgrstartdate’ date DEFAULT NULL)
ENGINE=InnoDB DEFAULT CHARSET=latin1;

NOTE: CONSTRAINTS: FOREIGN KEYS:

FOREIGN KEY (attributename) REFERENCES tablename(attributename)

Need to specify:

* Keyword to indicate it is a foreign key constraint
and the attribute name or attribute names that will be the foreign
key in current table. If there is more than one attribute they should
be separated by commas. Attribute names should be enclosed in
brackets.

* Keyword REFERENCES to specify attribute it references by
specifying the table name and the attribute name. Again attribute

name(s) should be in brackets. Table name is outside the
bracket.

Constraint examples from COMPANY
Schema for works on table

CONSTRAINT pk_works on PRIMARY KEY (essn, pno),

CONSTRAINT fk _works on_employee FOREIGN KEY (essn)
REFERENCES employee(ssn),

CONSTRAINT fk_works on project FOREIGN KEY(pno)
REFERENCES project(pnumber)

Looking at DDL code in company
sqglfile

Note that:

*For this SQL dump the Foreign Keys were created
after the tables, and after the data was entered

(using INSERT INTO commands).

*Generally, it is better to create ALL the structure
first and only then enter the data.

*Sometimes you can only add Foreign keys after
all the tables have been created

USING ALTER TO MODIFY DESIGN

Remember: Cannot create a foreign key link unless the
attribute it is referencing already exists

If you want to create everything but foreign keys initially
you can add a foreign key later using the ALTER TABLE
command

SYNTAX FOR ALTER COMMAND:

To add a constraint:

ALTER TABLE tablename

ADD CONSTRAINT constraintname FOREIGN KEY
(attributename) REFERENCES
tablename (attributename) ;

To add an attribute (column) constraint:
ALTER TABLE tablename

ADD attributename DATATYPE;

Looking at DDL code for Foreign Key
constraint in department

ALTER TABLE “department’
ADD KEY “mgrssn” ("mgrssn’),
ADD CONSTRAINT “department_ibfk_2"
FOREIGN KEY ("mgrssn’) REFERENCES “employee™ (“ssn’);

HOW TO WORK WITH DDL IN ADMINER?

Choose:

1. Choose SQL

command option

2. Once you have
typed in the SQL in
the displayed editor
choose the Execute
option

(or CTRL+Enter)

* Note you may want
fo save your query

MySQL » mysgll.it.nuigalway.ie » mydb2974 » SQL command

Adminer 4.3.1 SQL command

—H mydb2974 v

SQL command Import

Export Create table

EE department
B dependent

B dept_locations
B emp2

B employee

ER project

B8 works on

SCENCM Limit rows: L Stop on error ! Show only errors

Adminer 4.3.1 SQL command

=W mydb2074 v

CREATE TABLE emp3(
ssn BIGINT NOT NULL PRIMARY KEY

)

Query executed OK, 0 rows affected. (0.000 s) Edit

CREATE TABLE emp3(
ssn BIGINT NOT NULL PRIMARY KEY

SQL command Import

Export Create table

B department
FH dependent);

HOW TO WORK WITH
DDL IN phpmyadmin

Choose:

1. Choose SQL tab at
the top

2. Type/Copy and
Paste SQL in to the
editor

3. Click “Go”
(or CTRL+Enter)

L7 Server: mysqii_itnuigalway.ie » @ Database: mydb2974

¥t Structure 4;] saL -, Search) Query =} Export |[i

~| Run SQL query/queries on database mydb2974: &

1]

(C Iear-::I [:-Format-:] [:-Get auto-saved query.:)

[J Bind parameters &

[Delimiter I:I] ¥/ Show this query here again || Retain query

{ Run SQL query/queries on database mydb2974: @ |

¢ Structure 4:] saQL 4 Search i Query = Exp

1 CREATE TABLE temp3 (

2 ssn bigint MOT MULL PRIMARY KEY
3);

4

Looking at DML INSERT INTO code in
company2022.sqgl file

Note that:

* Tuples are enclosed in brackets () and tuples are
separated by commas

*Data type, format and order must correspond exactly
to the data type, format and order specified when
creating the tables.

*Strings, including dates, should be enclosed in single
quotes

*Numbers are not enclosed in quotes

Looking at DML INSERT code for Foreign
Key constraint in department

INSERT INTO “department’

("dnumber’, "dname”, ‘'mgrssn’, ‘mgrstartdate’) VALUES
(1, 'Headquarters', 888665555, '2019-06-19'),

(4, 'Administration’, 987654321, '2015-01-01"),

(5, 'Research’, 333445555, '2018-05-22");

IMPACT OF SETTING DATA TYPES,
CONSTRAINTS (E.G., “NOT NULL), PRIMARY
KEYS AND FOREIGN KEYS ...

The DBMS has (Veryl!) strict checking of all constraints —
and will not allow data to be entered if the data does not
comply with the constraints set ... this is one of the main
advantages of a DBMS in terms of data correctness but it
sometimes makes working with data entry difficult!

Consider the following examples

| DOMAIN CONSTRAINTS

Definition: The value of each attribute A must be an atomic
value from the domain dom(A).

o Can be tested easily by DBMS for data entry
O Queries can also be tested. [coumn e |

fname varchar(50) NULL
minit varchar(1) NULL
O Example attributes: iname varchar(50) NULL
ssn bigint(20)
P fn ame bdate date NULL

address varchar(100) NULL
gender varchar(50) NULL

. [] []
min It salary double NULL
superssn bigint(20) NULL
° bd ate dno int(11) NULL

ENTITY INTEGRITY CONSTRAINTS
(PRIMARY KEY CONSTRAINTS)

Definition: The primary key should uniquely
identify each tuple in a relation. This means:

* No duplicate values for primary key allowed
* Null values not allowed for primary key

* Example:

-ssn in employee table

-essn and pno in works_on table

NOTE:

As we already discussed, Null values may not be
permitted for other attributes also. e.g., name of
student may be constrained to be NOT NULL

We often see this constraint when filling out
forms online (*required) and the constraint is
often necessary for many non-key attributes

However, we should be careful of only adding
‘NOT NULL constraints in the databases in our
own assignments when they are really
necessary

REFERENTIAL INTEGRITY CONSTRAINTS

Definition: Specified between two relations and require the
concept of a foreign key. The constraint ensures that the
database must not contain any unmatched foreign keys.

Therefore a relationship involving foreign keys MUST be
between attributes of the same type and size

In addition, a value for a foreign key attribute MUST exist
already as a candidate key value.

EXAMPLE (AGAIN):

| e N O S P T C

[edit John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx 55250 333445555
0 edit Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5
O edit Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX Woman 44183 333445555 5
[edit Ramesh K Narayan 666884444 1995-09-15 975 Fire Oak, Humble, TX Man 60000 333445555 5
O edit James E Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL 1
O edit Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4
[edit Ahmad vV Jabbar 087087987 2000-03-29 980 Dallas, Houston, TX Man 44183 987654321 4
0 edit Alicia] Zelaya 999887777 1998-07-19 3321 Castle, Spring, TX Non-binary 44183 087654321 4
depq ri-meni- B Modify | dnumber | dname mgrssn mgrstartdate

O edit Headquarters 888665555 2019-06-19

O edit 4 Administration 987654321 2015-01-01

O edit 5 Research 333445555 2018-05-22

Any referential integrity constraints problems with dno
(a foreign key in relation employee) linking to dnumber in
department?

SEMANTIC INTEGRITY CONSTRAINTS

Specified and enforced using a constraint specification
language

Two types:

state constraints: e.g., “the maximum number of hours an
employee can work on all projects per week is 39”

fransition constraints: e.g., “the salary of an employee can
1

only increase”; “the date entered for order delivery must
not be in the past”

We will not use semantic integrity constraints

Consider the MySQL database and the associated data
(company2022.sql):

Are there any unmatched foreign keys?

Are foreign and primary keys of same type and size?

SETTING CONSTRAINTS

O Domain constraints are set
automatically once the data type is
chosen

O Entity constrains are also set
automatically once a primary key has
been chosen

o Usually default constraints are set
for foreign keys but these can be
changed

Target table: department v

Coowee Lo |

dno v dnumber T

dnumber T
ON DELETE: RESTRICT ¥ | ON UPDATE: RESTRICT

(oo] s

NO ACTION
CASCADE
SET NULL
SET DEFAULT

L

?

UPDATE OPERATIONS AND CONSTRAINT
VIOLATIONS

The DBMS must check that constraints are not violated
whenever update operations are applied.

Three basic update operations on tables where constraints
must be checked:

*insert
*delete

*modify

Provides a list of attribute values for a new tuple t that is
to be inserted in to a relation R

This can happen directly via the interface or via a query

If a constraint is violated DBMS will reject insertion; usually
with an explanation

Examples:

Using the company database state the problems, if any, with the
following insertions to the database:

INSERT INTO employee VALUES

('Ciara’, 'F', 'Smith', NULL, '1993-05-03', '2345 Tudor Heights, TX', 'Female’, 40000,
NULL, 4);

INSERT INTO employee VALUES

(‘"Tony', 'D’, 'Burns', 523523523, '1983-05-03’, '34 Sycamore Drive, TX', ‘2000,
50000, NULL, 4);

INSERT INTO employee VALUES

(‘Tony', 'D’, 'Burns', 523523523, '1983-05-03', '34 Sycamore Drive, TX', 'Male’,
50000, NULL, 14);

INSERT INTO employee VALUES

('Ciara’, 'F', 'Smith', 4444555, '1993-05-03', '2345 Tudor Heights, TX', 'Female’,
40000, NULL, 4);

A WD

Trying this with Adminer:

Choose the “SQL command” button on LHS

A SQL editor is displayed on RHS

Type or copy and paste query in to editor

Choose “Execute” command

Adminer 4.8.1

SQL command

Export

B department

B dependent

B dept_locations
B employee

Ef project

B works_on

= mydb2974 v

Import

Create table

SQL command

INSERT INTO employee VALUES

'2345 Tudor Heights, [TX', 'Female’,

('Ciara', 'F', 'Smith', NULL, '1993-85-83'

40008, NULL, 4);

| Trying this with phpMyAdmin

Choose the “SQL” tab on the top

N

A SQL editor is displayed in the middle of the screen

“

Type or copy and paste query in to editor

~

Choose “Go” button
ph p M.] Server: mysqgl1.it.nuigalway.ie » @ Database: mydb2974

ﬁﬂ]-&)} &% @ 44 Structure L/ sSQL 4 Search J Query =

Current server:

mysql1.it.nuigalway.ie o Run SQL query/queries on database mydb2974: &

INSERT INTO employee VALUES
("Ciara’, 'F', 'Smith', NULL, '1993-05-83°,

. 1

Recent Favorites 2

G 3 |'2345 Tudor Heights, TX', 'Female', 40000, NULL, 4);
4

-ll-_ .| information_schema
= mydb2974
F_d New
-||-__4f_ department
-||-_ i dependent
-ll-_ i# dept_locations
-||-__4rﬁ employee

'l"—J’ " project Clear Format Get auto-saved query
+_ 4 works on

2. DELETE OPERATION

A delete operation can only violate referential integrity

constraints, i.e., if the tuple being deleted is referenced by
the foreign keys from other tuples.

DBMS can:
reject deletion, with explanation
attempt to cascade deletion

modify referencing attribute

EXAMPLE: DELETE THE TUPLE JUST
INSERTED (wiTH SSN = 4444555)

DELETE FROM employee
WHERE ssn = 4444555;

An update operation is used to change the values of one
or more attributes in a tuple of a table

Issues already discussed with insert and delete could arise
with this operation, specifically:

if a primary key is modified ... same as deleting one
tuple and inserting another tuple in its place

if a foreign key is modified ... DBMS must ensure that
new value refers to an existing tuple in the reference
relation.

CASCADE UPDATE AND DELETE

Whenever tuples (rows) in the referenced (master)
table are deleted (or updated), the respective tuples
of the referencing (child) table with a matching
foreign key column will be deleted (or updated) as
well.

Note that if cascading DELETE is turned on there could be
many deletions performed with the following query:

DELETE FROM employee
WHERE SSN = 123456789;

PROBLEM SHEETS/EXAM

Oln problem sheet 1 you will practice DDL (and using the
GUI (Create Table option) if you wish)

O In other assignments you will be asked to work with the
DDL commands

O In exam, you will be asked for DDL commands but not
any GUI questions

Therefore ... it is important to know both approaches.

You try ... Try adding these tables to the
company database (choosing suitable data

types):

These two tables keep track of products ordered by employees.

The product table contains a unique product id (the primary key of the
table), name of the product, the unit price of the product and a
description of the product).

The empOrder table contains the SSN of each employee who ordered
a product, the ID of the product they ordered (productID) and the
date they made the order. Note that ssn and productlD are the
primary keys, ssn is a foreign key to ssn in table employee and
productID is a foreign key to id in table product:

product (id, name, unitPrice, description)

empOrder (ssn, productlID, orderDate)

NYFZANYIANYIANYIANYI AN

ﬂ\ﬂ&ﬂ%ﬂ“ﬂ& /
NN\ Y4
ZaN\YZA\YZA\Y/ANY/A\Y/,
NN\ Y4

TJANVIANVIANVIANVIANY Y

CT23

SQL DML STATEMENT |

QUESTIONS?

Recall- SQL:

" Structured

"Query

"Language

A special purpose programming language for relational
database systems

Recall: ANSI/1S0 SQL

Standardised SQL which comprises three
components:

DDL — data definition language
DCL — data control language

DML = data manipulation language

DML: DATA MANIPULATION LANGUAGE

4 DML statements:
INSERT insert data
SELECT query data
UPDATE update data

DELETE delete data

DML SUPPORTS CRUD OPERATIONS

CRUD operations are the four basic functions we wish to perform
on persistent data:

Create: insert a new tuple (INSERT)
Read: retrieve some data (SELECT)
Update: modify some data (UPDATE)

Delete: delete some data or a tuple (DELETE)

* we have already seen examples of INSERT, UPDATE and
DELETE

SELECT

Basic syntax for an SQL select query to READ data
consists of 6 clauses:

SELECT [DISTINCT] <attribute 1ist>
FROM <table 1ist>

WHERE <condition>

GROUP BY <group attributes>

HAVING <group condition>

ORDER BY <attribute 1ist>

Notes:
* The order of the clauses cannot be changed
 SELECT and FROM are always required, other clauses are optional

NOTES ON SQL CLASS WORK:

For SQL SELECT work all examples with have a unique (!)
number to ease cross-reference between lecture notes,
your own attempts, and examples on Blackboard.

SELECT ~ FROM WHERE

SELECT [DISTINCT] <attribute 1ist>
FROM <table 1ist>
WHERE <condition>

<attribute 1ist> list of attribute (column) names (separated by
commas) whose values will be retrieved by the query

<table 1ist> list of table names (separated by commas) containing
the attributes

<condition> Boolean expression that identifies the tuples to be
retrieved by the query

WHERE clause: Boolean condition

For each tuple (row) in the table(s) which are part
of query:

O tuple is checked to see if condition is true for this
tuple

“|f , tuple is part of the output

“If not true, tuple is not part of the output

COMPARISON OPERATORS:

The comparison operators are:

= <= < > >= !

Conditions can be compounded by used of Boolean
AND, OR
Conditions can be negated with NOT

(Note: In some versions of SQL (e.g. in MS) the = operator
is written as <>)

RECALL: SQL is case insensitive ...

But linux is case sensitive and
web1.cs.nuigalway.ie is a linux server

Therefore need to be careful with table names in
particular as

EMPLOYEE != employee

First SELECT Examples

Using the COMPANY relational database instance of the
COMPANY SCHEMA develop SQL queries for the following:

1. List the names of all employees who earn more than 45000

employee(fname, minit, Iname, ssn, bdate, address, gender, salary, superssn,
dno)

SELECT fname, minit, lname
FROM employee
WHERE salary > 55000;

What is output? ... how many employees? ... menti.com

mySQL ...

Adminer 4.8.1

= mydb2974 ~

SQL command Import

Export Create table

department
dependent
dept_locations
employee
project
works_on

SQL command

SELECT fname, minit, lname
FROM employee
WHERE salary > 45888

e o

John B Smith
Franklin T Wong
Ramesh K Narayan
James E Borg
Jennifer S Wallace

5 rows (0.002 s) Edit, Explain, Export

SELECT fname, minit, lname
FROM employee
WHERE salary > 45000;

—
T_ 4 project

+ 4 works_on

+ Options
fname minit
John B
Franklin T
Ramesh K
James E

Jennifer 2

Iname
sSmith
Wong
Marayan
Borg
Wallace

NOTE:

** Attribute names are separated by commas
** Numbers are NOT enclosed in quotes

** Strings are enclosed in quotes

SQL command

SELECT fname, minit, lname
FROM employee
WHERE salary > 45000

Using AND and OR ... SEE menti.com

What is the difference in output between these
two versions of the query:

employee(fname, minit, lname, ssn, bdate, address, gender,
salary, superssn, dno)

SELECT fname, minit, Iname
FROM employee
WHERE dno != 5 AND salary > 45000;

SELECT fname, minit, Iname
FROM employee
WHERE dno 1= 5 OR salary > 45000;

Recall: BOOLEAN ALGEBRA:

In order for the Boolean AND of three conditions to be
true, each individual condition (a, b, c) must be true.

Evaluation usually proceeds from Left to Right
evaluating the TRUTH or each condition before
returning True or False.

CODING STYLE

* Complying with coding style rules is crucial for a career in
computing.

* Clean code is focused and understandable.

* Usually SQL keywords are capitalised and table and
column names are mostly kept in lowercase unless
combining words and not using an underscore

* Code should be organised horizontally and vertically (and
not all written on one line).

* Code blocks are separated by a semi-colon.

* Use comments (#, --, /* and */) to explain code.

2 EXAMPLES TO TRY ... menti.com

employee(fname, minit, Iname, ssn, bdate, address, gender, salary, superssn, dno)
department(dname, dnumber, mgrssn, mgrstartdate)

dept_locations(dnumber, dlocation)

project(pname, pnumber, plocation, dnum)
works_on(essn, pno, hours)

dependent(essn, dependent name, gender, bdate, relationship)

Example 2: Write a query to list the names of all
projects located in Stafford

Example 3: Write a query to list the address and
birth date of the employee with name John B Smith

Note: strings MUST BE enclosed in single quotes

Are these solutions correct?

#3: Write a query to list the address and birth
date of the employee with name John B Smith

SELECT bdate, address
FROM employee
WHERE fname = 'John B Smith’;

Be VERY careful of

SELECT bdate, address getting the “righ’r”

FROM employee result using the “wrong”

WHERE ssn = 123456789; query

CALCULATED OR DERIVED FIELDS

Can specify an SQL expression in the SELECT clause which
can involve numerical operations on numeric fields and
counting operations on non-numeric fields

Example 4: Produce a list of monthly salaries for staff,
showing staff ID and the salary details

employee(fname, minit, lname, ssn, bdate, address, gender,
salary, superssn, dno)

WILL THIS WORK?

Example 4: produce a list of monthly salaries for
staff, showing staff ID (ssn) and the monrthly salary
details

employee(fname, minit, lname, ssn, bdate, address, gender,
salary, superssn, dno)

SELECT ssn, salary/12
FROM employee

RN

SELECT Ssn, SCIIC”’Y/] 2 123456789 4604.166666666667

333445555 5416.666666666667
FROM employee; 453453453 3681.9166666666665
666884444 5000
888665555 7849.916666666667
987654321 5770
987987987 3681.9166666666665
999887777 3681.9166666666665

8 rows (0.002 s) Edit, Explain, Export

TIDYING UP THE OUTPUT

1. Using Keywords CAST, AS and DECIMAL(x, y) to specify the
total number of digits (x) and number of digits (y) after the
decimal point when working with real numbers :

123456789 4604.17
333445555 5416.67
453453453 3681.92

SELECT ssn, CAST(salary/12.0 AS DECIMAL(8, 2))

FROM employee;

666884444 5000.00

2. Using Keyword AS to rename output:
888665555 7849.92

SELECT ssn, CAST(salary/12.0 AS DECIMAL(8, 2)) 987654321 5770.00
987987987 3681.92

AS mthlySalary 999887777 3681.92

FROM employee;

USING KEYWORD DISTINCT

Keyword DISTINCT automatically removes duplicates
from the returned result set.

Should be careful of using with large result sets as
can be an expensive operation to perform (not a
problem for our small examples).

QUESTION ... how do you think DISTINCT could be
implemented?

EXAMPLE 5:

65000

Produce a list of all salaries

60000
94199
69240

SELECT salary e

44183

8 rows (0.00z2s) [

EXAMPLEG: e e

FROM employee

Produce a list of DISTINCT salaries

FROM employee;

55250
65000
44183

SELECT DISTINCT SCIICII’)’ 60000

94199

FROM employee; —

6 rows (0.00z s) Edit, Explain, Ex

NOTE:

To retrieve all attribute values of selected tuples, you do

not have to explicitly list all the attribute names
Instead can use SELECT *

May need to be careful of using this when you begin to
join multiple tables or in real-world applications

SELECT *

FROM employee;

MORE EXAMPLES TO TRY:
SEE menti.com

#7: Retrieve the address of the employee whose SSN is
123456789

#8: Retrieve all details stored on all employees in the employee
table who work in department 4.

#9. List all locations where departments are (no need to list the
department as well)

#10. Retrieve the salary and name of all employees working in
department 5

SOME NEW OPERATORS:

BETWEEN : range search, including endpoints of range

IN : tests if a data value matches one of a list of values
(NOT IN)
LIKE : allows string comparison, when equality is too strict

IS NULL : allow an explicit search for NULL

Set Operators:
UNION, INTERSECTION,

MINUS/DIFFERENCE

EXAMPLE 11: Retrieve names of all

employees whose salary is between

50000 and 80000

SELECT fname, minit, lname

- Opﬁon] H FROM employee

WHERE salary BETWEEN 50008 AND 80000

SELECT fname, minit, Iname mm

John B Smith
FROM employee _
Franklin T Wong
—_ — R h K N
WHERE salary >= 50000 AND salary <= 80000; Snss arayan
Jennifer S Wallace
4 rows (0.002 s) Edit, Explain, Export
- opfion 2: SELECT frname, minit, lname

FROM employee
WHERE salary BETWEEN 58680 AND 86006;

SELECT fname, minit, Iname
FROM employee
WHERE salary BETWEEN 50000 AND 80000;

SUMMARY

The 3 most important keywords in Database Programming:

SELECT
FROM
WHERE

Practice with your own company database until questions
1-11 make sense to you!

N\YFZANYIANYIANTVIANTYIANTY I ANY S AN

Z Qﬂ%ﬂ\ﬂ%ﬂ%ﬂ\ﬂ% /
NYZANYZANYZANYZANYZANYZANTZAN
ZAN\YZANYZANVZANYZANYZANYZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

MORE SQL OPERATORS, WORKING | cra30
WITH STRINGS AND SUB-QUERIES | Database Systems 1

CONCATENATING STRINGS AND ORDERING QOUTPUT

Although we want to store atomic attributes as much as possible we may not
want to display string values in a way different to how they are stored

For example, for query #10. Retrieve the salary and name of all employees
working in department 5, compare the outputs:

CICNTNET T

John Smith 55550 John B Smith 55250
Franklin T wong 65000 Franklin T Wong 65000
Joyce A English 44183 Joyce A English 44183
Ramesh K Narayan 60000 Ramesh K Narayan 60000

KEYWORDS TO MODIFY QUTPUT ...

AS

... Used to rename any output in SELECT

... can also be used to re-name (alias) tables in FROM
CONCAT

... concatenate strings

... similar usage to other programming languages
CAST

... CAST(expression AS datatype(length))

ORDER BY

... last clause in SQL to order output results

ORDERING THE OUTPUT WITH

FROM employee

ORDER BY e e = e
Syntax rame | o oome | iy

/ ! Frankli T W 65000
ORDER BY <attribute 1ist> okl ong
Ramesh K Narayan 60000
John B Smith 55250
Allows the results of a query to be ordered by values < *# ENFIEWLNES

of one or more attributes

SELECT fname, minit, lname, salary

Either ascending (ASC) or descending (DESC). owe | omiovee

WHERE dno = 5
ORDER BY salary ASC

The default order is ascending. mm

** Must be last clause of the SELECT statement. LRl W 0o T e
John B Smith 55250
Note: ORDER is a reserved keyword! Ramesh K Narayan 60000
Franklin T Wong 65000

TIDYING UP SQL CODE ... Example 11 again

EXAMPLE 11: Retrieve names of all employees whose salary is between

50000 and 80000

SELECT
fname,
minit,
lname
FROM
employee
WHERE
salary BETWEEN 50000 AND 80000;

TIDYING UP OUTPUT... 3

SELECT

CONCAT(fname, ' ’, minit, *’, Iname) AS Name

FROM

employee
WHERE

salary BETWEEN 50000 AND 80000
ORDER BY

Iname;

%11 again

SELECT

CONCAT(fname, ' ' , minit, ' '
FROM

employee
WHERE

salary BETWEEN 500868 AND 30066
ORDER BY

Iname

Tony D Burns
Ramesh K Narayan
John B Smith
Jennifer S Wallace

Franklin T Wong

lname) AS Name

EXAMPLE 12: Produce a list of salaries for all staff, produced in
descending order of salary (outputting ssn, names and salary)

SELECT CONCAT(fname, ' ', minit, " ', lname) AS name, salary
FROM employee

WHERE dno = 5

ORDER BY salary DESC

N

Franklin T Wong 65000

Ramesh K Narayan 60000

John B Smith 55250

Joyce A English 44183

TOP AND LIMIT (ExampLE 13)

SELECT TOP N clause is used to specify the number of tuples/rows (N) to return but it
is not supported by mySQL. Instead mySQL supports a LIMIT N clause which has the
same functionality. The LIMIT clause is listed at the end of the query.

Example 13: List the employees with the top 3 salaries

SELECT
¢ 6 SELECT ssn, CONCAT(fname, ' ' , lname) AS Name, salary
ssn, CONCAT(fname, * *, Iname) AS Name , salary I B
ORDER BY salary dese
FROM LIMIT 2
ORDER BY 888665555 James Borg 94199
987654321 Jennifer Wallace 69240
salary DESC
333445555 Franklin Wong 65000

LIMIT 3;

NOTE: SINGLE AND DOUBLE QUOTES

MySQL usually allows single and double quotes to be used interchangeably.

Generally, single quotes should be used for strings (varchar(), text, etc.)

HOW TO DEAL WITH APOSTROPHES IN STRINGS

We must be careful because an opening quote could be accidently closed by an
apostrophe.

To overcome this, if there is an apostrophe in a string it should be replaced by

two apostrophes side-by-side (general rule for all special characters — have two
of the character) or \

e.g., Find the salary for the employee with surname O’Grady

SELECT salary
FROM employee
WHERE Iname = ‘O”Grady’;

N.B. Must also take care of this when inserting string data using INSERT INTO

Example from company database:

INSERT INTO employee VALUES
('Ciara', "F', 'O'Reilly', 444555, '2002-85-03", "23 Tudor Lawn, Galway, IRL', 'Female', 44000, NULL, 5);

Error in query (1064): Syntax error near 'Reilly’, 444555, '2002-05-03", '23 Tudor Lawn, Galwa

INSERT INTO employee VALUES
("Ciara"', 'F', 'O''Reilly', 444555, '20802-05-03', '23 Tudor Lawn, Galway, IRL', 'Female', 44888, NULL, 5);

EXAMPLE 14. Using the operator Is Null retrieve names

of all employees who Do Not have a supervisor
(superssn IS NULL)

IS NULL : allow an explicit search for NULL

SELECT
FROM
WHERE

WORKING WITH STRINGS AND PATTERN
MATCHING

SQL is case insensitive (apart from table names as mentioned if on linux server)
Case insensitivity also applies to string searching

However, often when working with strings we do not look for an exact match (i.e. an exact

THNT]

match using “=

To support partial matching often use pattern matching characters and LIKE with wildcard
characters % and _

Symbol Example (fname)

% Represents O or more characters % finds John, Joyce,
James, Jennifer

Represents a single character i finds John only

EXAMPLES (#15) ... what is the difference?

SELECT fname, lname
SELECT fname, lname SELECT fname, lname EROM employee
FROM employee FROM employee WHERE fname LIKE '%a%'
WHERE fname LIKE 'j%’ WHERE ~ fname LIKE "j_ ORDER BY fname
ORDER BY fname ORDER BY fname

m m Ahmad Jabbar
James Borg Loy D Alicia Zelaya
Jennifer Wallace Franklin Wong
John Smith James Borg
Joyce English Ramesh Narayan

CAN USE REGEXP FOR MORE COMPLICATED STRING
MATCHING

A Matches position at the beginning of the searched string
$ Matches position at the end of the searched string

[] Matches any character inside the square brackets

[] Matches any character not inside the square brackets

* Matches preceding character O or more times

+ Matches preceding character 1 or more times

| Or

{n} Matches preceding character n number of times

| EXAMPLE 160: Find the names of employees whose
first names begin with /o or /o

SELECT fname, lname
FROM employee
WHERE fname REGEXP "~(jo|ja)’

John Smith

Joyce English

James Borg

EXAMPLE T6b: Find the names of employees whose
first names end with 7

SELECT fname, lname

FROM employee
WHERE fname REGEXP 'n%’

ORDER BY fname

Franklin Wong

‘ John Smith

EXAMPLE 17: Find employees (name and address) who

live in Houston

SELECT
fname,
1name,
address
FROM
employee
WHERE
address REGEXP 'Houston'
ORDER BY
fname

fname m address

Ahmad Jabbar 980 Dallas, Houston, TX
638 Voss, Houston, TX

Franklin Wong

James Borg 450 Stone, Houston, TX
John Smith 731 Fondren, Houston, Tx
Joyce English 5631 Rice, Houston, TX

SELECT
tname,
1name,
address
FROM
employee
WHERE
address LIKE '%Houston#'
ORDER BY
tname

fname m address

Ahmad Jabbar 980 Dallas, Houston, TX

Franklin Wong 638 Voss, Houston, TX

5 rows (0.002 s) Edit, Explain, Export

James Borg 450 Stone, Houston, TX
John Smith 731 Fondren, Houston, Tx
Joyce English 5631 Rice, Houston, TX

5 rows (0.002 s) Edit, Explain, Export

EXAMPLE 18:

Version 1: List the details (name and birth date) of the children of the
employee with SSN 333445555

Version 2: List the details (name and birth date) of the children of Franklin T
Wong

What is the difference?

For version 2, we need two tables and we need to explicitly link the two tables
as part of the query (that is the employee and dependent tables) in order
to meet this request or to use a sub-query

HOW TO ACCESS DATA ACROSS MULTIPLE TABLES?

3 potential approaches™:
* Joins
* Subqueries

* Union queries

* not all suitable for all problems

SUBQUERIES

* A subquery is a query within another query
* Also called a nested query

* The subquery usually returns data that will be used in the main
query

* Data returned from the subquery may be a set of values or a
single value

* Subqueries can be used with the SELECT, INSERT, UPDATE, and
DELETE statements

When to use a sub-query?

*Needed when an existing value from the database needs to be
retrieved and used as part of the query solution.

*Needed when an aggregate function needs to be performed and
used as part of a query solution.

*Can (sometimes) replace a join of tables (where appropriate).

Subqueries in SELECT

Subqueries can be used as part of the WHERE and HAVING
clauses of an outer SELECT

SUBQUERY SAMPLE FORMAT:

SELECT ...
FROM outer query
WHERE X ‘ y) » Some connector between outer
(SELECT ... query and subquery
FROM ... subquery
WHERE ...) ;

Nested SELECT statement is called a subquery
SELECT statement which contains subquery is called an
outer query

CONNECTING OUTER AND INNER QUERIES (1 OF 2)

If subquery returns only one value then can use operators such as:

:I !:l >l >:I <l <:

If subquery could return more than one value (i.e., a list of values)
then need connectors such as:

IN, ANY, ALL to check through the values from the subquery.

CONNECTING OUTER AND INNER QUERIES (2 OF 2)

The keyword NOT can also be used where appropriate (often with
IN, €.g., NOT IN)

In addition can have a more general condition using:

Exists: True if there exists at least one value in the result from a
subquery

Not Exists: True if there is nothing in the result form a subquery (i.e.
it is empty).

CONNECTORS: ANY, ALL

Used with basic mathematical operators: =, ! =, >, <, >=, <=
For example,
=ALL

>ANY

*ALL: the condition is true if the comparison is true for every (ALL) values
returned by the subquery.

*ANY: the condition is true if the comparison is true for at least one (ANY)
value returned by the subquery.

CONNECTOR: IN

Checks for equality.
Can be used for a list of values or a single value.

Does not require any additional mathematical operator.

The IN condition is true if the comparison is true for at least one
value returned by the subquery, i.e. “a value is IN the subquery”.

Returning to EXAMPLE 18:

Version 2: List the details (name and birth date) of the children of Franklin T
Wong?

Using a sub-query:

*The sub-query should query the employee table to find the ssn of the employee
Franklin T Wong.

*The outer query can then use the ssn returned by the subquery to check if the
ssn exists (as an essn) in the dependent table. If /when a match is found return
the name and birth date of the children.

EXAMPLE 18 ctd.

*“The sub-query should query the employee table to find the ssn of the
employee Franklin T Wong”

SELECT ssn
FROM employee
WHERE fname = 'Franklin' AND minit = "T' AND Iname = 'Wong',

*The outer query can then use the ssn returned by the subquery to check if the
ssn exists (as an essn) in the dependent table. If /when a match is found return
the name and birth date of the children (not spouse).

SELECT dependent name, bdate
FROM dependent
WHERE relationship != ‘spouse’ AND essn =

PUTTING THIS TOGETHER

SELECT dependent name, bdate
FROM dependent
WHERE relationship != 'spouse’
AND essn =
(SELECT ssn
FROM employee
WHERE fname = 'Franklin' AND minit = 'T' AND lname = 'Wong')

dependent_name

Alice 2010-04-05

Theodore 2014-10-25

TRY EXAMPLE 19: Using a subquery method, list the staff
(names) who work in department named ‘headquarters’

EXAMPLE 20: Using subqueries, list the names of all

employees who are in the same department as employee
John B Smith

Steps:
1. Use a subquery to get John B Smith’s department (a single number)

2. Use outer query to find who else is in that department number

* Be careful not to return “John B Smith” in the answer — i.e. he is in his own
department!

You try

#21 Retrieve the name and salary of all employees who work on a project for
greater than 20 hours.

#22 Retrieve the names of employees who have no dependents (Hint: using
NOT IN to connect the queries).

SUMMARY

*Working with strings is an important part of SQL coding.

*Writing code that is easy to read — and that produces easy-to-read output is
also very important.

*We can nest queries so that we can access data across multiple tables (Sub-
queries). It is very important to use the correct connector between outer and
inner queries (often there is more than one suitable option).

INYZANYZANYZANTZ4ANY %
ZaN\YA\YZANYZANYZANYZ
WA\ 4\
ZaN\YAN\YANYZANYZANYZ
NZA\ZANTAN\YZAN\T4\

TJANVIANVIANVIANVIANYYS.

SQL SELECT STATEMENT | cT230
Aggregate Functions | Database
GROUP BY & HAVING clauses ' Systems

AGGREGATE FUNCTIONS

Aggregate functions are only supported (can only be
used) in SELECT clause and HAVING clause, even if

we would like to use them elsewhere! (e.g as part of a
condition in where clause)

oKeywords SUM, AVG, MIN, MAX work as expected
and can only be applied to numeric data

oKeyword COUNT can be used to count the number of
tuples/values/rows specified in a query

oCan also use mathematical operations as part of an
aggregate function on numeric data (e.g., *, +, -, /).

USING suM, MAX, MIN, AVG

Example 23: Find the total number of hours worked on
projects in the company, the maximum and minimum hours
worked by an employee on a project and the average
number of hours worked.

SELECT SUM(hours) As 'Total Hrs Worked’,
MAX(hours) AS 'Max Hrs Worked’,
MIN(hours) AS 'Min Hrs Worked’,
ROUND(AVG(hours), 2) AS "Avg Hrs Worked’

FROM works on;

Total Hrs Worked | Max Hrs Worked | Min Hrs Worked | Avg Hrs Worked
265 40 0

17.67

DOES THIS MAKE SENSE?

SELECT ssn, SUM(salary) AS answer

FROM employee;

EXAMPLE 24 What is the output?

SELECT
SUM (salary) /12
FROM

employee;

To Do: Tidy up the output ...

WORKING WITH COUNT ()

* Very useful aggregate function

* Counts the number of tuples/rows in a result

* Can only be used in SELECT and HAVING clauses, as with
all aggregate functions

* Similar to count() and counta() in Excel and other
spreadsheets

EXAMPLE 25:
How /many employees earn over 60000

O Do not want the employee names
O Want to count how many there are
O Want a number returned...so we use count()
SELECT
COUNT (*) AS 'num earning > 60k
FROM
employee
WHERE

salary > 60000;

NOTE:

Whatever is in the output it is the tuples/rows
which are counted therefore it is not
necessary to specify the attribute name

SELECT

COUNT (*) AS 'num earning > 60k’
FROM

employee
WHERE

salary > 60000;

MORE COUNT() EXAMPLES:

Example 26: Using a sub-query find how many employees
work on project with name ‘ProductY’?

Example 27: Using a sub-query find how many children
employee John Smith has?

Example 28: Find the yearly salary payments the
company must make if everyone receives a 2% (.02) pay
rise

Example 29: Find the number of employees working for
the research department

USING A SUB-QUERY TO RETURN AN
AGGREGATE VALUE

Example 30: Name the employees who earn greater than
the average employee salary in the company

SELECT fname, Iname

FROM employee

WHERE salary >
(SELECT AVG(salary)
FROM employee)

Franklin Wong

Only a
subquery

Ramesh Narayan
James Borg will work

Jennifer Wallace here

4 rows (0.002 s) Edit, Explain, Export

EXAMPLE 30 VARIATIONS
Will these work?

SELECT fname, lname, AVG(Salary)
FROM employee

SELECT ftname, lname
FROM employee
WHERE salary > AVG(salary)

SELECT fname, lname
FROM employee
WHERE (SELECT AVG(salary)
FROM employee) <= salary

YOU TRY ...

Example 31:

How many employees earn the minimum salary in the
company?

GROUP BY
HAVING

Recall:

SELECT [DISTINCT] <attribute list>
FROM <table list>

WHERE <condition>

GROUP BY <group attributes>
HAVING <group condition>

ORDER BY <attribute list>

GROUP BY

Syntax:

GROUP BY <group attributes>

O The GROUP BY clause allows the grouping (combining)
of rows of a table together so that all occurrences within a
specified group are collected together.

o Aggregate functions (min, max, avg, sum, count) can then
be applied to the groups.

Example 32

List the dno of each department

-- version 1

SELECT dno
SELECT dno

FROM employee
GROUP BY dno

GROUP BY dno;

1
-- version 2 4
5

FROM employee

SELECT DISTINCT dno

FROM employee;

USING AGGREGATE FUNCTIONS
WITH GROUP BY :

The GROUP BY clause specifies the group and the aggregate
function is applied to the group.

* COUNT(*) can be used to count the number of rows (tuples) in
the specified groups.

* AVG, SUM, MIN, MAX can be used to find average, sum, min
and max of a numerical value in a specified group.

The aggregate function is not mentioned in the GROUP BY clause,
but is specified in the SELECT clause.

* IMPORTANT *

You must GROUP BY ALL attributes mentioned in the
SELECT clause unless they are involved in an
aggregation.

EXAMPLE 33: List the department number and
the number of employees in each department

SELECT dno, COUNT (*) AS numEmps

FROM employee

GROUP BY dno; inm
4 3

5 4

EXAMPLE 34: List the department number and
the total salary in each department

SELECT dno, SUM(salary) AS sum salary

FROM employee

GROUP BY dno; m
1 94199
4 157606

5 224433

You try ... EXAMPLE 35: For each
department, retrieve the department number,
the number of employees in the department,
and the average salary of the department

SELECT
FROM

GROUP BY

EXAMPLE 36:

List the number of dependents of each employee who has
dependents

Why is this wrong?

SELECT dno, salary

FROM employee

GROUP BY dno;

Recall:

*GROUP BY must contain all attributes in the SELECT clause
that are not part of an aggregate function

°In the example, we cannot leave “salary” without a group

Error
SQL query:
SELECT dno, salary

FROM employee
GROUP BY dno LIMIT 8, 25

MySQL said:

#1855 - Expreszsiom #2 of SELECT 1list is mot in GROUP BY clause and contains nonaggregated column ‘mydblés.employee.salary” which is not functi

HAVING

Syntax:

HAVING <group condition>

The HAVING clause is used in conjunction with GROUP BY and allows
specification of conditions on groups.

N.B. The column names used in the HAVING clause must also appear
in the GROUP BY list or be contained within an aggregate function,
i.e., you cannot apply a HAVING condition to something that has not
been calculated already.

Example 37: For each department that has more than |

employee, retrieve the department number, the number of

employees in the department and the average salary of the
department.

SELECT dno,
COUNT(*) AS numEmps,
AVG(salary) AS avgSalary
FROM employee
GROUP BY dno
HAVING COUNT(*) > 1

Example 37: Tidying Qutput ...

SELECT dno,
COUNT(*) AS numEmps,
CAST(AVG(salary) AS DECIMAL(10, 2)) AS avgSalary

FROM employee
GROUP BY dno

Sal
JAVING COUNTE) > romenys | avgssary
4 3
‘ 5 4

52535.33
56108.25

EXAMPLE 38: List the project number and the
number of employees who work on the project
for projects that have 2 or more employees

20

ORDER BY 30

SELECT

FROM Boe s 3 Num Emps per Project
GROUP BY ; 2
HAVING ‘z z

SUMMARY

Apart from Joins, have covered some of the most important aspects of
SQL DDL and DML SELECT statements — with these you can build and
query many databases.

Important to know:

* DDL CREATE TABLE

* DML INSERT INTO

* DML SELECT:

* Single table queries

* Multiple table queries with sub-queries (To Do: Joins)
* Aggregate functions

* Working with strings (LIKE, %, REGREP, etc.)

* Tidying Output (AS, CAST)

NYFZANYIANYIANYIANYI AN

ﬂ\ﬂ&ﬂ%ﬂ“ﬂ& /
NN\ Y4
ZaN\YZA\YZA\Y/ANY/A\Y/,
NN\ Y4

TJANVIANVIANVIANVIANY Y

TOP'C CCCCC
ENTITY RELATIONSHIP MODELS D"JQ?,,TT

TOPIC:
Designing Tables with ER Models

IDAMENTALS OF

See

Elmasri and Navathe book
Chapter 3 & Chapter 9
(39 Edition)

DATA MODELS

Data models are concepts to describe the structure of
a database. They comprise

* High level or logical models;
* Representational /Implementation data models;

* Physical Data models

Data models allow for database abstraction

DATA DESIGN and
ENTITY RELATIONSHIP MODELS

Entity Relationship Models:

oProvide a way to model the data that will be
stored in a system.

oThe models are then used to create tables in the
relational model.

ENTITY RELATIONSHIP (ER) MODELS

ER models are a top-down approach to database
design.

They are used to identify:

|. the important data to be stored in database
called entities.

2. the relationships between the entities.
3. the attributes of entities.

4. the constraints of relationships and entities.

Wisio Professional

Software to

Create ER = _ | . | ™
Models SR e [mm=

A comprehensive drawing package by Microsoft - MS
Visio - supports the drawing of a large set of diagrams,
including database ones. This is worth getting with your
free Microsoft access.

Many other similar packages available:

*Edraw: https://www.edrawsoft.com/entity-
relationship-diagrams.php

“Astah: http://astah.net/
*Lucidchart: www.lucidchart.com

https://www.edrawsoft.com/entity-relationship-diagrams.php
http://astah.net/
http://www.lucidchart.com/

NOTATION =~ Lo =

A number of different notations can be used to
represent the same model.

The original notation (Chen) uses diamonds,
rectangles and ellipses.

It is easier to hand-draw so useful in an exam
situation.

It is less implementation oriented than other
notations.

ER MODEL NOTATIONS ¢

There are many notations in use, some of the more
common:

“Chen Notation

“|IE Crow’s foot Notation

“UML

“Integrated Definition 1, Extended (IDEF1X)

Different software products often have their own
minor variations of the above.

COMPANY ER MODEL EXAMPLE

Consider the ER diagram (Chen’s notation) of the
Company Schema

Supervisor Supervisee

M

DEPENDENTS_OF

| DEPENDENT |

@ Relationship
e

Copyright @ 2016 Ramez Elmasr and Shamkant B. Navathe

. Number_of_employees —| DEPARTMENT |

-Déﬂm_

SOME DEFINITIONS:

Entity type: group of objects, with the same properties,
which are identified as having an independent existence

e.g .,
Si‘CIff ‘ staff ‘ Staff
customer Customer
‘ customer ‘
prod U cf Product
‘ product ‘
employee

ENTITY INSTANCE AND ENTITY TYPE

- An entity type is a collection of entity instances
that share common properties or characteristics

- An entity instance or entity occurrence is a single
uniquely identifiable occurrence of an entity type
(e.g., row in a table).

J

Entity
Instance:

One employee, _
e.g. John B Smith Entity Type: employee

RELATIONSHIP TYPE: <>

A set of meaningful relationships among entity

types

e.g.,

employee “works for” department
department “has” employee

employee I @ I department

RELATIONSHIP OCCURRENCE (INSTANCE):

A uniquely identifiable association which includes
one occurrence from each participating entity
type; reading left to right and right to left.

e.g.

“Left-to-Right: John Smith “works for” Research
department

“Right-to-left: Research department “has” John

Smith //\
| orks for | department

employee | e |

ATTRIBUTES C O—

Attributes are a named property or characteristic of an
entity.

Each entity has a set of attributes associated with it.

Several types of attributes exist:
*Key

* Composite

*Derived

= Multi-valued

ATTRIBUTE NOTATION

Chen: An oval enclosing @

the name of the
attribute

Crow: Listed in the
entity box

KEY ATTRIBUTES

*Each entity type must have an attribute or set of
attributes that uniquely identifies each instance from
other instances of the same type.

*A candidate key is an attribute (or combination of
attributes) that uniquely identifies each instance of an
entity type.

*A primary key (PK) is a candidate key that has been
selected as the identifier for an entity type.

*Notation: Underline attribute name chosen as primary
key

PKCNOTATION: SSN PRIMARY KEY

|

T Staff T Phwsical Mame Daka Type Req'd | PK

i | Frame CHARCLD) [] [] Frameis of Staff

*PH SSN Ik Lnamie CHAR(1) [1 | [|Lnameis of Staff

- Enam | B [550 CHAR 100 55N identifies Staff
name
Lname

o----- “O------ O

COMPOSITE AND SIMPLE (ATOMIC)
ATTRIBUTES

A composite attribute is an attribute that is composed of
several more basic/atomic attributes.

If the composite attribute is referenced as a whole only,
then there is no need to subdivide it into component
attributes, otherwise you should divide it:

G @D o
L

STORED AND DERIVED ATTRIBUTES

A derived attribute is an attribute whose value
can be determined from another attribute.

For Chen’s notation, the notation is a dotted oval.

For crow’s foot notation, derived attributes can be
represented by enclosing the attribute in [], e.qg.,
[age].

MULTI-VALUED ATTRIBUTES O—

A multi-valued attribute is an attribute which has
lower and upper bounds on the number of values
for an individual entry.

For Chen’s notation, one oval inside another.

For crow’s foot notation, multi-valued attributes
can be represented by enclosing the attribute in
{}, e.g., {skills}, {phoneNums}, etc.

Can you identify

Frame @@

Bdate Mame
CSsn

EMPLOYEE

Sy | (s

|::r§l:umber_ﬂf_emplu]reéét:‘-—[DEPART

Supearvisor Superviges

M

DEPENDENTS_OF

|[_DEPENDENT |
er

Mame ,ge”d Birth_clate Relationship

Copyright © 2016 Ramez Elmasr and Shamkant B. Navathe

menti.com ... list all multi-valued
. attributes?

Cname™) it > C Loame
= — e
Bdate Mame Address

\
Suplnr:.ur/ \ Superviges
) .@ E

Nam& (_gender Bim_,uﬁﬁm

Copyright © 2016 Ramez Elmasr and Shamkant B. Navathe

¥

menti.com ... list all derived attributes?

ey G T
' — i
Address

g\\

Supearvisor
1

Name C])M

. Number_of_employees—| DEPARTMENT |

Superviges

M

DEPENDENTS_OF

|[_DEPENDENT |

Nam& (_gender Bim_,dﬁﬁ@

Copyright © 2016 Ramez Elmasr and Shamkant B. Navathe

NAMING

*The choice of names for entity types, attributes,
relationship types and roles is not always straight-
forward.

*Should choose names that convey as much as possible
the attached to the constructs.

*These names will subsequently be used as table
names and attribute names in database so important
to choose good names.

*Remember, should not use sql keywords (order, date,
etc.)

QUESTION: What attributes might you
have for these entities?

Subject/Module
Person
Exam ... see menti.com

Bank account
Book

Film

MORE ON ENTITIES: I 1
STRONG AND WEAK ENTITIES

Strong: an entity type whose existence is not dependent
on some other entity type.

Weak: an entity type whose existence is dependent on
some other entity type (does not have key attributes of
its own)

EXAMPLE:

In the company schema the
dependent relation contains data
of dependents for each
employee.

dependent is a weak entity
because two tuples can only be
distinguished based on employee
SSN.

An alternative would be to have
a unique ID for each dependent
(e.g. their own SSN) and the
dependents could be a strong
entity

o e 2 e ~ - e e

L /:/' _____-"" HH____.'__,_..--" e =
\\"- .",/.-f s [R - " i
-~ B L = . |
EMPLOYEE |._ (_Start_date) i, Mumber_of_employees — DEF
O O T~ i e B L e "

o H.__HH - T #:::::_,.
. . % e . e

g e 1 -

N o L g -~

\ <. MANAGES ¥ -

i ", . e - {:'\-\. |:|:

\\ . -~ 0
%, e ™ - — b

™, \ S F T
"x\ o -._3__H|:|ur5 -
\ % __,-"'J HM'\-\._‘_.-"-.. -
\ \"“f"' SN

N _ WORKS ON =—— P

T \ Superises 1 e = -
; \] - - ;o
- . R !

SUPERVISION N 27 ™In ((Mame j /
- o Bt ~—— -
g 5 o —e 2oL

-"-'.-"-' .,
o o
<% DEPENDENTS_OF _=>>

- -

w0 e

H'\-\.H'\-\.H -'-{_::___.-
e

v
[DEPENDENT ||
I..--"‘_-__.--"F "x_ 1"'--I.____

SRR i e .
 Name j__ Birth_date > (_Relationship >

=1 and Shamkant B. Mavathe

¢ MNumber 3 ™

MORE ON RELATIONSHIPS

Whenever an attribute of one entity type refers
to another entity type, some relationship exists.

The degree of a relationship type is the number
of participating entity types.

Relationship types may have certain constraints.

NOTATION e M

For Chen’s notation: A Diamond shape is used to
name the relationship. 1 and M/N are used for
the “1” and “many” sides respectively.

For Crow’s foot notatior: The crow foot is used as
the representation of "many”, and one line is used
for the representation of “17”,

| EXAMPLE: A department has many staff

Staff
Department
PK |SSN
PK |Dnumber
. has/belongw | o«
Fname
DName Lname
FKK1 | S5N Address
Dno

1 has/ M
Idepartment belongs staff I

to

MORE ON RELATIONSHIPS

With Chen’s notation, relationships may have attributes

Attributes are drawn “off” the diamond shape of the
relationship.

ﬁ;::"f"a W —'c\\ e

o I(Star‘t dat-e Number of_ emplq:,-eeg. —| DEPARTMENT
R

M,

MANAGES CONTROLS

f ".
Hnurs
M
WORKS_ON FHID.IECT
Eupemanr.' ". Supervises \\1
'|

CARDINALITY RATIO

Specifies the number of relationship instances that
an entity can participate in.

The possible cardinality ratios for binary
relationship types are:

“1:1, One to One
“1:N, One to Many
*M:N, Many to Many

EXAMPLE: 1:]1

At most one instance of entity A is associated with one
instance of entity B

Example: One employee has one office

Chen notation:

OFFICE

1 /////\\\\\
EMPLOYEE \\\Eéi////

. /\ .
EMPLOYEE \HAS/ OFFICE

has office

employee

EXAMPLE: 1:N

For one instance of entity A, there are O, 1 or many
instances of entity B

Chen Notation:

department belong t staff

1 %S/\ N

Crow’s foot notation:

Staff
PK |SSN

Department

PK |Dnumber

Frname
Lname
Address
Dno

DMName
FK1 | S5SN

1 %\ N
department W staff

has/ staff
department belo

EXAMPLE: M:N

For one instance of entity A, there are O, 1 or

many instances of entity B and

For one instance of entity B, there are O, 1 or
many instances of entity A

Project

PK,FK1 | SSN

Staff

PK [SSN

Name

b

)

PK ID has+works-en

Fname
Lname
Address
Dno

=

employee

has

@ N

project

M /\ N .
em p | Oyee works_on/ p rOJeCt

works_on/ oroject

employee nas Project\

J./Smijt

I@L 5 Project 2

J. English = Project 3
N OProject 4

. Won -
U Project

ASIDE: Structural constraints on
relationships

Often we may know the min and max of the
cardinalities

" e.g., limit to number of books which can be borrowed

Structural constraints specify a pair of integer

numbers (min, max) for each entity participating in
a relationship

Examples: (0, 1) ,(1,1), (1, N), (1, 7)

We will not model this in our examples

CASS QUESTION —
See menti.com

In a hospital, patients are assigned to wards;
wards have patients. What is the cardinality of
the relationship?

has/
ward assigned to patient

TOTAL AND PARTIAL PARTICIPATION

Total Participation: all instances of an entity must
participate in the relationship, i.e., every entity
instance in one set must be related to an entity
instance in the second set via the relationship.

Partial Participation: some subset of instances of
an entity will participate in relationship, but not
all, i.e., some entity instances in one set are
related to an entity instance in the second set via
the relationship.

NOTATION FOR PARTICIPATION
CHEN'S NOTATION

“Double parallel lines for Total Participation

*Single line for Partial Participation

“In both cases, lines drawn from the participating
entity to the relationship (the diamond) to
indicate the participation of instance from that
entity in the relationship

EXAMPLES

EMPLOYEE

EMPLOYEE

manages

DEPARTMENT

DEPARTMENT

EXAMPLES:
Total and partial participation

EMPLOYEE W DEPARTMENT

EMPLOYEE <m\y_ DEPARTMENT
has

NOTATION FOR PARTICIPATION
CROW'S FOOT NOTATION

Use the idea of Ordinality/Optionality

- Optionality of O: if an entity A has partial
participation in a relationship to entity B then this
means A is associated with 0 or more of the other
entity so optionality sign goes beside B.

- Optionality of 1: if an entity A has full participation
In a relationship to entity B then this means A is
associated with at least 1 or more of B so
optionality sign goes beside B.

(and vice versa when looking at participation of B in
relationship)

CROW'S FOOT NOTATION

Bar for Optionality of 1: |
Circle (or ‘0’) for Optionality of 0 (O

In Crow’s foot notation, there is no diamond so there is a
direct relationship line between the entities. On this line:

*The optionality drawn beside entity A refers to how an
instance of entity B is related to entity A.

*That is, whether B can be involved partially (O) or not

(1)

Example in Following Right 1o Left
Relationships:

so—hastHse—— |s of O or more

=+ hastisel—— s of 1 or more

+—hastHsei— Is of 1 and only 1

t1o—hastset—— s of O or 1

WHICH IS CORRECT FOR THIS RELATIONSHIP?
Total or partial participation?
See menti.com

M N
EMPLOYEE < WORKS_ON/™s PROJECT
W
M N
EMPLOYEE WORKS_ON/ PROJECT
HAS
Project Staff Project Staff
: PK | SSN : PK | SSN
PK,FK1 | SSN PK,FK1 | SSN
PK D >+ — — has+ works-en — — +< Fname PK D >O- — —has FAwerks en— — —0< Fname
Name Addross Name Addross
D D

Describe the relationship in words in
the following: See menti.com

1 ﬁw\ N

CUSTOMER W> ORDER

Customer Order

HI1— —stbmits Fsubmitted by— —0<

See menti.com

Describe the relationship in words in the
following:

Does it look correct?
How would you fix it?

Ny~

EMPLOYEE

\

Supervisor/ _~~_ |\ Supervisee

SUPERVISES/
IS SUPERVISED
BY

EMPLOYEE

See menti.com

What is the relationship between these
entities?

* Cars and people

* Students and library seats

* Students and subjects

* Exams and Locations

* Customers and Bank accounts

* Books and Authors

* Cinema and films/movies

| NOTE:

A weak entity type always has a total participation

constraint

Need to show the “identifying relationship”

EMPLOYEE

1 /\ N
dependents _gb >

DEPENDENT

| CHEN'S NOTATION FOR WEAK ENTITY

Double rectangle for Entity
Double diamond for Relationship

Weak entity has full participation in the
relationship

< >

CROW'S FOOT NOTATION FOR WEAK
ENTITY:

“Can represent the Weak Entity as a normal entity
but do not choose any attributes as primary keys.

“For an attribute that partially determines the entity
instances, choose the ‘required’ option

“Represent the relationship between entities with a
solid line (usually)

*This indicates it is an “identifying” relationship

answer

nnnnnnnnnnnnn
LA A | ISO W7 Tido

option_num
description

In general, with entities:

There may be two valid solutions, one with a
weak entity and one without.

There is not a huge difficulty if you do not
identify weak entities in a solution as long as all
entities have primary attributes.

May be slightly non-optimal in terms of
introducing an additional primary key that is not
needed but not a huge problem for us at this
level.

Entities or multi-valued attributes?

Sometimes it may not be clear whether something
should be modelled as a multi-valued attribute or
an Entity.

Both may be equally correct as long as you have
represented all the information you were asked to.

When you map either case to tables in a
database you might see very little difference
between the two approaches.

CLASS EXAMPLE 1

A database is to be created to hold information on lecturers,
departments, courses and modules.

Lecturers are associated with only one department. Each lecturer in
addition has an associated staff id, title, name, office number and
building. Each lecturer teaches a number of modules and a number of
lecturers may teach one module.

Each module has an associated unique code (e.g. CT230), name,
semester taught, semester examined, ECTs and zero or more
prerequisites (which are modules). For example, CT103 and CT102
may be a prerequisite for CT2101.

Each module is part of one or more course instances (e.g. 2BA, 2BCT,
2BFS, 3BP). Each course has an associated name and code.

Each course is controlled by a department, and a department can
control a number of courses. Each department has an associated
name, and may have a number of different locations; each
department has one head of department.

CLASS QUESTION:

Using Chen’s notation, create an ER model to
accurately model the above information. Show all
entities, relationships, attributes, cardinalities, and
total and partial participations. State any
assumptions you make.

STEPS:

|dentify entities.
|dentify relationships between entities.
Draw entities and relationships.

Add attributes to entities (and relationships if
appropriate).

Add cardinalities to relationships.

Add participation constraints (total or partial) to
relationships.

Check all entities have primary keys identified.

MAPPING ER MODELS TO TABLES IN THE
RELATIONAL MODEL

Once you have your ER diagram you now need to
convert this into a set of tables so that you can
implement this in a relational model (e.g. as
MyYSQL tables using CREATE TABLE commands)

This stage is called Mapping ER Models to
Tables in the Relational Model and it specifies a
set of rules that must be followed in a certain
order.

The rules specified here are based on Chen’s
notation.

STEPS ... Mapping ER models to tables
in the relational model

1. For each entity create a table R that includes
all the simple attributes of the entity.

2. For strong entities, choose a key attribute as
primary key of the table.

STEPS ... Mapping ER models to tables
in the relational model

3. For weak entities R, include as foreign key
attributes of R the primary key attributes of the
table that corresponds to the owner. The primary
key of R is a combination of the primary key of
owner and the partial key of the weak entity type.

The relationship of the weak and strong entity
is generally taken care of by this step

STEPS (7D.... mapping ER models to
tables in the relational model

4. For each binary 1:1 relationship, identify entities
S and T that participate in relation.

°If applicable, choose the entity that has total
participation in the relation. Include as foreign key in
this table the primary key of other relation. Include
any attributes of the relationship as attributes of

chosen table.

°If both entities have total participation in the
relationship, you can choose either for the foreign key
and proceed as above or can map 2 entities, and
their associated attributes and relationship attributes

into 1 table.

STEPS (7D.... mapping ER models to
tables in the relational model

5. For each binary 1:N relationship, identify the table S that
represents the N-side and T the table that represents the 1-

side.

* Include as a foreign key in S the primary key of table T
such that each entity on the N-side is related to at most
one entity instance on the 1-side. Include any attributes of
the relationship as attributes of S.

* For recursive 1:N relationships, choose the primary key of
the table and include it as a foreign key in the same table
(with a different name).

STEPS (7D.... mapping ER models to
tables in the relational model

6. For each M:N relationship, create a new table S
to represent the relationship.

*Include as foreign key attributes in S the primary keys
of the tables that represent the participating entity
types — their combination will form the primary key of
S. Also include in S any attributes of the relationship.

*For a recursive M:N relationship, both foreign keys
come from the same table (give different name to
each) and become the new primary key.

STEPS (7D.... mapping ER models to
tables in the relational model

7. For each multi-valued attribute A of an entity S,
create a new table R. R will include:

*an attribute corresponding to A,

*primary key of S which will be a foreign key in
table R. Call this K.

*primary key of R is a combination of A and K

Map each of the following to tables in the
relational model:
wards and patients

C e D i
has/
ward —1 assigned to M— patient
Cyastians

medications

Map each of the following to tables in the

relational model:
authors and books

author

bl

address

Map each of the following to tables in the
relational model:
cars and people

regtim

o

car

LM owned by/owns 1|

person

Map each of the following to tables in the
relational model:
modules and students

Come D :
) module N taken by/takes student

CLASS WORK: Map the University model
created (Example 1) to tables in the
relational model

PROBLEM SHEET 4

An Irish holiday home rental company wishes to create an online database system to maintain information on
home owners who own holiday houses which the rental company rents on their behalf; customers who rent the
holiday homes, and the rental agreements. The data which should be stored is as follows:

Details stored on holiday houses are: a unique ID for each house, the address of the house (town, county and
Eircode), the number of bedrooms and bathrooms in the house and the maximum number of people the house
will accommodate. Two price details should be stored: low-season price per night and high-season/weekend
price per night. In addition a short description of the house amenities and surrounding amenities should be
stored.

Each house is owned by one home owner. A home owner may own many houses. Details stored on the home
owners are: a unique id, a username and password to login to the system, their name, address and telephone
number and their email address.

Customers can book one or more houses and a house can be booked many times. Details held on customers are:
unique ID, customer name, address, email address and phone number.

Details held on a booking are the dates the booking begins and ends, and the number of people wishing to
stay in the house as part of the booking. Any entered bookings must be confirmed by a company employee
(via phone or email). When the confirmation takes place, data should be stored to indicate that the
confirmation has taken place and to indicate the amount of money paid as a deposit. This database does not
currently hold any information on the check-in process and the payment of the balance due.

| SUMMARY:

Important to Know:

O Basic definitions of entity, relationship, attribute (and different types),
cardinality and participation for Chen and Crow’s foot notation.

o Create ER Model (in Chen’s notation)

o Map from ER model in Chen notation to set of tables with associated
primary and foreign keys.

Common Errors:
O Missing Primary Keys for Entities.
O Missing cardinalities in Relationships.

o Only mapping entities to tables; not mapping relationships or multi-
valued attributes.

NYFZANYIANYFI AN

L/ \)
Za\YANY7A\Y/A\Y/4
NN\ T4\ Y4
ZaN\YZANYZANY/A\Y/4
VZNZNZ\N2\

TJANVIANVIANVIANVIANY Y

/
QA
1%
QA
1%

\
/,
\
/,
\
s

Returning fo
SQL DML SELECT STATEMENT |
Join and Union Que

RECALL EXAMPLE 18:

Version 1: List the details (name and birth date) of the
children of the employee with SSN 333445555

Version 2: List the details (name and birth date) of the
children of Franklin T Wong?

Now consider a 3 version:

Version 3: List the details (name, birth date and
address) of the children of Franklin T Wong (assuming
the dependent’s address is Franklin Wong’s address)

RECALL sub-query solution to version 2:

List the details (hame and birth date) of
the children of Franklin T Wong?

SELECT dependent _name, bdate
FROM dependent
WHERE relationship != 'spouse’
AND essn =
(SELECT ssn
FROM employee
WHERE fname = 'Franklin®' AND minit = 'T' AND lname = 'Wong"')

dependent_name

Alice 2010-04-05
Theodore 2014-10-25

CAN WEMODIFY THIS TO GET THE SOLUTION 70
VERSION 37

List the details (name, birth date and address) of the
children of Franklin T Wong (assuming the
dependent’s address is Franklin Wong’s address)

SELECT dependent name, bdate NO — because we

:IﬁgJ:E iii::jz::hlp I= "spouse’ need InfOFmatlon from
AND essn = two tables —we need
(SELECT ssn
e to use a join to join or

WHERE fname = 'Franklin' AND minit = 'T' AND lname = 'Wong') COmbIne the tWO
tables so that the

dependent_name information from both
T 5010-04-05 IS accessible and can

be displayed as the
‘ Theodore 2014-10-25 output

JOINS

Joins combine multiple tables in to one table. This new
(temporary) table is then queried to return results so we can
return values from any of the tables which were joined.

Tables are joined by specifying links (or joins) across
attributes in the tables.

Joins are carried out on 2 tables at a time but many tables
can be joined, i.e., a third table can be joined to the table
that results from joining two tables.

SPECIFYING JOINS

In SQL must specify all the tables which are part of join in the
FROM clause

There are many different types of joins — all may not be
supported in the DBMS you are using — we will mostly use an
inner join which will always be supported.

Must then specify the join condition: for an inner join the condition
is foreign_key = primary_key/candidate_key.

The join condition can be specified in the FROM or WHERE
clause.

INNER JOINING TABLES:

The result of an inner join operation between two tables:
R(A,, A, ..., A,) and
S (B, By ..., B.)
is a table Q(A,, A,, ..., A, B, B,, ..., B_) where:

Q has one tuple for each combination of tuples
(one from R and S) whenever the combination
satisfies the join condition — the join will retrieve
ALL attributes in each table

CONSIDER:
INNER JOIN CONDITION FOR employee AND
dependent TABLES

Join condition: SsSn = &ssn

Full query retrieving all employees and their dependents
(when they have dependents):

SELECT *
FROM employee INNER JOIN dependent

ON ssn = essn;

Result from joining employee and
dependent

I S S ==) e) N e

John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx 55250 333445555 5 123456789 Alice Woman 2008-12-30 Daughter
John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx Man 55250 333445555 5 123456789 Elizabeth Woman 1976-05-05 Spouse
John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx Man 55250 333445555 5 123456789 Michael Man 2011-01-04 Son
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 333445555 Alice Woman 2010-04-05 Daughter
Franklin = T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 333445555 Joy Woman 1981-05-03 Spouse
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 333445555 Theodore Man 2014-10-25 Son
Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4 987654321 Abner Woman 1992-02-28 Spouse

EXAMPLE 18 VERSION 3 JOIN SOLUTION

List the details (name, birth date and
address) of the children of Franklin T Wong

SELECT dependent_name, dependent.bdate, address
FROM employee INNER JOIN dependent ON

ssh = essn
WHERE relationship != ‘spouse’

AND fname = 'Franklin’

AND minit =T’

AND Iname = 'Wong’;

Alice

2010-04-05 638 Voss, Houston, TX
‘ Theodore 2014-10-25 638 Voss, Houston, TX

NOTE:

When attributes with the same name, but from different tables,
are used in a join query, you need to specify the table name to
avoid ambiguity with respect to the attribute names.

Example: bdate in employee and dependent relations.
Can refer to both of these unambiguously as:
employee.bdate
dependent.bdate

If you do not do this, the DBMS does not know which one you
are referring to and gives an error:

Error in query (1052): Column ‘bdate’ in field list is ambiguous

EXAMPLE 39: Using an inner join, retrieve

the names and addresses of all employees
who work for the administration department

SELECT fname, lname, address
FROM P27

WHERE dname = 'administration’;

CONSIDER THE INNER JOIN CONDITION FOR
employee AND department USING
DEPARTMENT NUMBER

Join condition is: dno = dnumber

Full query retrieving all employees and their departments:
SELECT *

FROM employee INNER JOIN department

ON dno = dnumber;

I e S e e 2)

John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx 55250 333445555 5 Research 333445555 2018-05-22
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 5 Research 333445555 2018-05-22
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX Woman 44183 333445555 5 5 Research 333445555 2018-05-22
Ramesh K MNarayan 666884444 1995-09-15 975 Fire Oak, Humble, TX Man 60000 333445555 5 5 Research 333445555 2018-05-22
James E Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL 1 1 Headquarters 888665555 2019-06-19
Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4 4 Administration 987654321 2015-01-01
Ahmad \ Jabbar 987987987 2000-03-29 980 Dallas, Houston, TX Man 44183 987654321 4 4 Administration 987654321 2015-01-01
Alicia] Zelaya 999887777 1998-07-19 3321 Castle, Spring, TX Mon-binary 44183 987554321 4 4 Administration 987654321 2015-01-01

EXAMPLE 39: Using a join, retrieve the names and
addresses of all employees who work for the
administration department

SELECT fname, lname, address
FROM employee INNER JOIN department
ON employee.dno = department.dnumber

WHERE dname = 'administration’;

+ Options

fname Iname address

Jennifer Wallace 291 Berry, Bellaire, TX
Ahmad Jabbar 980 Dallas, Houston, TX
Alicia felaya 3321 Castle, Spring, TX

Class Question: Can this be done with a sub-query?

Class Question: Can this be done with a sub-query?
(EXAMPLE 39: Retrieve the names and addresses of
all employees who work for the administration
department)

EXAMPLE 40: Retrieve the names and addresses of

all employees who work for the administration
department and the ssn of the manager of the
administration department

SELECT fname, Iname, address, mgrssn
FROM employee INNER JOIN department

ON employee.dno = department.dnumber

WHERE dname = 'administration’;

Jennifer Wallace 291 Berry, Bellaire, TX 987654321

Ahmad Jabbar 980 Dallas, Houston, TX 987654321

Alicia Zelaya 3321 Castle, Spring, TX 987654321

IMPLICIT AND EXPLICIT JOINS

The join condition can be specified implicitly or
explicitly as follows:

*An explicit join is specified in the FROM clause where
the tables to be joined are listed. The keyword INNER
JOIN is used for inner joins and the join condition is
listed also using keyword ON

*An implicit join is specified in the WHERE clause
without using the keyword ON. It is referred to as a
join condition. The tables must be listed in the FROM
clause, separated by commas. Other conditions can
also be specified in the WHERE clause as well as the
join condition.

IMPLICIT JOIN CONDITION IN
WHERE CLAUSE:

*No additional syntax to learn.

*All tables involved MUST be listed in FROM
clause.

*Condition to join tables is contained in the WHERE
clause. If there are other conditions, the join
condition is appended on with AND

* This is an INNER JOIN: all rows from both tables
will be returned whenever there is a match
between the attributes in the join condition

EXPLICIT JOIN CONDITION IN FROM
CLAUSE

Syntax for joining 2 tables:

SELECT [DISTINCT] <attribute 1ist>
FROM <table>
[INNER/LEFT/RIGHT] JOIN <table>
ON <joln condition>

WHERE <condition>

* Will mostly use INNER JOIN

EXAMPLE 18 AGAIN ... USING AN IMPLICT JOIN

List the details (name, birth date and address) of the
children of Franklin T Wong

EXAMPLE 39 again: Retrieve the names and

addresses of all employees who work for the
administration department (using an implicit join)
SELECT fname, lname, address

FROM 77

WHERE dname = 'administration’;

Syntax of explicit join
with 3 tables

SELECT [DISTINCT] <attribute list>
FROM (<table>
[INNER/LEFT/RIGHT] JOIN <table>
ON <join condition>)
[INNER/LEFT/RIGHT] JOIN <table>
ON <joln condition>

WHERE <condition>

Syntax of implicit join
with 3 tables

SELECT [DISTINCT] <attribute list>
FROM <table>,<table>,<table>
WHERE <join condition> AND

<jolin condition> AND

<condition>

Syntax of explicit join
with 4 tables

SELECT [DISTINCT] <attribute 1ist>

FROM ((<table>
[INNER/LEFT/RIGHT] JOIN <table>
ON <join condition>)
[INNER/LEFT/RIGHT] JOIN <table>
ON <join condition>)
[INNER/LEFT/RIGHT] JOIN <table>
ON <joiln condition>

WHERE <condition>

Syntax of implicit join
with 4 tables

SELECT [DISTINCT] <attribute 1ist>
FROM <table>,<table>,<table>,<table>
WHERE <join condition> AND

<joln condition> AND

<join condition> AND

<condition>

EXAMPLE 41

For every project located in Stafford, list the
project number, the controlling department name,
and the department manager’s surname, address
and birth date.

EXAMPLE 41

SELECT pnumber, dname, lname, address, bdate
FROM project INNER JOIN department
ON project.dnum = department.dnumber
INNER JOIN employee
ON department.mgrssn = employee.ssn

WHERE plocation = ‘stafford’;

N R T

Administration Wallace 291 Berry, Bellaire, TX 1991-06-20

‘30 Administration Wallace 291 Berry, Bellaire, TX 1991-06-20

CLASS QUESTION:

> Re-write solution to example 41 using implicit joins?
> (Can we re-write this using sub-queries?

DIFFERENT TYPES OF JOINS:

*Inner Join is the default when using Implicit Join

*An INNER JOIN includes the tuples from the first (left) of
the two tables only when they satisfy the join condition
and tuples from the second (right) table are only included
when they also satisfy the join condition

*For explicit joins, should explicitly state the join used:

For example joining employee and department on ssn
and mgrssn:

SELECT *
FROM employee INNER JOIN department ON

employee.ssn = department.mgrssn;

LEFT JOINS

Left (outer) joins include all of the tuples from the first (left) of two
tables — when they satisfy the join condition and even when they
don’t. Tuples from the second (right) table are only included when
they satisfy the join condition. Example:

SELECT *
FROM employee LEFT JOIN department ON

employee.ssnh = department.mgrssn;

James E Borg 888665555 1997-11-10 450 Stone, Houston, TX 94199 NULL Headquarters 888665555 2019-06-19
Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4 4 Administration 987654321 2015-01-01
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 5 Research 333445555 2018-05-22
John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx Man 55250 333445555 5 NULL NULL NULL NULL
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX Woman 44183 333445555 5 NULL NULL NULL NULL
Ramesh K Narayan 666884444 1995-09-15 975 Fire Oak, Humble, TX Man 60000 333445555 5 NULL NULL NULL NULL
Ahmad A Jabbar 987987987 2000-03-29 980 Dallas, Houston, TX Man 44183 987654321 4 NULL NULL NULL NULL
Alicia] Zelaya 999887777 1998-07-19 3321 Castle, Spring, TX Non-binary 44183 987654321 4 NULL NULL NULL NULL

RIGHT JOINS

Right outer joins include all of the tuples from the second (right)
of two tables, even if there are no matching values for records
in the first (left) table. Tuples from the first (left) table are
included only if they satisfy the join condition. Example:

SELECT *
FROM employee RIGHT JOIN department ON

employee.ssn = department.mgrssn;

N e S S S e) e P e e

James Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL Headquarters 888665555 2019-06-19
Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4 4 Administration 987654321 2015-01-01
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 5 Research 333445555 2018-05-22

Graphical representation of
different types of joins (C.L. Moffat,

2008)

P P

v

SELECT <select_list=>
FROM Tabled A
LEFT JOIN TableB B
ON AKey = B.Key

SELECT =<sclect_list>
FROM TableA A

LEFT JOIN TableB B
ON AKey = B.Key
WHERE B.Key 15 NULL

SELECT <sclect lisg>
FROM TahleA A

FULL OUTER JOIN TableB B

ON AKey = B.Key

. SQL JOINS

SELECT <sclect_list>
FROM TableA A
RIGHT JOIN TableB B
ON AKey = B.Key

SELECT <select_lsi=
FROM TablcA A
INMER JOIN Tablell B
ON AKey = B Key

SELECT <select_list>
FROM TableA A

RIGHT JUHM TableB B
ON A Key = BKey
WHERE AKey I8 NULL

SELECT =scleey_list>

FROM TableA A

FULL QUTER JOIN TableB B
OMN AKey = B.Eey

WHERE A Key [5 MULL

20 L Mo, 2008 OR B Key 15 NULL

In MySQL only
INNER, LEFT and
RIGHT joins are
supported

EXAMPLE 42: What is the difference in the
output produced using INNER, LEFT and RIGHT joins
in the following?

SELECT *
FROM employee [INNER/LEFT/RIGHT] JOIN dependent

ON employee.ssn = dependent.essn;

SELF-JOINS AND ALIASES

A self-join is a normal SQL join that joins a table
to itself.

This is accomplished by using aliases to give each
“instance” of the table a separate name — the
keyword AS is used.

EXAMPLE 43: For each employee, retrieve the

employee’s name and the name of the employee’s
supervisor

Consider:

1. How to write the query if asked for the employee’s
name and supervisor’s SSN¢

2. What should output look like? e.g., for John Smith:

fname LENE fname RENE

John Smith Franklin Wong

First consider joining employee to itself ...
Need two “copies” or instances of table employee...

Call them E (for employee) and S (for supervisor)

SELECT *

FROM employee AS e, employee AS s

WHERE e.superssn = s.ssn;

SELECT *

FROM employee AS e INNER JOIN employee AS s

ON e.superssn = s.ssn;
e e e e e T e e e e L e e N = = = =

John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx =~ Man 55250 333445555 5 Franklin | T ‘Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5
Franklin T Waong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 James E Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL 1
Joyce & English 453453453 1972-07-31 5631 Rice, Houston, TX Woman 44183 333445555 5 Frankin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 8B8665555 5
Ramesh K Marayan 666884444 1995-09-15 975 Fire Oak, Humble, TX Man 50000 333445555 5 Franklin T ‘Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5
Jennifer S Wallace 087654321 1991-06-20 2591 Berry, Bellaire, TX Woman 69240 8B8B665555 4 James E Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL 1
Ahmad V' Jabbar 987987987 2000-03-29 980 Dallas, Houston, TX Man 44183 987654321 4 Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 8B8665555 4
Alicia] Zelaya 999887777 1998-07-19 3321 Castle, Spring, TX MNon-binary 44183 987654321 4 Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4

Why is this version better?
“For each employee, retrieve the employee’s name and the
name of the employee’s supervisor”

SELECT *

FROM employee AS e LEFT JOIN employee AS s

ON e.superssn = s.ssn;

I e S e e e i i =

John B Smith 123456789 1975-01-09 731 Fondren, Housten, Tx 55250 333445555 Franklin Wong 333445555 1980-12-08 638 Voss, Houston, TX 55000 888665555
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 565000 BBBH65555 3 James E Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL 1
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX Woman 44183 333445553 3 Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 55000 B8B88665555 3
Ramesh K Marayan 665884444 1955-09-15 975 Fire Oak, Humble, TX Man 50000 333445555 3 Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 3
James E Borg 888665555 1957-11-10 450 Stone, Houston, TX Man 94199 NULL al NULL NULL NULL NULL NULL NULL NULL NULL NULL NULL
Jennifer S Wallace 987654321 1551-06-20 291 Berry, Bellaire, TX Woman 69240 BBBS&65555 4 James E Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 594199 NULL 1
Ahmad \ Jabbar 957987987 2000-03-2%9 980 Dallas, Houston, TX Man 44183 987654321 4 Jennifer 5 Wallace 987654321 19591-06-20 251 Berry, Bellaire, TX Woman 6§9240 888665555 4
Alicia] Zelaya 999887777 1998-07-19 3321 Castle, Spring, TX Non-binary 44183 987654321 4 Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4

8 rows (0.002 =) Edit, Explain, Export

EXAMPLE 43: For each employee, retrieve the
employee’s name and the name of the employee’s
supervisor

SELECT CONCAT(e.fname, '", e.lname) AS employee,
CONCAT(s.fname, ' ", s.Iname) AS supervisor

FROM employee AS e LEFT JOIN employee AS s

ON e.superssn = s.ssn; + Upmuons
employee supervisor
John Smith Franklin Wong

Franklin Wong James Borg
Joyce English Franklin Wong
Ramesh Narayan Franklin Wong
James Borg NULL

Jennifer Wallace James Borg
Ahmad Jabbar Jennifer Wallace
Alicia Zelaya Jennifer Wallace

EXAMPLE 44: For each department, list the

department name, and the names, addresses and
the start date of all managers, ordered by
department name

SELECT
FROM
WHERE

ORDER BY ;

CAN SUB-QUERIES AND JOINS BE USED
INTERCHANGEABLY?

In some cases, yes, can replace a join of tables (where
appropriate) with a sub-query

But recall ...

* Joins are needed when values across multiple tables must
be displayed.

* Sub-queries are needed when an existing value from a

table needs to be retrieved and used as part of the query
solution.

* Sub-queries are needed when an aggregate function

needs to be performed and used as part of a query
solution.

EXAMPLE 45: JOINS AND GROUP BY

List the employee name, and number of dependents of each
employee who has dependents

123456789 John Smith 3
333445555 Franklin Wong 3
987654321 Jennifer Wallace 1

SELECT essn, fname, lname,
COUNT (*) AS numDeps

FROM employee INNER JOIN dependent
ON ssn = essn

GROUP BRY essn, fname, lname;

| Why won’t this work?

SELECT essn, fname, lname, COUNT (*) AS numDeps
FROM employee INNER JOIN dependent
ON ssn = essn

GROUP BY essn;

Error in query (1055): Expression #2 of SELECT list is not in GROUP BY clause and contains nonaggregated column

'mydb2974.employee.salary’ which is not functionally dependent on columns in GROUP BY clause; this is incompatible with
sgl_mode=only_full group b

EXAMPLE 46: List the project name and the number of
employees who work on the project for projects that have 2
or more employees

SELECT pname,

T

COUNT(*) AS numEmps ProductX

Producty

2
FROM 3
ProductZ 3
GROUP BY Computerization 2
3
3

Reorganization

HAV|NG Newbenefits

UNION QUERIES

The keyword UNION is used to combine the results of two or
more queries or tables

MyYSQL does not support minus or intersection (intersect)
operators but the same functionality can be built using joins

For union queries, tables must be union compatible

UNION COMPATIBLE

Two relations are union compatible if the schemas of the
two relations match, i.e.,

same number of attributes in each relation and each pair
of corresponding attributes have the same domain

Example 47: Using both subqueries and union

queries (no joins) list all project numbers for projects
that involve a worker whose last name is ‘Wallace or @
manager, of the department that controls the project, with
last name ‘Wallace’

Steps:

First, consider two queries on their own and these can
be combined with a Union query:

Query 1. Finding the employees ‘Wallace’ working on
projects ...

Query 2. Finding the manger ‘Wallace’ of a
department that controls project

Example 47: Using both subqueries and union queries (no

joins) list all project numbers for projects that involve a worker
whose last name is ‘Wallace’ or a manager, of the department that
controls the project, with last name ‘Wallace’

—-— manager

SELECT pnumber
—-— employee

FROM project
SELECT pno

WHERE dnum IN
FROM works_on

(SELECT dnumber
WHERE essn IN

(SELECT ssn FROM department

WHERE mgrssn IN
FROM employee

(SELECT ssn
WHERE I1name =

‘Wallace'); FROM employee

WHERE Iname =
‘Wallace'));

EXAMPLE 47 Full solution

(SELECT pno
FROM works on
WHERE essn IN
(SELECT ssn FROM employee
WHERE lname = ‘Wallace'))
UNION
(SELECT pnumber
FROM project
WHERE dnum IN (SELECT dnumber FROM department
WHERE mgrssn IN (SELECT ssn FROM employee

WHERE lname = YWallace')));

MORE EXAMPLES

Example 48

Using a join, list all the locations of the research department

Example 49

For all projects located in ‘Houston’ list the name of the project and the
department which controls the project

Example 50

List the names of employees, and the number of hours they work, for
employees who work greater than the average number of hours

SUMMARY: JOINS AND UNION QUERIES

Important to know:

* How joins work in general

* How implicit and explicit inner joins work
* How left and right joins work

* When to use sub-queries and joins

* How Union queries work

PART 1

TOPIC: NORMALISATION

FUNDAMENTALS OF

DATABASE SYSTEMS
ELMASRI AND NAVATHE BOOK

FUNDAMENTRALS OF

See Chapter 14 Dm"gﬂ;[Sljﬂ'[ms
(in 3r¢ Edition) -

MOTIVATIONS

We can see from ER examples and mappings why we
get a particular grouping of tables.

What if different assumptions were made in the ER
model that leads to different — maybe larger (more
attributes/columns) tables?

What happens over time as we need to add more
attributes to our tables to capture information that was

not part of the original requirements when creating the
ER model?

For example, what if:

The employee entity had extra attributes to
represent the department information?

fname minit | Iname ssn bdate address gender salary | superssn dname dnumber | mgrssn mgrstartdate

John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx 55250 333445555 Research 5 333445555 2018-05-22
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 Research 5 333445555 2018-05-22
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX Woman 44183 333445555 Research 5 333445555 2018-05-22
Ramesh K Narayan 666884444 1995-09-15 975 Fire Oak, Humble, TX Man 60000 333445555 Research 5 333445555 2018-05-22
James E Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL Headquarters 1 888665555 2019-06-19
Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 Administration 4 987654321 2015-01-01
Ahmad Vv Jabbar 987087987 2000-03-29 980 Dallas, Houston, TX Man 44183 987654321 Administration 4 987654321 2015-01-01
Alicia] Zelaya 999887777 1998-07-19 3321 Castle, Spring, TX Non-binary 44183 987654321 Administration 4 087654321 2015-01-01

For example, what if:

The employee entity had the dependent
information stored as attributes?

John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx Man 55250 333445555 5 Alice Woman 2008-12-30 Daughter
John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx Man 55250 333445555 5 Elizabeth Woman 1976-05-05 Spouse
John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx Man 55250 333445555 5§ Michael Man 2011-01-04 Son
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 Alice Woman 2010-04-05 Daughter
Franklin T Waong 333445555 1580-12-08 638 Voss, Houston, TX Man 65000 888665555 5 Joy Woman 1981-05-03 Spouse
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665555 5 Theadore Man 2014-10-25 Son
Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 4 Abner Woman 1992-02-28 Spouse

NORMALISATION

Normalisation rules gives us a formal measure of
why one grouping of attributes in a relation
schema may be better than another.

Normalised and un-normalised
databases

We can distinguish between normalised and un-normalised
databases

Both normalised and un-normalised databases have
advantages and disadvantages

If database is normalised:

No (or very little) redundancy.

No anomalies when inserting, deleting or modifying data.

If database is normalised:

More tables.
More foreign and primary keys to link tables

=> more complex queries (joins etc.)

DEFINITION: Redundancy

Unnecessary duplication of data in the database

e.g. if we included department details in Employee?

fname minit | Iname ssn bdate address gender salary | superssn W dnumber m mgrstartdate

John B Smith 123456789 1975-01-09 731 Fondren, Houston, Tx 55250 333445555 Research 5 333445555 2018-05-22
Franklin T Wong 333445555 1980-12-08 638 Voss, Houston, TX Man 65000 888665°55 Research 5 333445555 2018-05-22
Joyce A English 453453453 1972-07-31 5631 Rice, Houston, TX Woman 44183 333445555 Research 5 333445555 2018-05-22
Ramesh K Narayan 666884444 1995-09-15 975 Fire Oak, Humble, TX Man 60000 333445555 Resz=rch 5 333445555 201€ u5-22
James E Borg 888665555 1997-11-10 450 Stone, Houston, TX Man 94199 NULL Headuarters 1 888665555 201v9-0&-19
Jennifer S Wallace 987654321 1991-06-20 291 Berry, Bellaire, TX Woman 69240 888665555 Administration 4 987654321 2015-01-01
Ahmad Vv Jabbar 987087987 2000-03-29 980 Dallas, Houston, TX Man 44183 987654321 Administration 4 087654321 2015-01-01
Alicia] Zelaya 999887777 1998-07-19 3321 Castle, Spring, TX Non-binary 44183 987654321 Admu.i=tration 4 987654321 2015-P% vl

CONSEQUENCES OF
REDUNDANCY:

Space is wasted (due to duplication)

Data can become inconsistent due to potential problems
with update, insert and delete operations

DEFINITION: Duplication

Duplicated data can naturally be present in a database
and is not necessarily redundant.

For example, an attribute can have two identical values.

e.d., In company schema, ESSN in works on may be
duplicated across many projects.

** Data is duplicated rather than redundant if when
deleting data, information is lost.

EXAMPLE 1:

For the company schema, consider the following alternative
schema for department which was initially created when
each department had only one location:

department (dnumber, dname, mgrssn, dlocation)

However, over time as the company grew, departments
were located in multiple locations:

dnumber | dname mgrssn dlocation

1 Headguarters 888665555 Houston
4 Administration 987654321 Stafford
5 Research 333445555 Bellaire
5 Research 333445555 Houston
5

Research 333445555 Sugarland

Problems:
[J

1 Headquarters 888665555 Houston

4 Administration 987654321 Stafford

5 Research 333445555 Bellaire
1. What can be used as

5 Research 333445555 Houston
’rhe primary ke)’? 5 Research 333445555 Sugarland

dnumber and dlocation

2. What happens if a new manager is appointed to the
department with dnumber = 52

3 tuples will need to be modified in this case

3. What happens if we add a new department, say
“Development” with dnumber = 72

Cannot be added unless we know where the
department will be located.

FIXING THESE PROBLEMS?

This does not seem a good grouping of
attributes ...

We have seen, and worked with, a
better one which stores location in a
new table and uses dnumber as o
foreign key to link to the other
department information

department

—T*dnumber

dname

— T marssn

marstartdate

dept_locations

—dnumber

dlocation

EXAMPLE 2.

For the company schema, consider the following alternative schema
to store information on employees and the projects they work on:

employee (ssn, fname, lname, address, bdate, salary,
pno, pname, plocation)

And the following (partial) instance:

55n fname Iname address bdate salary | pno | pname plocation

123456789 John Smith 731 Fondren, Houston, Tx 1975-01-09 55250 1 ProductX Bellaire
453453453 Joyce English 5631 Rice, Houston, TX 1972-07-31 44183 1 ProductX Bellaire
123456789 John Smith 731 Fondren, Houston, Tx 1975-01-09 55250 2 ProductY Sugarland
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 2 ProductY Sugarland
453453453 Joyce English 5631 Rice, Houston, TX 1972-07-31 44183 2 ProductY Sugarland
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 3 ProductZ Houston
066884444 Ramesh Narayan 975 Fire Oak, Humble, TX 1995-09-15 60000 3 ProductZ Houston
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 10 Computerization Stafford
987987987 Ahmad Jabbar 980 Dallas, Houston, TX 2000-03-29 44183 10 Computerization Stafford
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 20 Reorganization Houston

Problems?

1. What can be used as the key?

ssn and pno

2. What happens if we want to update the database when a

new employee, Maria Browne, of 24 Cherry Drive, Voss, Houston,
joins the company (with ssn = 343434343)

cannot be added unless she is given a project to work on

s5n fname Iname address bdate salary | pno | pname plocation

123456789 John Smith 731 Fondren, Houston, Tx ~ 1975-0 55250 1 ProductX Bellaire
453453453 Joyce English 5631 Rice, Houston, TX 1972-07-31 44183 1 ProductX Bellaire
123456782 John Smith 731 Fondren, Houston, Tx 1975-01-09 55250 2 ProductY Sugarland
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 2 ProductY Sugarland
453453453 Joyce English 5631 Rice, Houston, TX 1972-07-31 44183 2 ProductY Sugarland
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 3 ProductZ Houston
666884444 Ramesh Narayan 975 Fire Oak, Humble, TX 1995-09-15 60000 3 ProductZ Houston
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 10 Computerization Stafford
087987987 Ahmad Jabbar 980 Dallas, Houston, TX 2000-03-29 44183 10 Computerization Stafford
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 20 Reorganization Houston

I S S = P P

1-0450/89 John Smith 731 Fondren, Houston, Tx 1975-01-09 55250 ProductX Bellaire
452453453 Joyce English 5631 Rice. Honston TX 10772-N7-31 44183 1 ProductX Bellaire
12240057 04 - John Smith 731 Fondren, Houston, IX 19/3-Ul-UY 55250 2 ProductY Sugarianu
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 2 ProductY Sugarland
502453453 Joyce English 5631 Rice, Houston, TX 1972-07-31 44183 2 ProductY Sugarland
333445555 Franklin Wong VIO VU3, 1iutowsis, 1oe SRS CmisRn Sy @ m—— rroauct’/ Houston
666884444 Ramesh Narayan 975 Fire Oak, Humble, TX 1995-09-15 60000 3 ProductZ Houston
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 10 Computerization Stafford
987987987 Ahmad Jabbar 980 Dallas, Houston, TX 2000-03-29 44183 10 Computerization Stafford
333445555 Franklin Wong 638 Voss, Houston, TX 1980-12-08 65000 20 Reorganization Houston

3. Update the database when ProductX and ProductY are
completed and details on the projects should be removed

If we delete the relevant tuples, then all details on John
Smith will be lost

4. Update the database with a new address for Franklin Wong

In this case, 4 tuples must be updated with the new address

FIXING THESE PROBLEMS?

This does not seem a good
grouping of attributes ...

employee
fname
minit
Iname

We have seen, and worked
with, a better one involving 3
tables

Note however the repetition of
ssn (as essn) and
pnumber/pno

P ssn
bdate
address
gender
salary

—superssn

—dno

project
pname

works_on

—essn
—pno
hours

» pnumber

plocation
—dnum

NORMALISATION

Developed by Codd, 1972

* Takes each table through a series of tests to “verify
whether or not it belongs to a certain normal form

* Normal forms to check:
* 151, 2" and 3" normal forms (NF)
* Boyce-Codd normal form — strong 3NF
* 4th and 5™ Normal Forms

* We will consider 1NF, 2NF and 3NF only in detail

NORMALISATION PROVIDES:

1. Formal framework for analysing relation schemas
based on keys and functional dependencies among
attributes.

2. Series of tests so that a database can be normalised to
any degree (e.g., from 1NF to 5NF).

3. But does not necessarily provide a good design if
considered in isolation to everything else.

WHY NORMALISE?

*Redundancy will be reduced or eliminated.
*Storage space will be reduced as a result.
*Task of maintaining data integrity is made easier.

However with normalisation, tables are usually added to
the schema and linked with foreign keys. Thus queries
become more complex as they often require data from
multiple tables (requiring joins or subqueries).

ALTERNATIVES?

Retain redundant data and maintain data integrity by
means of code consistency checks

In some applications the number of insertions may be very
small or non-existent (e.g. analysing past logs, transaction
data, weather data etc.) and in such cases the overhead
of normalised tables is generally not required.

DE-NORMALISATION

A process of making compromises to the normalised tables
by introducing intentional redundancy for performance
reasons (querying performance).

Typically, de-normalisation will improve query times at the
expense of data updates (insert, delete, update).

DEFINITION:
Functional Dependency

Functional dependency is one of the main concepts
associated with normalisation and describes the
relationship between attributes.

If A and B are attributes of a relation R, then B is
functionally dependent (FD) on A if each value of A is
associated with exactly one value of B.

i.e., values in B are uniquely determined by values of A

TERMINOLOGY:
FUNCTIONAL DEPENDENCY (FD)

A—B:
FD from A to B

Bis FD on A

B
»

NOTES ON NOTATION:

A — B does not necessarily imply B — A
A <> B denotes A—> B and B — A
A — {B, C} denotes A —> B and A — C

{A, B} — C denotes that it is the combination of A and B
that uniquely determines C.

TERMINOLOGY:
CANDIDATE KEY (CK)

Every relation has one or more candidate keys. A
candidate key (CK) is one or more attribute(s) in a relation

with which you can determine all the attributes in the
relation.

Recall we pick one such candidate key as the primary key
of a relation.

EXAMPLE 3: FINDING THE FUNCTIONAL
DEPENDENCIES — GIVEN THE PRIMARY KEY

For the company schema, consider the following alternative
schema to hold information on employees and projects:

emp proj (ssn, pnumber, hours, ename,
pname, plocation)

What are the functional dependencies?

Think of this question as ... “which attribute can be
uniquely determined from another attribute”

Begin with any known PK or CK

Can represent these FDs graphically:

emp proj(ssn, pnumber, hours, ename,
pname, plocation)

ssn — endame

pnumber — {pname, plocation}

{ssn, pnumber} — hours

IMPORTANT TO NOTE:

A functional dependency is a property of a relation
schema R and cannot be inferred automatically but
instead must be defined explicitly by someone who knows
the semantics of R

i.e.
You will either be:
* explicitly given all FDs.

* given enough information about the attributes and the
domain to reasonably infer the FDs (perhaps having to
make certain assumptions).

TYPES OF FUNCTIONAL DEPENDENCIES

1. Full Functional Dependency:

A functional dependency {X,Y} — Z is a full functional
dependency if when some attribute (either X or Y) is removed
from the LHS the dependency does not hold.

Note: There may be any number of attributes on LHS

2. Partial Functional Dependency:

A functional dependency {X,Y} — Z is a partial functional
dependency if some attribute (either X or Y) can be removed
from the LHS and the dependency still holds.

Note: There may be any number of attributes on LHS

CONSIDER EXAMPLE 3 AGAIN:

emp proj(ssn, pnumber, hours, ename,
pname, plocation)

Are the following Full or Partial Functional Dependencies?

{ssn, pnumber} — hours

{ssn, pnumber} — ename

TYPES OF FUNCTIONAL DEPENDENCIES

3. Transitive Dependency:

A functional dependency X — Y is a transitive dependency
in the table /relation R if there is a set of attributes Z that
is neither a candidate key nor a subset of any key of R

and both:
X— Zand
L—->Y
hold.

EXAMPLE 4.

Consider information on employees and
departments

emp dept (ename, ssn, bdate, address, dnumber,
dname, dmgrssn)

The functional dependencies are:
ssn — {ename, bdate, address, dnumber}

dnumber — {dname, dmgrssn)

) |

a2

(/ZG!I!!!; %ﬁwﬁgf
GV

EXAMPLE 4.
An example of a transitive dependency

The dependency:

ssn — dmgrssn

is transitive through dnumber because both the following
hold:

ssn — dnumber {

dnumber — dmgrssn]Ewghscj
|

But dnumber is neither a key or a subset of the key.

il

EXAMPLE 5:

Given the following table to hold student data:

student (id, name, course, assocCollege, courseCoordinator)
and the following Functional Dependencies:

id — name

id — course

course — assocCollege

course — courseCoordinator

EXAMPLE 5:

What is the candidate key?

What are the full dependencies?

What are the transitive dependencies?

Given the following table to hold student data:

student (id, name, course, assocCollege,
courseCoordinator)

and the following Functional Dependencies:

id — name @OC/CQ\E@R .
. &) :
id — course \ﬁgukr = Toocdunets)

course — assocCollege

course — courseCoordinator

EXAMPLE 6:

Draw the functional dependency diagram
and find the candidate key

Consider the table R with 5 attributes

R(A, B, C, D, E)

and the following functional dependencies:
A—B

B— A

B—C

D— A

R(A, B, C, D, E)

and the following functional dependencies:
A—B

B— A

B—C

D— A
L\

Inference rules for Functional
Dependencies

Typically the main obvious functional dependencies are
specified for a schema

— call these F.
However many others can be inferred from F

— call these closure of F: F*

FOR EXAMPLE:

F={ A—{B, C,D,E}
E—-{FG} }
Some other FDs which can be inferred:
A— A
A — {F, G}
E—F

etc.

Inference Rules for FDs:

Trivially, an attribute, or set of attributes, always
determines itself.

if X — Y caninfer X2 — YZ
if X > YandY — Z caninfer X — Z
if X > YZcaninfer X = Y
if X > Yand X — Z can infer if X — YZ
if X — Y and WY — Z can infer WX — Z

*Note: Rules 1, 2 and 3 are together called Armstrongs’s Axioms

FUNDAMENTALS OF

DATABASE SYSTEMS
ELMASRI AND NAVATHE BOOK

See Chapter 14 FUNDAMENTALS OF
(in 3" Edition) DHT"BHSE S'Jﬂ[ms

rd Fdithon

DEFINITION:
Functional Dependency

Functional dependency is one of the main concepts
associated with normalisation and describes the
relationship between attributes.

If A and B are attributes of a relation R, then B is
functionally dependent (FD) on A if each value of A is
associated with exactly one value of B.

i.e., values in B are uniquely determined by values of A

TERMINOLOGY:
FUNCTIONAL DEPENDENCY (FD)

A—B:
FD from A to B

Bis FD on A

B
»

NOTES ON NOTATION:

A — B does not necessarily imply B — A
A <> B denotes A—> B and B — A
A — {B, C} denotes A —> B and A — C

{A, B} — C denotes that it is the combination of A and B
that uniquely determines C.

TERMINOLOGY:
CANDIDATE KEY (CK)

Every relation has one or more candidate keys. A
candidate key (CK) is one or more attribute(s) in a relation

with which you can determine all the attributes in the
relation.

Recall we pick one such candidate key as the primary key
of a relation.

EXAMPLE 3: FINDING THE FUNCTIONAL
DEPENDENCIES — GIVEN THE PRIMARY KEY

For the company schema, consider the following alternative
schema to hold information on employees and projects:

emp proj (ssn, pnumber, hours, ename,
pname, plocation)

What are the functional dependencies?

Think of this question as ... “which attribute can be
uniquely determined from another attribute”

Begin with any known PK or CK

Can represent these FDs graphically:

emp proj(ssn, pnumber, hours, ename,
pname, plocation)

ssn — endame

pnumber — {pname, plocation}

{ssn, pnumber} — hours

IMPORTANT TO NOTE:

A functional dependency is a property of a relation
schema R and cannot be inferred automatically but
instead must be defined explicitly by someone who knows
the semantics of R

i.e.
You will either be:
* explicitly given all FDs.

* given enough information about the attributes and the
domain to reasonably infer the FDs (perhaps having to
make certain assumptions).

TYPES OF FUNCTIONAL DEPENDENCIES

1. Full Functional Dependency:

A functional dependency {X,Y} — Z is a full functional
dependency if when some attribute (either X or Y) is removed
from the LHS the dependency does not hold.

Note: There may be any number of attributes on LHS

2. Partial Functional Dependency:

A functional dependency {X,Y} — Z is a partial functional
dependency if some attribute (either X or Y) can be removed
from the LHS and the dependency still holds.

Note: There may be any number of attributes on LHS

CONSIDER EXAMPLE 3 AGAIN:

emp proj(ssn, pnumber, hours, ename,
pname, plocation)

Are the following Full or Partial Functional Dependencies?

See menti.com

{ssn, pnumber} — hours

{ssn, pnumber} — ename

TYPES OF FUNCTIONAL DEPENDENCIES

3. Transitive Dependency:

A functional dependency X — Y is a transitive dependency
in the table /relation R if there is a set of attributes Z that
is neither a candidate key nor a subset of any key of R

and both:
X— Zand
L—->Y
hold.

EXAMPLE 4.

Consider information on employees and
departments

emp dept (ename, ssn, bdate, address, dnumber,
dname, dmgrssn)

The functional dependencies are:
ssn — {ename, bdate, address, dnumber}

dnumber — {dname, dmgrssn)

) |

a2

(/ZG!I!!!; %ﬁwﬁgf
GV

EXAMPLE 4.
An example of a transitive dependency

The dependency:

ssn — dmgrssn

is transitive through dnumber because both the following
hold:

ssn — dnumber {

dnumber — dmgrssn]Ewghscj
|

But dnumber is neither a key or a subset of the key.

il

EXAMPLE 5:

Given the following table to hold student data:

student (id, name, course, assocCollege, courseCoordinator)
and the following Functional Dependencies:

id — name

id — course

course — assocCollege

course — courseCoordinator

EXAMPLE 5:

What is the candidate key?

What are the full dependencies?

What are the transitive dependencies?

Given the following table to hold student data:

student (id, name, course, assocCollege,
courseCoordinator)

and the following Functional Dependencies:

id — name @OC/CQ\E@R .
. &) :
id — course \ﬁgukr = Toocdunets)

course — assocCollege

course — courseCoordinator

EXAMPLE 6:

Draw the functional dependency diagram
and find the candidate key

Consider the table R with 5 attributes

R(A, B, C, D, E)

and the following functional dependencies:
A—B

B— A

B—C

D— A

R(A, B, C, D, E)

and the following functional dependencies:
A—B

B— A

B—C

D— A
L\

Inference rules for Functional
Dependencies

Typically the main obvious functional dependencies are
specified for a schema

— call these F.
However many others can be inferred from F

— call these closure of F: F*

FOR EXAMPLE:

F={ A—{B, C,D,E}
E—-{FG} }
Some other FDs which can be inferred:
A— A
A — {F, G}
E—F

etc.

Inference Rules for FDs:

Trivially, an attribute, or set of attributes, always
determines itself.

if X — Y caninfer X2 — YZ
if X > YandY — Z caninfer X — Z
if X > YZcaninfer X = Y
if X > Yand X — Z can infer if X — YZ
if X — Y and WY — Z can infer WX — Z

*Note: Rules 1, 2 and 3 are together called Armstrongs’s Axioms

IMPORTANT CONCEPTS

Duplicated Data versus Redundant Data

Problems with un-normalised tables and maintaining
redundant data

Trade off of un-normalised versus normalised tables
What is functional dependency — how to find it

What are full, partial and transitive dependencies — how
to find them

DEFINITION:
FIRST NORMAL FORM (1NF)

A table is in TNF if it satisfies the following:
The table must not have any repeating groups

Repeating groups: a group of attributes that occur a
variable number of times in each record (non-atomic)

FIRST NORMAL FORM (1NF)

To ensure first normal form, choose an appropriate
primary key (if one is not already specified) and if

required, split table in to two or more tables to remove
repeating groups

EXAMPLE 7:

Consider information on customers (unique number, name,
address and their credit limit) and invoices issued to them
(unique invoice number, date of invoice and amount in
euros). Note that a customer can have many invoices issued
to them.

customer (cNo, name, street, city,
credlLim, 1nvNo, 1nvDate, amount)

Repeating Groups?

First Normal Form?

EXAMPLE 7

customer (cno, name, street, city,
credlLim, 1nvno, 1nvDate, amount)

To ensure 1NF, choose appropriate Primary Key

cNo and 1nvNo as primary key giving:

customer (cNo, 1nvNo, name, street,
city, credLim, invDate, amount)

DEFINITION:
SECOND NORMAL FORM (2NF)

A relation in 2NF must be in TNF and satisfy the following:

Where there is a composite primary key, all non-key
attributes must be dependent on the entire primary key.

If partial dependencies exists create new relations to split

the attributes such that the partial dependency no longer
holds

check for partial dependencies and remove

EXAMPLE 7:

customer (cNo, 1nvNo, name, street,
city, credLim, invDate, amount)

VOOEO

EXAMPLE 7:

customer (cNo, 1nvNo, name, street,
city, credLim, invDate, amount)

EXAMPLE 7:

customer (cNo, 1nvNo, name, street,
city, credLim, invDate, amount)

customerInvoice (cNo, 1nvNo)

customer (cNo, name, street, city, credLim)

involce (1nvNo, 1nvDate, amount)

EXAMPLE 8:

Consider information on products that customers buy (e.g. the
contents of their online basket). Information stored on customers is:
unique customer number, name and address. The data stored on
the products ordered is: unique product number, product
description, unit price per product and quantity of each product
required by the customer. The schema is:

purchase (CNo, ProdNo, cname, street, city, prodDesc,
price, quantity)

QUESTIONS:

purchase (CNo, ProdNo, cname, street,
city, prodDesc, price, quantity)

» |s this table in first normal form?
» Draw a functional dependency diagram
» |s this table in second normal form?

> If not, what problems occur by the table not being in
2NFe

> If not, create a set of tables in 2NF

INF?

purchase (CNo, ProdNo, cname, street,
city, prodDesc, price, quantity)

No primary key so not in TNF.

A suitable primary key (using existing attributes) is a
composite key of CNo and ProdNo

Draw the Functional Dependencies:
purchase (CNo, prodNo, cname, street,

city, prodDesc, price, quantity)

prodDesc

b
DOHOOE

Problems caused by purchase
table not being in 2NF:

purchase (cNo, prodNo, cname, street,
city, prodDesc, price, quantity)

Duplication of data:

*Every time a product is purchased by a customer the
customer name, street etc. is stored again

*Every time a product is purchased, its description and
price is stored again.

Create a setf of tables in 2NF

Removing the partial dependencies means:

O Attributes that are partially dependent on the PK should
move to a new table;

O The attribute on which they were dependent should be
the PK of the new table but this attribute should not be
removed from the original table

Giving the tables:
purchase (cNo, prodNo, quantity)

customer (cNo, cname, street, city)

product (prodNo, prodDesc, price)

N.B. Make sure each table has its own PK

DEFINITION:
THIRD NORMAL FORM (3NF)

A relation is in 3NF if it is in 2NF and there are no
dependencies between attributes that are not primary
keys. That is, no transitive dependencies exist in the table.

EXAMPLE 8 extended

Consider the following information stored per product: unique
product number (PK), product description and unit price and
the number of the product in stock; also stored is the unique
ID of the supplier of the product, and the supplier’s details:
name and address details:

product (prodNo, desc, price,
gty in stock, supplierNo, Sname,
Sstreet, Scity, SPostcode)

QUESTIONS:
FEXAMPLE 8 extended

product (prodNo, desc, price,
gty 1n stock, supplierNo, Sname,
Sstreet, Scity, SPostcode)

> Is this table in first normal form?
» Draw a functional dependency diagram
» Is this table in second and third normal form?

» If not, create a set of tables in 3NF

| DEPENDENCY DIAGRAM FOR EXAMPLE 8 EXTENDED

(o)

supplierMNo

Spostcode

Creating tables?

prodNo, desc, price, gty in stock, supplierNo, Sname,
Sstreet, Scity, SPostcode

| DEPENDENCY DIAGRAM FOR EXAMPLE 8 EXTENDED

Example 8 Extended

(o)
Note: how we are

creating links
between the tables
Creating tables? with Foreign Keys

product (prodNo, desc, price, gty in stock, supplierNo)

supplierMo

supplier (supplierNo, Sname, Sstreet, Scity, Spostcode)

BOYCE-CODD NORMAL FORM (BCNF)

Only in rare cases does a 3NF table not meet the
requirements of BCNF.

These cases are when a table has more than one
candidate key - depending on the functional
dependencies, a 3NF table with two or more overlapping
candidate keys may or may not be in BCNF.

If a table in 3NF does not have multiple overlapping
candidate keys then it is guaranteed to be in BCNF

SUMMARY: Steps to normalise to 3NF

|dentify appropriate Primary Key if not already given (this puts
table in to TNF)

Draw diagram of Functional Dependencies from the primary key.
|dentify if dependencies are Full, Partial or Transitive.
Using diagram of functional dependencies from previous step:

Normalise to 2NF by removing partial dependencies — creating
new tables as a result. Ensure all new tables have Primary Keys

Normalise to 3NF by removing transitive dependencies (if they
exist), creating new tables as a result. Ensure any new tables
have Primary Keys and are in 2NF

Check that all resulting tables are themselves in TNF, 2NF and
3NF (in particular, make sure they all have PKs of their own)

EXAMPLE 9

An un-normalised staff relation has the following structure and
description (next slide):

staff (sNo, sName, sAddress, deptNo,
deptName, managerNo, skilliD, skillName,
sCourseDate, sCourseDuration)

9.1. Where does duplication result from this relation design?

9.2. What is a suitable Primary Key to ensure the staff table
is in TNF¢

9.3. What attributes are fully functional dependent on the
Primary Key?

Description 9(a):

staff (sNo, sName, sAddress, deptNo, deptName,
managerNo, skilliD, skillName, sCourseDate,
sCourseDuration)

A staff member has an associated number (sNo, which is unique for each
staff member), a name and an address and works in a particular
department. Each department has a number (unique), name and manager.
A department has many staff but a staff member can only work for one
department. A staff member can undertake a number of courses to gain
new skills for their job. skilliD uniquely identifies the skill, which has also a
name (skillName). For each skill, courses are offered on a regular basis
and staff can take the course at a date that suits them and complete the
course at their own pace. sCourseDate describes the date when a staff
member undertakes the course for a particular skill and sCourseDuration
describes the time that the staff member took to complete the course. A
staff member cannot undertake more than one course to acquire a new

skill.

FUNCTIONAL DEPENDENCIES

Example 9

For each skill, courses are
offered on a regular basis and
staff can take the course at a
date that suits them and
complete the course at their own
pace

Description 9(b)

staff (sNo, sName, sAddress, deptNo,
deptName, managerNo, skilliD, skillName,
sCourseDate, sCourseDuration)

A staff member has an associated number (sNo, which is unique for
each staff member), a name and an address and works in a particular
department. Each department has a number (unique), name and
manager. A department has many staff but a staff member can only
work for one department. A staff member can undertake a number of
courses to gain new skills for their job. skilliD uniquely identifies the skill,
which has also a name (skillName). For each skill, courses are offered
once at a certain date and for a certain duration and staff must take
the course on that date: sCourseDate describes the date of the course;
sCourseDuration describes the length (in days) of the course. A staff
member can undertake as many different courses as they wish.

FUNCTIONAL DEPENDENCIES

EEEEEEEE

For each skill, courses are
offered once at a certain date
and for a certain duration and
staff must take the course on
that date

EXAMPLE 10: Winter 2019 Exam Paper
question on Normalisation

A courier company keeps track of packages that are to be delivered to recipients,
by couriers, in the following table:

courier (packagelD, recipientCode, recipientName,
recipientAddr, recipientMobile, instructions, dateRec,
dateDelivered, courierID, cName, cMobile)

Stored in the courier table are: a unique package id (packageID) which is
the primary key of the table, a code (recipientCode) which is unique to each
recipient, and the name, address and mobile number of the recipient of the
package (recipientName, recipientAddr and recipientMobile),
delivery instructions (instructions), the date the package was received by
the courier (dateRec), the date the courier delivers the package
(dateDelivered), and details of the courier who delivers the package: an ID
(courierID) which is unique to each courier, in addition to the courier’s name
(cName) and phone number (cMobile).

courier (packagelID, recipientcode,
recipientname, recipientaddr, recipientmobile,
instructions, daterec, datedelivered,
courilierid, cname, cmobile)

(1) By using the primary key given in the courier table, draw a functional
dependency diagram showing the functional dependencies between all
attributes and the key attribute. Clearly indicate on the diagram any full,
partial or transitive dependencies and state any assumptions made. (§)

(i1) Normalise the courier table to third normal form, explaining the steps
involved at each stage. (8)

NYFZANYIANYIANYIANYI AN

ﬂ\ﬂ&ﬂ%ﬂ“ﬂ& /
NN\ Y4
ZaN\YZA\YZA\Y/ANY/A\Y/,
NN\ Y4

TJANVIANVIANVIANVIANY Y

QUERY PROCESSING AND gTﬁf
RELATIONAL ALGEBRA S‘“’ ase
ystems

RECOMMENDED TEXT:

See. FUNDATEITALS OF
Chapter 18 D"T"BHSE S.qf.[gmj

Elmasri & Navathe

(3¢ Edition)

DEFINITION: Query Processing

Transforms SQL (high level language) in to a correct and
efficient low level language representation of relational
algebra.

Each relational algebra operator has code associated with it
(a program) which, when run, performs the operation on the
data specified, allowing the specified data to be output as
the result.

Steps Involved in Processing a SQL Query:

* Process (Parse and Translate) and create an internal
representation of the query — may be an Operator Tree,
Query tree or Query graph (for more complicated queries).

* Optimise.

* Execute /Evaluate returning results.

How to Translate SQL to Relational
Algebra?

Must have:

oa meaningful set of relational algebra operators
(today’s lecture).

od mapping (translation) between SQL code and
relational algebra expressions.

RELATIONAL ALGEBRA

Two formal languages exist for the relational model:
O Relational algebra (procedural)
O Relational calculus (non-procedural)

Both are logically equivalent

Note: the practical /implementation language of the relational
model is SQL (as we have seen)

Relational Algebru Operunons

nm 0 p « = T Y A v = = - X M W KM X KX x [

o0 A basic set of operations exist for the relational model.
O These allow for the specification of basic retrieval requests.

o A sequence of relational algebra (RA) operations forms a
relational algebra expression.

O RA operations are divided into two groups:

O operations based on mathematical set theory (e.g., union,
product etc.)

o specific relational database operations.

RELATIONAL ALGEBRA versus SQL

The core operations and functions (i.e., programs) in the
internal modules of most relational database systems are
based on relational algebra.

SQL is a declarative language It allows you specify the
results you require ... not the order of the operations to
retrieve those results.

Relational Algebra is procedural - must specify exactly how
to retrieve results when using relational algebra.

RELATIONAL ALGEBRA EXPRESSIONS

o A valid relational algebra expression is built by
connecting tables or expressions with defined unary and
binary operators and their arguments (if applicable)

o Temporary relations resulting from a relational algebra
expression can be used as input to a new relational
algebra expression

oExpressions in brackets are evaluated first

oRelational Algebra operators are either Unary or Binary

Relational Algebra:
UNARY OPERATORS

Selection
Projection
Rename

Order
Group

O O O O O

Each operation:
O takes one relation (table) or expression as input
O gives a new relation as a result

Selection operator

O (sigma)

I

Used to select certain tuples (rows) from a relation R

Notation: GpR
where:

D: selection predicate i.e., a condition

R: relation /table name

NOTE:

The Selection (o) operator in relational algebra is NOT
the same as the SELECT clause in an SQL query.

A SQL SELECT query could be equivalent to a

combination of relational algebra operators (¢, 7T and
JOIN)

EXAMPLE T (using company schema):
Find the projects with pno = 10 and hours

worked < 20

c5(hours < 20 AND pno = 1O)WO]C](S_OD_

S lgma (hours < 20 AND pno = 10) WOI]{S_OH

Returns the set:

{ (333445555, 10, 10.0), (999887777, 10, 10.0)}

Relational Algebra sSaL

MoPp««TY Av-a=22< NnU-=- XMKMKXKXMKx[P> =-~I1EM
WORKING WITH THE RelaX CALCULATOR
RelaX - relational algebra calculator 0.19 1 Language - TakeaTour Feedback Help

There is no standard language for relational algebra like
there is for SQL.

One University group have developed a calculator that
supports a fairly common standard.

Note that it is CASE SENSITIVE.

Provides a number of datasets with the option of also
using your own dataset.

We will load in a version of the COMPANY schema

LOAD A DATASET:

Calculator: https://dbis-uibk.github.io /relax /calc/local /uibk /local /O

Go to “"Group Editor” Tab

Copy text from file on Blackboard and add
Then choose “Preview”

Then choose “Use group in Editor”

*Note: only stored temporarily

Example 1 in RelaX calculator:

Find the projects
with pno = 10 and hours worked < 20

O (hours < 20 and pno = 10)

2 rows

works on

O (hours < 20 and pno = 10) works_on
Execution time: 0 ms

works_on.essn works_on.pno works_on.hours
333445555 10 10

999887777 10 10

NOTE:
I

*The degree of the relation resulting from a selection of table R
is the same as the degree of R, e.g., same number of
attributes/columns

The operation is commutative, i.e. a sequence of selects can be
applied in any order,

e.g.
cT(hours < 20 and pno = 10) works_on

cy(pno = 10 and hours < 20) works_on

EXAMPLE 2- (Using company database):

List the department numbers of departments
located in Houston

o (dlocation = 'Houston') dept locations

or can write as:

sigma (dlocation = 'Houston') dept locations

PROJECTION OPERATOR
T Pi

Used to return certain attributes/columns
Notation: TTu; oo . arlR)

where:

A, ... A attribute names

R: relation /table name

Result is a relation with the k attributes listed in same order
as they appear in list. Duplicate tuples are removed from
the result.

% NOTE: Commutativity does not hold.

EXAMPLE 3 (Company schema):

List all the department numbers where employees
work

m dno employee 2l

8 rows

T 4no €Mployee

or can write as:

P j_ dn O emp l O ye e employee.dno

5

4

Returns: {5, 4, 1} 1

EXAMPLE 4: List all managers (ssn) and the
departments (number) they manage

TC mgrssn, dnumber department

333445555

987654321

888665555

YOU TRY ...

Example 5 Return all project locations which are in dept 5

Example 6 Return the names of all employees in
department 5

Example 7.List the names of all employees whose salary is
greater than 45000

Mo P« TY A\

RENAME OPERATORS: e
RHO P /4”0 — MopeTY AV ?A-}f}%fwﬂm}}

T D

" rename relation / rename columns

el
€ ogxa=1(px(A))
gAy=2(rhoyea(A))

Rename Operation (p)

Notation — p _ (E)

Where the result of expression E is saved with name of x
You might want to do this to save typing a table name,

e.g., for table dependent might want to rename it as dep
as follows:

n dep.bdate (rho dep (dependent))

NOTE: ASSIGNMENT ALSO AVAILABLE
BUT NOT A RELATIONAL ALGEBRA OPERATOR

-- definition
Resl =m dname department
department
-- execution 2o
Resl M dname department

department.dname
'Research’
'‘Administration’

'Headquarters'

Order operator

T (tav)

Used to order by certain columns from a relation R

where:
a1, a2, .. ax :are attributes with either asc or desc

R: relation /table name

EXAMPLE 8- (Company schema):

List all the employee first names and surnames,
ordered by surname (asc)

T lname asc (m fname, lname employee)

or can write as:

‘‘‘‘‘‘‘‘

Tau lname asc (o fname, lname employee) o

‘Alicia’ 'Zelaya'

asc is default

ordering

Group By operator

Y (gamma)

Used to group by certain columns from a relation R

AGGREGATE FUNCTIONS SUPPORTED
(THOUGH NOT PART OF RELATIONAL ALGEBRA)

COUNT(*)
COUNT(column)
MIN(column)
MAX(column)
SUM(column)
AVG(column)

BINARY OPERATORS

General Syntax:

(child_expression) function argument (child_expression)

UNION OPERATOR: U

Notation: (R) U (S)

where R and S are relations/tables

Returns all tuples from R and all tuples from S
Notes:

* No duplicates will be returned.

INTERSECTION OPERATOR: n

Notation: (R) n (S)
where R and S are relations/tables

Result: returns all tuples from R that are also in S.

SET DIFFERENCE: -

Notation: (R) — (S)
where R and S are relations/tables
Result:

returns tuples that are in relation R but not in S

Note: (R) = (S) and (S) — (R) are not the same

UNION COMPATIBILITY

For union, intersection and minus, relations must be
union compatible, that is:

o schemas of relations must match, i.e., same
number of attributes and each corresponding
attributes have the same domain

EXAMPLE 9

What is displayed in the results relation
following these operations?
(using ReLaX schema)

dep5 emps =cgdno=5 clatonal Agebra | SqL Group Edtor
employee o P e s T Y Ao
result1 = 1T ssn dep5_emps A
result2 = 11 superssn u
dep5_emps s = e - e

result3 = result1 U result2
result4 = result1 N result2
result = result1 - result2
resultd

> <

EXAMPLE 9: ¢/d.

resultl

result?

SSn

123456789

superssn

333445555

333445555

666884444

453453453

888665555

resultl U result?

SSn

123456789
333445555
666384444
453453453
888665555

EXAMPLE 9 ctd.

resultl result? resultl N result?

ssn superssn -

123456789 333445555
333445555

333445555

666884444 888665555

453453453

EXAMPLE 8 /4.

resultl

SH1

result?

123456789

superssn

333445555

333445555

666384444

453453453

888665555

resultl—result?

SSN

123456739

666884444

453453453

CARTESIAN PRODUCT OPERATOR:

X (cross join)

Notation: (R) X (S) where R and S are relations/tables

Returns: tuples comprising the concatenation (combination) of
every tuple in R with every tuple in S

Note:
No condition is specified

Example:

employee x department

employee x department

Execution time: 2 ms

yee.fname employee.minit employee.lname yee.addre:
‘John' 'Smith 123456789 "1975-Jan-09" 731 Fondren,
Houston, TX'
"John' 'Smith 123456789 "1975-Jan-09" 731 Fondren,
Houston, TX'
"John' 'Smith 123456789 1975-Jan-09" 731 Fondren,
Houston, TX'
‘Frankli "Wong' 333445555 '1980-Dec-08' 638 Voss,
Houston, TX'

'Franklin'

RRRRRRRRR

'''''

employee.salary empl

55250

55250

556250

65000

nnnnn

EXAMPLE 10:

Given relations: R(A, B) and $(C, D, E):

C |D |E
A |B 22 155 |66
Y 44 |77 |88

4 99 10 |11

Then R x S is¢

		A

		B

		1

		2

		3

		4

		C

		D

		E

		22

		55

		66

		44

		77

		88

		99

		10

		11

RxS =

A |B 22 |55 |66

; i S 22 [77 |88

99 [10 |11

A |B |C D E
| 2 22 |55 |66
| 2 44 | 77 | 88
| 2 99 110 [11
3 4 |22 |55 |66
3 4 (44 |77 | 88
3 4 99 |10 |11

		A

		B

		C

		D

		E

		1

		2

		22

		55

		66

		1

		2

		44

		77

		88

		1

		2

		99

		10

		11

		3

		4

		22

		55

		66

		3

		4

		44

		77

		88

		3

		4

		99

		10

		11

		A

		B

		1

		2

		3

		4

		C

		D

		E

		22

		55

		66

		44

		77

		88

		99

		10

		11

JOIN OPERATOR: ™

The Join operator is a hybrid operator — it
is a combination of the Cartesian product
operator (x) and a select operator (o)

Tables are joined together based on the
condition specified

Example:

employee Xl ssn

mgrssn department

employee M <5, = mgrssn department

employee.lname employeessn employee bdate employee.addre

Cartesian product versus Join?

The main difference between a Cartesian product
operator and a join operator is that with a join,
only tuples satisfying a condition appear in the
result (as we have already seen)

In a Cartesian product operator, all combinations
of tuples are included in the result.

EQUI AND THETA JOINS

Notation: (RT) D] p (R2)
where:

p: Join condition

R1 and R2: relations/tables

Result: The JOIN operation returns all combinations of
tuples from relation R1 and relation R2 satisfying the
join condition p

Note:
EQUI JOINS use only equality comparisons (=) in the
join condition p

EXTRA EXAMPLES

1 1. Write the relational algebra expression to find the names
of the employees in the Research department

1 2. Find the name(s) of Jennifer Wallace’s dependents

1 3. Find the name(s) of employees who work on projects which
are located in Houston

SUMMARY

Important to know:

* Unary relational algebra operators and how they work — especially,
cand T

* Binary relational algebra operators and how they work — especially

x and D]

* How to combine binary operators (where order is significant) to
answer a question

* Using the RelLaX calculator

VERY Important not to confuse SQL and Relational Algebra

NYFZANYIANYIANYIANYI AN

ﬂ\ﬂ&ﬂ%ﬂ“ﬂ& /
NN\ Y4
ZaN\YZA\YZA\Y/ANY/A\Y/,
NN\ Y4

TJANVIANVIANVIANVIANY Y

QUERY PROCESSING Cm:
AND OPTIMISATION | ¢~ ase

RECALL:
Definition of Query Processing

Transforms SQL (high level language) in to a correct and

efficient low level language representation of relational
algebra

Each relational algebra operator has code associated
with it which, when run, performs the operation on the

data specified, allowing the specified data to be output
as the result

Representing the relational algebra
solutions with a query tree

What is a tree?

A tree is a collection of data arranged as a

finite set of elements - called nodes - such Root
that:

The tree is empty or the tree contains a o
distinguished node, called the root node, and | . i
all other nodes are arranged in subtrees such

Mode
that each node has a parent node. Nodes

typically contain data and some pointers to
other nodes

Figure: Tree data struchare

Root

TREES

Parent

Nodes may be:

rootf: no node points to it ChﬂdC{ Lesf

° [N d.
inner: has parent and child nodes "
Figure: Tree data structure

leaves: has no child nodes

Tree data structures (a grouping of data) are used
frequently in computing allowing data to be stored in a
non-linear (non-list) way.

They are often (but not always) binary trees where each
node can have at most two child nodes

QUERY TREE

A query tree is a binary tree that corresponds to a relational
algebra expression where:

*(input): tables are at the leaf nodes
* relational algebra operators are at internal nodes

*(output /result): the root of the tree returns the result (often
with one final relational algebra operator)

The sequence of operations is directed from leaves to rooft
and from left to right — e.g. the bottom-most, left-most side of

tree is executed first

EXAMPLES: all dependent names

TT dependent_name

6 rows

(NSEH=ESSI'I)

7 rows

employee | dependent

8 rows 7 rows

Tl dependent_name (employee » <, - ossy dependent)

dependent.dependent_name
'Michael'
'Alice’
'Elizabeth'

Theodore'

EXAMPLES:

employees from department 5 and their dependents

TT fname, Iname, dependent_name

6 rows

employee | dependent

8rows 7 rows

T fname, Iname, dependent_name (O dno =5 (employee K ssp = essn dependent))

employee.fname employee.lname dependent.dependent_name

John' 'Smith’ ‘Michael'

John' 'Smith’ ‘Allce!

John' 'Smith’ 'Elizabeth’
'Franklin’ ‘Wong' ‘Alice’
'Franklin’ ‘Wong' ‘Theodore'

'Franklin’ ‘Wong' Joy'

How to Translate SQL to Relational
Algebra?

*SELECT attributes corresponds to 7

*Joins correspond to relational algebra joins ¥ with any join
conditions specified as part of the join

*Any conditions in a WHERE clause correspond to a sigma O
relational algebra operator with associated conditions

°In addition, have rules for aggregate functions (sum, avg,
count, etc.) and GROUP BY, HAVING and subqueries but we
won’t consider these

Executing query represented by query tree: one
approach:
Materialization Evaluation

Traverse tree from bottom to top, left to right. At each
stage:

* Execute internal node operation whenever data for its
child nodes are available

* Replace the internal node operation (and all child nodes)
by the table resulting from executing the operation

Note: Results of operations are saved as temporary tables
and are used as inputs to other operators

HOW TO DRAW A QUERY TREE?

Must remember the order of execution — from bottom to top,
completing each level and then left to right of tree — therefore:

* the first operations — fetching tables — should be at the leaves
of trees.

* the last operator — often ™ or aggregate functions - should
be at the root of the table.

* joins must be applied to tables (2 at a time) and should be at
internal nodes.

°* any other operators should be at one or more internal nodes.

IMPORTANT

When Joining or multiplying more than two tables ... operators
can only be applied to 2 operands at a time

X
840 rows
X dnumber = dno
7 rows

department
3 rows

department M ¢number - dno (€Mployee X < - cs, dependent) (department x dept_locations) x (employee x dependent)

department |§ dept locations employee § dependent

employee § dependent

3rows 5rows rows 7 rows

8 rows 7 rows

ANNOTATING TREE

Each relation algebra operation can be evaluated using
one of several different algorithms and each relational
algebra expression can be evaluated in many ways.

“* An evaluation plan is an annotated
expression/query tree specifying the execution
strategy for a query.

EXAMPLE |

Consider the following SQL solution and
relational algebra translation

SELECT fname, lname
FROM employee

WHERE dno = 5;

T O4o - 5 €EMployee)

fname, lname (

Query tree
representation

TT fname, Iname

4 rows

employee

8 rows

SELECT fname, lname
FROM employee

WHERE dno = 5;

T

fname, lname

(O 4o = 5 EMPployee)

employee.fname employee.lname

John' 'Smith’
"Franklin’ "Wong'
'Ramesh’ '‘Narayan'

Joyce' 'English’

Query tree representation with
evaluation plan

ITiname, Iname [FNPRAIN tuple in t1 retrieve fname, Iname

4 rows

linear search on condition. -write to t1

employee

file scan: employee
& rows

How materialization evaluation works ...

TT fname, Iname

4 rows

employeefname employeeminit employee.name employeessn employee.bdate employee.address employee.sex s salary pl uperssn pl dno
John =4 Smith 123456789 1985-Jan-09’ 731 Fondren, Houston, TX M 30000 333445555 5
Franklin T Wong' 332445555 1955-Dec-08 638 Voss, Houston, TX M 40000 888665555 5
Ramesh K Narayan 096854444 1962-5ep-15 ‘975 Fire Oak, Humble, TX M 38000 333442255 E
A English' 452452453 -Jul-31 '5631 R Hauston, TX F 25000 3324425255 5

Example 2
UBIK database

hitps://dbis-uibk.github.io/relax/calc/local/uibk/local/0

Consider the following SQL query:
SELECT R.q, R.b
FROM R, S
WHERE d > 200 AND S.b=R.b

And the relational algebra translation:

T pa,Rb O d>200and b =Rb R X S

O d>200andSb=Rb

R.a R.b
3 C

Example 3 UBIK database Ra Rb

3 C

Consider the following SQL query:
SELECT R.q, R.b
FROM R, S, T
WHERE S.d > 200 AND
S.b=R.b AND
S.d=Td

0 Sd>200andS.b-Rband S.d=Td

And the relational algebra translation:

MRa RbOsSd=200andSb=Rbandsd=TdRAxSxT

EXAMPLE 4:
Translating SELECT FROM WHERE
(with no subqueries) to Relational Algebra

Given a general SELECT statement of the form:
SELECT attributelist
FROM R1 INNER JOIN R2 ON joinCondition
WHERE condition

translates to:

7-caLttJ:i]outeList (Gcondition(Rl JOINjoinCondition R2))

NOTE: An SQL statement may have many equivalent
relational algebra expressions.

Example 5: Consider the following (Company
Schema):

List all salaries greater than 50000
The SQL solution:

SELECT salary
FROM employee
WHERE salary > 50000;

SELECT salary

Translating this SQL
to Relational Algebra

FROM employee
WHERE salary >50000;

Option 1:

Tcsalary (G(salary> 50000) employee))

retrieve tuples with salary > 50000

retrieve salary column
Option 2:
G (salary > 50000) (Msa1ary €MPloyee)

retrieve salary column

retrieve tuples with salary > 50000

DIFFERENCES BETWEEN THESE?

Moatary (O(satary> so000) €mMployee))

cy(saxlary > 50000) (Tcsa]_ary employee)

EXAMPLE 6:

Given the following problem based on the Company schema
write the associated SQL code (using joins), a correct relational

algebra expression translation and a query tree representing
the relational algebra expression:

List the names of all employees who work on projects located
in Stafford

EXAMPLE 7:

Given the following problem based on the Company schema
write the associated SQL code (using joins), a correct relational
algebra expression translation and a query tree representing
the relational algebra expression:

List the location of all departments managed by manager
Franklin Wong

ISSUES TO CONSIDER WITH QUERY TREES:

*Size of temporary tables

*Algorithms used for execution plan

OPTIMISATION

* Different query trees for a given query can have
different costs

* Different evaluation plans for a given query can have
different costs

* Optimisation techniques attempt to choose the best
among a number of potential query trees

APPROACH 1:

Compare cost estimates across different solutions

* Cost is usually measured as the total elapsed time for
answering a query

* One approach is to calculate cost estimates for each
possible query tree

* The query tree with the lowest cost estimate should then
be chosen

How to calculate cost estimates?

Cost factors include CPU speed, disk access time, network
communication time, etc.

Disk access is typically the predominant cost and can be
measured by number of blocks read/number of blocks
written per query.

MAIN COST ESTIMATE USED:

Number of block transfers where each
block contains a number of records

Number of blocks transferred from disk depends on:

* Size of buffer in main memory - having more memory reduces
need for more disk accesses.

* Indexing structures used (primary, secondary, etc.)

°* Whether all blocks of a file must be transferred or not

* e.g., if search can be done on primary key of index file or
on secondary index then only retrieve blocks that satisfy
search condition

*As is typical in Computing, often use worst case estimates,
knowing that any actual cost cannot exceed a worst case
estimate.

DBMS CATALOG

The DBMS catalog stores statistical information about each
table such as table sizes, indexes (and their depths) etc.

The statistical information on the tables and attributes
used in a query, can be found in the DBMS catalog and
these are used to calculate cost estimates also.

In DBMS catalog, for each table R
information is stored on:

Number of tuples/records in table R

Number of blocks containing tuples of table R
Size of a record in bytes

Blocking factor

Information on number of distinct values per attribute
and number of values that would satisfy set of equality
operations on attribute (by having averages, min, max,
etc.)

Information on indices (index types, index field values,
etc.)

STEPS FOR APPROACH 1

1. Generate query trees and evaluation
plans (maybe not all)

2. For each query tree get cost estimates
using DBMS catalog

Resulting in a set of cost estimates such that the best can be chosen
and the query tree with the lowest cost estimate can then be picked
as the single best query tree and evaluation plan.

THEREFORE:

To choose among plans, the optimiser has to estimate cost
of each evaluation plan.

Two aspects to this:
For each node of tree:
*estimate cost of performing associated operation

*estimate size of result and if it is sorted

APPROACH 1: SUMMARY

o Cost-based optimisation, while good, is expensive:

As query complexity increases so does the different
number of query trees and plans possible and each query
tree requires its own cost estimates

N.B. It is important that the amount of time an optimiser
spends on calculating the best solution (optimising) is not
longer than the amount of time which would elapse if
executing a solution picked at random

APPROACH 2:
Heuristic Optimisation

o Optimiser often uses heuristics to reduce the number of
choices that must be made in a cost-based fashion.

O Heuristic optimisation transforms the query-tree by using
a set of rules that typically (but not always) improve
execution performance.

O Some cost based estimation is also performed — as part
of the heuristic optimisation and to choose between a
reduced set of trees and/or evaluation plans.

STEPS FOR APPROACH 2:

1. Create a canonical query tree.

2. Apply a set of heuristics to the tree to create a more
efficient query tree.

3. Create cost estimates of this query tree, if appropriate,
to ensure best evaluation plan.

DEFINITION:
Canonical query tree

A canonical query tree is an inefficient query tree
representing relational algebra expressions which can be
created directly from the SQL solution following a
sequence of quick and easy steps:

* Uses CARTESIAN product instead of JOINS
* Keeps all conditions (G) together in one internal node

= 1T becomes root node

Steps to create a canonical query tree
with SELECT/FROM/WHERE clauses and no

sub-queries:

1. All relations in FROM clause become leafs of the tree.
They should be combined with a Cartesian product (x) of
the relations.

* Remember: Only 2 relations can be involved in a Cartesian
product at a time (binary tree)

2. All conditions in the WHERE clause and any JOIN conditions
in WHERE or FROM clause become a sequence of relational
algebra expressions in one inner node of the tree (with inputs

from previous step)

3. All conditions from the SELECT clause become a relational
algebra expression in the root node

EXAMPLE 8 with implicit join
List the names of employees in research department
SELECT fname, lname

FROM employee, department

WHERE dno = dnumber AND

dname = ‘Research’;

Creating the canonical query tree ...

EXAMPLE 8 with explicit join

List the names of employees in research department

SELECT fname, lname

FROM employee INNER JOIN department ON
dno = dnumber

WHERE dname = ‘Research’;

Creating the canonical query tree ...

CANONICAL TREE REPRESENTATION:

SELECT fname, lname
FROM employee INNER JOIN department

ON dno = dnumber

TT fname, Iname

WHERE dname = ‘Research’; T

O dname = 'Research’ and dno = dnumber

employee jj department

rows 3 rows

NOTE:

This would be very inefficient if executed directly because
of the Cartesian product operations.

Recall Cartesian product:

RxS

Returns tuples comprising the concatenation of every tuple
in R with every tuple in S

CONSIDER EXAMPLE 7 AGAIN

Draw the canonical query tree for the SQL query in
Example 7:

List the location of all departments managed by manager
Franklin Wong

HEURISTIC OPTIMISATION

Heuristic Optimisation MUST transform this canonical
query tree into a final query tree that is efficient to
execute:

O In general, heuristic optimisation tries to apply the most
restrictive operators as early as possible in the tree
(furthest down the tree) and to reduce the size of the
temporary tables/results created that move “up” the
free.

O Heuristic Optimisation must include rules for equivalence
among relational algebra expressions that can be
applied to the initial tree.

HEURISTIC OPTIMISATION ALGORITHM:

Input: A canonical query tree

Process:

1. Decompose any ¢ with AND conditions into individual ©
2. Move each & operator as far down the query tree as possible.

3. Rearrange the leaf nodes so that most restrictive ¢ can be
applied first (using information from DBMS catalog) and so that

future JOINS are possible.

Note: “most restrictive” means those operators that result in
relations with the fewest tuples or with the smallest absolute size -
these operations should happen first — that is — at the lowest level
of the tree and on the left hand side of the tree.

4. Combine CARTESIAN PRODUCT operators with ¢ (sigma) to form
JOIN operators where appropriate (replacing all x)

5. Decompose m and move each 1 as far down the tree as possible,
possibly creating new n operators in the process.

(6. ldentify subtrees that represent groups of operations that can be
executed by a single algorithm.)

(7. Add evaluation plan)

Output: An efficient query tree

Back to EXAMPLE 6:

List the names of employees in research
department

SELECT fname, lname
FROM employee INNER JOIN department

ON dno = dnumber

O dname = 'Research’ and dno = dnumber

WHERE dname = ‘Research’;

4 rows

department
3 rows

employee

8 rows

OPTIMISATION HEURISTIC T & 2:

Decompose conditions and apply sigma (G)
operators as early as possible

o “Move 6 down tree’ thus eliminating unwanted tuples.

O Heuristic 1 tries to reduce the size of the tables to be
combined as much as possible:

O Therefore, if a selection operator (G) occurs after a
Cartesian product or a join, check to see if it can occur
before these operations

Example 8:

Move (G) sigma

TT fname, Iname

4 rows

O dno = dnumber

4 rows

employee O dname = 'Research’

8 rows 1 row

department

3 rows

TI fname, Iname

4 rows

O dname = 'Research’ and dno = dnumber

employee @ department

8 rows 3rows

OPTIMISATION HEURISTIC 3:

Rearrange the leaf nodes so that most
restrictive sigma opeartors can be
applied first

If we don’t have any information from DBMS catalog
owe might leave nodes as they are

oUse database schema (nhumber of columns) to make a
good estimate

oUse sample data (number of rows) and database schema
(number of columns) to make a good estimate

TT fname, Iname

EXAMPLE 8:
REARRANGE LEAF NODES

employee O dname = 'Research’

8rows 1 row

TT fname, Iname department

3 rows
4 rows

O dno = dnumber

4 rows

O dname = 'Research’ employee

1 row 8 rows

department

3 rows

OPTIMISATION HEURISTIC 4

Replace Cartesian product (x) and
appropriate selects (o) with JOIN

* First must ensure the leaf nodes are ordered such that
this can happen — if not re-order leaf nodes and ensure to
keep any select operators with the appropriate leaf node

cFcondition (rl X rz)

Is equivalent to:

R1 JOIN R1

condition

T fname, Iname

EXAMPLE 8:
REPLACE X -

O dname - Research [] €Mployee
1 row rows

department

TT fname, Iname

4 rows

3 rows

(™ dno = dnumber)

4 rows

O dname = 'Research’ [j €mployee

1 row 8 rows

department

3 rows

OPTIMISATION HEURISTIC 5:
Apply Pi(7t) operators as early as possible

o Motivation: “Move 1t down the tree” (project) to eliminate
unwanted columns

OThe heuristic ensures that the size of the tables to be joined are as
small as possible (reduces number of attributes/columns)

Therefore:

ofor each © check if that T can be carried out before the join

ofor each table check if additional © can be introduced (these may
not be stated explicitly in the query)

N.B. MUST ensure that all needed columns further up in the tree are
retained (even if they are not immediately necessary)

T fname, Iname

EXAMPLE 8:

(X dno = dnumber)

Move Pi

O dname = 'Research’ employee

1 row 8 rows

department

3 rows

T fname, Iname

4 1ows

(™ dno = dnumber)

4 rows

TT dnumber TT fname, Iname, dno

1 row 8 rows

O dname = 'Research’ employee

1 row 8rows

department

3 rows

T fname, Iname ((TUdnumber O dnarme = Research' department) M o = dnumber T fname, Iname, dno
employee)

EXAMPLE 9

Using the COMPANY relational schema and interpretation
as defined in lectures develop an SQL query to satisfy the
following information need:

“List the names of employees with salaries greater than
30000, who work on projects for greater than 25 hours
where the projects are located in Houston or Bellaire™

Using query optimisation heuristics develop a query tree
which represents an efficient evaluation strategy for the
developed query.

SQL SOLUTION:

SELECT
FROM

WHERE

fname, minit, lname

project, employee, works on

pno = pnumber AND essn = ssn AND
hours > 25 AND salary > 30000 AND
(plocation = ‘Houston’ OR

plocation = ‘Bellaire’);

CANONICAL QUERY TREE SOLUTION

T fname, minit, Iname
(0 pno = pnumber AND essn = ssn AND
hours > 25 AND salary > 30000 AND
plocation = 'Houston' OR plocation = 'Bellaire’

(project x employee x works_on)

)

OPTIMISATION HEURISTIC T & 2:
Decompose conditions and apply sigma (o) operators
as early as possible

OPTIMISATION HEURISTIC 3:

Rearrange the leaf nodes so that most
restrictive sigma opeartors can be applied
first and that future joins can be performed

OPTIMISATION HEURISTIC 4:
Replace Cartesian product (x) and appropriate selects
() with JOIN

OPTIMISATION HEURISTIC 5:
Apply Pi () operators as early as possible

EXAMPLE 10: (Winter 2017)

(Given the movie schema from the exam paper)

(c) Using joins, create a SQL query to answer the following information
need. Using this SQL query, create a canonical query tree, explaining
the steps you take in creating the tree and highlighting what parts of
the SQL query are represented by the root, leaves and inner nodes of
the tree.

For movies of genre ‘Sci-Fi’, released in 2016 or 2017, with an average
rating greater than 7, list the movie title, movie category and the names
of the actors who star in the movie.

(d) Using the canonical query tree from part (c), and with respect to
heuristic-based optimisation, develop a query tree that represents an
efficient evaluation strategy for the SQL query. Explain the steps taken,
describing each heuristic used.

SCHEMA:

movie(id, title, relYear, category, runTime, director, studioName,
description, rating)

actor(alD, fName, surname, gender)

stars(movielD, actorID)

movGenre(movielD, genre)

For movies of genre ‘Sci-Fi’, released in 2016 or 2017, with
an average rating greater than 7, list the movie title, movie
category and the names of the actors who star in the movie.

SQL SOLUTION:
(Note: can use implicit or explicit joins)

SELECT title, category, fname, surname
FROM movie INNER JOIN movGenre ON id = movieGenre.movielD
INNER JOIN stars ON id = stars.movielD
INNER JOIN actor ON aid = actorID
WHERE genre = 'Sci Fi' AND
rating > 7 AND
(relYear = 2016 OR relYear = 2017);

SUMMARY: IMPORTANT TO KNOW

*Basic relational algebra operators.
*Mapping between relational algebra operators and SQL.

*Mapping between relational algebra expression and
query free.

*Mapping from SQL to Canonical Query tree.

*Heuristic optimisation steps to map Canonical Query tree
to efficient query tree.

*N.B. Do not mix up SQL code and Relational Algebra
expressions

NYFZANYIANYIANYIANYI AN

ﬂ\ﬂ&ﬂ%ﬂ“ﬂ& /
NN\ Y4
ZaN\YZA\YZA\Y/ANY/A\Y/,
NN\ Y4

TJANVIANVIANVIANVIANY Y

FILE | ST230
ORGANISATIONS

Sy mI

RECOMMENDED TEXT:

See: FUNDAMENTALS Of
Chapter 5 DHTHBHS[SﬁlﬂI“m}

Elmasri & Navathe
(3¢ Edition)

MOTIVATIONS

o Generally can assume for non-trivial relational

databases, that the entire database will not fit in main
memory (RAM)

O One of the DBMS’s tasks is to manage the physical
organisation (storage and retrieval) of the tuples (rows) in
each table in the database

oThis is called File Organisation

NOTE:

Newer database system architectures, in-memory
databases (such as SAP Hanna), manage their data
through virtual memory, relying on the Operating System
to manage the movement of data to and from main
memory through the OS paging mechanism.

DEFINITION: FILE ORGANISATIONS

A database file organisation is the way tuples (records)
from a table are physically arranged in secondary
storage to facilitate storage of the data and read/write
requests by users (via queries).

A number of factors to consider, including:

Support of fast access of data — moving to/from secondary
storage

Cost
Efficient use of secondary storage space

Provision for table growth (when new tuples added)

Concerning the physical storage of
tuples

o Options?
o All stored together?

o Separated in some way based on some logical
grouping?

| More definitions:

File = collection of data stored in bulk

In DBMS we have referred to these files as tables or relations

In DBMS we know that such tables contain a sequence of
tuples, where each tuple contains a sequence of bytes and is
subdivided into attributes or fields. Each attribute contains a
specific piece of information. Associated with each attribute is
a data type

In File Systems, we refer to these tuples as records containing

fields

Size of records/tuples:

Fixed length: all records (tuples) in file (table) have exactly
same size

Variable length: different records (tuples) in file (table)
have different size

RECORDS

Each record often begins with a header, a fixed-length
region which stores information about the record such as:

O Pointer to the database schema
o Length of the record

o Timestamp indicating the time the record was last
modified or read

O Pointers to the fields of the record

File organisation issues:

How can these records be organised to:

* store in a compact manner on devices of limited
capacity?

* provide convenient and quick access by programs

BLOCKS

o Different terminology used but generally,

where records from a file are assigned to
Blocks/Pages/Frames

Oln relational DBMS use the terminology of a block

oTherefore, a table can also be defined as a collection of
blocks where each block contains a collection of records.

DEFINITION: Blocks

O A block is the unit of data transfer between secondary
storage and memory

o The block size B is fixed

O Records of a file must be allocated to blocks. Typically,
the block size is larger than the record size, so each block
will contain a number of records

o Some files may have very large records that cannot fit in
one block so span records over a number of blocks

oA number of blocks is typically associated with a table

BLOCKS

Blocks also have header information holding information
about the block such as:

O Links to one or more blocks associated with the table
O Which table (in the schema) the blocks belong to

o Timestamp of last access to block (read or write)

Example: Records assigned to blocks for the table
with block header shown:
dept locations (dnumber, dlocation)

Block 1

header record 1 record 2 | record 3

Block 2

header record4 | record 5

Example: Records assigned to blocks for the table

with block and record header shown:
dept locations (dnumber, dlocation)

Block 1

Header info I 1, ‘HOUStOﬂ’I 4, ‘Stafford’l 5, ‘Bellaire’

Block 2

Header info I5, ‘Sugarland’I 9, ‘Houston’

DEFINITION: Blocking factor

o Blocking factor is the average number of records that fit
per block

o Given block size B (in bytes), and record size R (in bytes),
then with B >= R, can fit floor(B/R) records per block.

O Must ensure that the header information is also
accounted for

Spanned vs Unspanned organisations:

Spanned organisation - records can span more than one
block

Un-spanned - records are not allowed to cross block
boundaries

So can only use when B >= R

(i.e., block size is greater than record size)

NOTE:

Block size and record size measured in bytes.

e.g., with unspanned memory organisation and
B = 1024 Bytes (once header information stored)

R = 100 Bytes and of fixed length

The blocking factor is:
floor (10.24) = 10

Why use blocking?

Say we need to retrieve a file with 1000 records ...

o If not blocked then would need 1000 data transfers

o If blocked with a blocking factor of 10, and records
are stored one after another in blocks, then the same
operation requires 100 data transfers

EXAMPLE 1: A table has 20000 fixed-length STUDENT
records

Schema:

student (name, studentID, address, mobphone,
birthdate, gender, degreeCode, currentYear)

Each field is the following size:
name (30 bytes),
studentID (9 bytes),
address (40 bytes),
mobphone (10 bytes),
birthdate (10 bytes),
gender (1 byte),
degreeCode (8 bytes),
currentYear (4 bytes)

The file is stored on disk, in blocks, with 20 bytes required
for header information per record.

EXAMPLE 1 QUESTIONS:

Each field is the following size:

name (30 bytes),
studentID (9 bytes),
address (40 bytes),
mobphone (10 bytes),
birthdate (10 bytes),
gender (1 byte),
degreeCode (8 bytes),
currentYear (4 bytes)

The file is stored on disk, in blocks, with 20 bytes required
for header information per record.

What is the record size? (adding in the header information

also)

30+9+40+10+10+1+8+4+20 =

132 bytes

Given a block size of 512 Bytes what is the blocking factor?

(unspanned memory organisation)

512/132 = 3.87mpblocking factor = 3

How many blocks are required to store all 20000 records if
each block is filled before another block is used (remember

records are fixed-length)

20000/3 =6666.67 M 6667 blocks needed

Operations performed on a file

All the operations we have been performing with SQL
code:

o Scan or fetch all records

o Search records that satisfy an equality condition (i.e.,
find specific records)

o Search records where a value in the record is between a
certain range

O Insert records

O Delete records

Steps to search for a record
on a disk:

1. Locate relevant blocks
2. Move these blocks to main memory buffers
3. Search through block(s) looking for required record

4. At worst (the worst case), may have to retrieve and check
through all blocks for the record

Generally, when accessing records:

To support record level operations, must:
“keep track of the blocks associated with a file

“keep track of free space on the blocks

“keep track of the records on a block

Recall example again: Records assigned to
blocks for the table:

dept locations (dnumber, dlocation)

Block 1

Header info I 1, ‘HOUStOﬂ’I 4, ‘Stafford’l 5, ‘Bellaire’

Block 2

Header info I5, ‘Sugarland’I 9, ‘Houston’

Options for organising records?

* Heap file organisation (unordered)
* Sequential file organisation (ordered)
* Hashing /hashed file organisation

* Indexed file organisation (Primary, Clustered, B-Trees, B+
Trees)

HEAP FILE ORGANISATION

Approach: Any record can be placed in any block where
there is space for the record (no ordering of records)

Insertion: last disk block associated with file (table) copied

into buffer and record is added; block copied back to
disk

Searching: must search all blocks (linear search)

Deletion: find block with record (linear search); delete link
to record

EXAMPLE 2: Given a blocking factor of 2, and the
student schema from example 1, sketch the
placement of the following student records, in the
order given, using heaped file organization

('Jane Casey 111, '34 hazel park newcastle, galway’,
'087123456 '17-95-2001" s GY101" , 1)

('Jack Walsh ', 91, '13 colle e road, alway

'086654321 ", ‘91-09-2000"', > "GY35 >

('Sue Smyth ', 99, 'Maree, Oranmore, Co. Galway’,
'087111222", '25-07-1999° "F', 'GY406' , 3)

('Gerard Kell 112, 'Main Streeta Oughterard, Co.
Galway', '08 1212127, '30-12-2002 F, GY414, 1)

('Jane Casey', 111, '34 hazel park, newcastle,
galway', '087123456', '17-05-2001', 'F', 'GYlel’', 1)

('Jack Walsh ', 91, '13 college road, galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222"', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '@87121212°, '30-12-2002°, F, GY414, 1)

Block 1

| ‘Jane ‘Jack Walsh’,
Header info Casey/, 01
"1, .. |
Block 2
‘Sue Gerard

Header info Smyth’, 90,

Kelly’, 112,

How are the following supported in heaped
file organisation (using example 2)?

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill,
Galway', '©87222333', '24-10-2002', 'M', 'Gylel', 3)

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill, Galway',
'087222333', '24-10-2002', 'M', 'GYlel', 3)

Block 1
_ ‘Jane ‘Jack
Header info Casey’, Walsh’, 91,
111,

Block 2

Header info ‘Sue Smith’, ‘Gerard Kelly’,

o0, 112,

Block 3

Header info ‘Sean Carty’,

100,

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

Block 1

Header info Jane Casey’

111,

Block 2

dor i ‘Sue Smith’, ‘Gerard

eader info o, Kelly’, 112,

Block 3

Header info Sean Carty,

100,

HEAP FILE ORGANISATION

Advantages: Insertion efficient and easy - last disk block

copied into buffer and record is added; block copied
back to disk

Disadvantages:

1. Searching inefficient - must search all blocks (linear
search)

2. Deleting inefficient - search first; delete and then leave
unused space in block if using 'easy’ insert approach

SEQUENTIAL FILE ORGANISATION

Approach: Records are stored in sequential order, based

on the value of some key of each record — often primary
key

Usually use an index with sequential file organisation

Allows records to be read in sorted order

EXAMPLE 3: Using a blocking factor of 2,
and the schema from example 1, sketch the
placement of the following student records
using a sequential file organisation ordered
on the studentID:

('Jane Casey', 111, '34 hazel park, Newcastle
Galway', 87123456 '17-05-2001" "F', 'Gyie1' , 1)

('Jack Walsh ', 91, '13 Colle e road Galwa
'086654321', 01-69-2000' "'GY350"

('Sue Smyth "y, 90, Maree, Oranmore, Co. Galway’,
'087111222"', ''25-07-1999°, 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard Co.
Galway', '08 121212 '39-12-2002° F, GY414, 1)

('Jane Casey', 111, '34 hazel park, newcastle, Galway’,
'087123456", '17-05-2001', 'F, 'Gylel’', 1)

('Jack Walsh ', 91, '13 college road, Galway', '086654321"',

'01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, ‘Maree, Oranmore, Co. Galway',
'087111222"', '25-07-1999°, 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212°, '30-12-2002°, F, GY414, 1)

Block 1
_ ‘Sue ‘Jack
Header info Smyth’, 90, Walsh’, 91,
Block 2
_ ‘Jane ‘Gerard
Header info Casey’, 111, Kelly’, 112,

How are the following supported in
SEQUENTIAL file organisation (using results

from example 3)?

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view,
Salthill, Galway', '087222333', '24-10-2002',

'M', 'GYle1l', 3)

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road,
Galway', '086654321', '©1-09-2000', 'M',
'GY359', 3)

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill, Galway’,
'087222333', '24-10-2002', 'M', 'GY1e1l', 3)

Block 1
_ ‘Sue ‘Jack

Header info Smyth’, 90, Walsh’, 91,
Block 2

Header info ‘Sean Carty’, ‘Jane Casey’,

100, 111, ...

Block 3

Header info Gerard Kelly’

112,

1. Inserting a new tuple:

('Sean Carty', 100,

'087222333",

Block 1

Header info

Block 2

Header info

Block n

Header info

'24-10-2002",

‘Sue Smith’,

90,

IMI,

'Gy101', 3)

‘Jack Walsh’,
91,

‘Jane Casey’,
111, ...

‘Gerard
Kelly’, 112,

‘Sean Carty’,

100,

'23 Ocean view, Salthill, Galway',

Use of
“overflow”
blocks

2. Deleting an existing tuple (Option 1):

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

Block 1
Header info ‘Sue Smith’,
o,
Block 2
Header info ‘Sean Carty’, ‘Jane Casey’,
100, 111, ...
Block 3
Header info ‘Gerard Kelly’,
112,

2. Deleting an existing tuple (Option 2):

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

Result:
Block 1
Header info ‘Sue Smith’,
o,
Block 2
: ‘Jane Casey’ ‘Gerard
Header info M, ... Kelly’, 112,
Header info ‘Sean Carty’,

100,

SEQUENTIAL FILE ORGANISATION

Advantages:

* Reading records in order is efficient

* Searching is efficient on key field (binary search)
* Easy to find 'next record'

But ...

* Insertion and deletion expensive as records must remain
physically ordered. Pointer chains used (part of header
information)

* What if searching on non-key field?

HASHING/HASHED FILE ORGANISATION

A hash function is computed on some attributes of each
record (e.g., often key value)

The output of the hash function is the block address where
the record should be placed

key value of

hash storage
record 9

function location /block for
record

HASH FUNCTIONS

A common hash function is the MOD function where:
a MOD b or a%sb

returns the remainder on dividing a by b, i.e. integer division.

Example:
20 MOD 7 = 6
100 MOD 5 = 0

where b should be a prime number — that is a number only
evenly divisible by itself and 1

http://www.onlineconversion.com/prime.htm

EXAMPLE 4

Given the following records which should be stored in
blocks based on user IDs and a hashed file organisation

The available blocks have IDs in the range 0-100 and
have a blocking factor of 3

Assign the following records to blocks using user IDs:
1234

167

100

458

Example 4 steps:

Get prime number in the range 0-100 as close to 100
as possible - e.g., 97

For each key value of each record find the block
number of where to place record by getting
keyvalue mod primenumber, e.g., keyvalue mod 97

1234 MOD 97 =70 (97 divides in to 1234 12 times with remainder 70)
167 MOD 97 =70 (once)

100 MOD 97 = 3 (once)
458 MOD 97 = 70 (4 times)

Placing of the records:

block 3

block 70

block 71

‘ Example 4 steps:

1. Get prime number in the range 0-100 as close to 100
as possible - e.g., 97

2. For each key value of each record find the block
number of where to place record by getting
keyvalue mod primenumber, e.g., keyvalue mod 97

1234 MOD 97 =70 (97 divides into 1234 12 times)
167 MOD 97 = 70 (once)

100 MOD 97 = 3 (once)

458 MOD 97 = 70 (4 times)

100

1234

167

458

EXAMPLE 5: Using the student schema from
example 1, and given a blocking factor of 2,
with mod function of 97, sketch the placement
of the following student records using hashed

file organisation:

(Jane Casey 111, '34 hazel park Newcastle, Galway',
'087123456 '17-05-2001" , GY101' , 1)

('Jack Walsh ', 91, '13 Colle e road, Galwa
'986654321", ‘01-09-2000", ', 'GY350', 3

('Sue Smyth ', 9@, ‘'Maree, Oranmore, Co. Galway',
'087111222", '25- "97-1999 7 "F', 'GY406' , 3)

('Gerard Kell 112, 'Main Streeta Oughterard, Co.
Galway', '08 121212 '30-12-2002 F, GY414, 1)

('Jane Casey', 111, '34 hazel park, Newcastle, Galway', '087123456', '17-05-
2001', 'F', 'Gylel', 1)

('Jack Walsh ', 91, '13 College road, Galway', '©86654321', '©1-09-2000', 'M',
'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway', '087111222', '25-07-1999', 'F',
'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co. Galway', '©87121212', '30-12-
2002', F, G414, 1)

‘Jane Casey’,

111 ...

111 mod 97 = 14
block 14

91 mod 97 = 91

‘Gerard Kelly’,
block 15 y
12 ... 90 mod 97 = 90

112 mod 97 = 15

bIOCk 90 ‘Sue Smyth’,

Qq, ...

block 91 I‘Jack Walsh’,

91,

How are the following supported in HASHED
file organisation (using results from
example 5)?

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill,
Galway', '087222333', '24-10-2002', 'M',
‘Gylel', 3)

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', "01-09-2000', 'M', 'GY350', 3)

1. Inserting a new tuple:

('Sean Carty', 100,

Galway', '©87222333', '24-10-2002',
'GY1e1', 3)
block 3 ‘Sean Carty’,
100,
block 14 ‘Jane Casey’,
111, ...
block 15 ‘Gerard Kelly’
12 ...
block 90 ‘Sue Smyth’,
0, ...
block 91 I‘Jack Walsh’,
91 ...

'23 Ocean view, Salthill,

100 mod 97

3

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road, Galway', '086654321"',
'01-09-2000', 'M', 'GY350', 3)

= 91

block 3 ISean Carty’ 91 mod 97
100

block 14 lane Casey’,
1M1

block 15 IGerard Kelly’,

block 90 ISue Smyth’

block 91

QUESTION: Is 97 a good choice for this
problem ... with 20000 records?

No! Will use blocks from O to 96 (97 blocks)

With a blocking factor of 2, at most can fit 97/x2 = 194
records

Need a much larger prime number and more blocks

Prime number close to 10000, e.g., 10009, but not much
room for growth

Prime number close to 20000, e.g., 19751, would be
much better

(http://www.onlineconversion.com /prime.htm)

http://www.onlineconversion.com/prime.htm

Criteria for choosing hash function

o Easy and quick to compute (as mod function is)

o Should uniformly distribute hash addresses across the

available space ... Picking a prime number for the mod
function helps with this ... but cannot guarantee it

o Anticipate file growth (insertions and deletions) so only a
fraction of each block is initially filled, thus leaving room
to insert new records

COLLISIONS

However, at any stage, two or more key field values can hash

to the same location ... if there is no room to place record this
is called a collision

If a collision occurs, and there is no space in block for new

record, then must find a new location ... this is called collision
resolution

One approach to collision resolution is Linear Probing

Hash function returns block location i for record

If there is no room in block i check block i+1, i+2 etc. until a block
with room is found

Can degrade to a linear scan if load factor is high

EXAMPLE 6:

Given the following key field values of five records, show
how the associated records are assigned to blocks using a
hashed file organisation with the mod function (mod 7)
where a blocking factor of 3 is being used and with linear
probing collision resolution.

Key values of records: 24,73, 20,9, 10, 31

Placing of the records 24,173,120, 9, 10, 31
using mod 7 and a blocking factor of 3 and linear
probing collision resolution

block I I I _

Calculating

blocks IDs:
block I I I 24 mod 7 =

73 mod 7 =
block I I I 20 mod 7 =
...... 9 mod 7 =
block I I I 10 mod 7 =
______ 31 mod 7 =
o [T T

block?2

block3

block4

L 1 |
[= [» [o
L= 1 |
=1 |
L1 |

Placing of the records 24,173,120, 9, 10, 31
using mod 7 and a blocking factor of 3 and linear
probing collision resolution

Calculating
blocks IDs:

24 mod 7 = 3
73 mod 7 = 3
20 mod 7 = 6
9 mod 7 = 2
10 mod 7 = 3
31 mod 7 = 3

DATABASE INDEXES

Indexing speeds-up operations that are not efficiently supported
by the basic file organisation.

Consists of index entries

Each index entry consists of:

O index key

O record or block pointer

The index entries are placed on disk, either in sequential sorted
order (ordered indexes) or hashed order.

A complete index may be able to reside in main memory

Example of index file organisation of staff
schema on name

o CATA FILE .
= FIELD)
MAME 558 BIRTHOATE SOB SALAAY 5EX
Agwon, Ed
Akt DRy
i
Acoats, WA | | | |
ArkSTe, e
Acianrm, Fiobin
INOER F
=k, Pl srarios) ;
Abarrn, nn [| | | |
AR Ak, Ed
PRIMAFTY Ao, Dkt
HEY BLOCHK
WALLIE POINTER L
Aaeon, Edl - | I I I L
B ool L A
Ackyvn.donn et Abor, Troy

:
|
!

Argoh, Joo
4 i
Archer, Sia | | | |
I Aumioid, Rtack:
Airud, Siaen
Whorgy, Jnrmess - i
Weirightl. Pam Adkinm, Timoy | | | |

oy, James
e]

\Wiright, Pam
Wityam, Chierion

f—x

Ziwwrvasr Byron | | | |

To access a record using indexing key:

1. Retrieve index file . =

2. Search through it for required —

1
piplylasiy

field (based on index key value) e N
I

3. Answer query or return to e e N

secondary storage for the block ~E—

which contains the required =]

record.

Dense vs sparse indexes

An index is dense if it contains an entry for every record in
the file

A dense index may be created for any index key

A sparse /non-dense index contains an entry for each
block rather than an entry for every record in the file and
can only be used if the records are assigned to blocks in
sorted (sequential) order based on the index key

* A sparse index is called a primary index

More on primary indexes

" The total number of entries in the index is the same as the
number of blocks in the ordered file

= The first record in each block is called the anchor record of
the block

Advantages:
O Fewer index entries than records so index file is smaller
Disadvantages:

O Insertions and deletions a problem - may have to change
anchor record

O Searching may take longer

EXAMPLE 7: Indexed file Organisation

Given the student schema from Example 1, with primary key
student ID. With the aid of a diagram, illustrate how a dense

indexing file or?qniscﬂion might operate (with blocking factor of 2
and sequential file organisation)

e.g. for the examples:

(/Jane Casey', 111, '34 hazel park, Newcastle, Galway',
0871234567, >'17-65-2001", ‘F', ‘'GYilel’, 1)

('Jack Walsh ", 91, '13 Cpllﬁﬁg road, Galway',
086654321', ‘01-69-2000", , "GY350", 3¥

'Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway'
COETINED: o 32207 0888, TR OTSIASE ", By

'Gerard Kelly', 112, 'Main Street, Oughterard, Co.
(Galway', '@8?&21212“, y) » EB)

| DENSE Index entry for each record

Block 2
Header info I ‘Jane Casey’,I
111, ...

o s

Block 1
111 Block 2
112 Block 2

Block 1

Header info 'Sue Smith’,
o,

Jack Walsh’,

‘Gerard Kelly’,
112,

How are the following supported in dense
indexed sequential file organisation (using
example 7)?

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view,
Salthill, Galway', '087222333', '24-10-
2002', 'M', 'Gylel', 3)

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road,
Galway', '086654321', '01-09-2000', 'M',
'GY350', 3)

Inserting a tuple ... Index file
two updates needed I

Q1 Block 1
* 100 Block n
111 Block 2
112 Block 2
Block 1
Header info ‘Sue Smith’, ‘Jack Walsh’,
o, 91,
Block 2
. ‘Jane Casey/, ‘Gerard
Header info ", ... Kelly’, 112,
Block n
* Header info ‘Sean Carty’,
100,

| Deleting a tuple ...
two deletions neede

Index file

100 Block n
111 Block 2
112 Block 2
Block 1
Header info ‘Sue Smith’,
a0,
Block 2
Header info ‘Jane Casey’, ‘Gerard
M1, ... Kelly’, 112,
Block n
Header info ‘Sean Carty’,

100,

Example 8: Using the illustrated example from
example 7, show how the organization of data looks
for non-dense indexing (sequential organization)

Block 1

Block 2

Header info I 1J1a1ne Casey’,

‘Gerard Kelly’,
112,

Sparse/Non-dense
| Index entry for each block

Block 1

Jack Walsh’,

Header info ‘Sue Smith’,
o,

Block 2

‘Gerard Kelly’,
112,

Header info I 1J1a1ne Casey’, I

Index f/le

1 11 Block 2

Index file

Inserting a tuple

with sparse S 100 Blockn
mdexmg 111 Block 2
Block 1
Header info ‘Sue Smith’, ‘Jack Walsh’,
Q0, o1,
Block 2
Header info ‘Jane Casey’, ‘Gerard
1M1, ... Kelly’, 112,
Block n
Header info ‘Sean Carty’,

100,

Deleting a tuple ...

Index file

with sparse indexing T
111 Block 2

Block 1

Header info Sue Smith’,

o,
Block 2
‘ , ‘Gerard
1 J C)

Header info : 131”3 asey IKeIIy’, 112,
Block n

Header info ‘Sean Carty’,

100,

No change
In index

CLUSTERED AND SECONDARY INDEXES

Records that are logically related are physically stored
close together on the disk (i.e., in the same blocks or
consecutive blocks)

Records are physically ordered on a non-key field that
does not have a distinct value for each record

Clustering index consists of:
O clustering field value

O block pointer to first block that has a record with that
value for clustering field

Advantages/disadvantages of clustering:

Quick access on clustering field but have to search all
blocks in querying on non-clustering fields

Example 9:
Consider a file holding the employee information from the
Company schema where each record contains a positive
integer indicating the department where an employee works.
Show how a clustering index on department number (DNO)
might operate on such data — with blocking factor of 3

FNAME | MINIT | LNAME SSN BDATE ADDRESS SEX | SALARY | SUPERSSN [DNO
< | John B Smith 123456789 | 1965-01-09 731 Fondren, Houston, TX M 20000 233445555 |
~ | Franklin T Wong 333445555 | 1955-12-08 638 Voss, Houston, TX M 40000 BBBE65555 5
S, . | Alda J Zelaya | 999887777 | 1968-07-19 3321 Caslle, Spring, TX F 25000 987654321 2
- ' _ Jenniter S Wallace 987654321 | 1941-06-20 291 Berry, Bellaire, TX F 43000 BBBEE5555 4
Ramesh K NafBYﬂﬂ 666884444 1962-09-15 975 Fire Dﬂk. HUﬂﬂE‘, ™ M 38000 333445555 5
JDF-'E A Engl'lsh 453453453 1972-07-31 5631 Rice, "hUSIDI'I, ™ F 25000 333445555 5
Ahmad v Jabbar | 987987987 | 1969-03-29 980 Dallas, Houslon, TX M 25000 | oevesazi | 4
‘| James E Borg 888665555 | 1937-11-10 450 Slone, Houston, TX M 55000 ol]

bl

Op’rion 1: James E Borg, ..., 888665555, ey]
. Alicia Z Zel 887777, e, 4
Fill all blocks idla Z zelaya, ... 999887777,
Jennifer S Wallace, 987654321, oo, 4
Index b2
value
Ahmad V Jabbar, , 987987987, veen, 4
(dno)
-- John B Smith, , 123456789, ceeer B
4 b1 Franklin T Wong, , 333445555, , 5
b2
b3
Ramesh K Narayan, 666884444, , 5
Joyce A English,, 453453453, ooy D

Index file bN

Option 2:
Leave 'space’
for other
records with
that clustering
field value

Index
value

(dno)

4 b2
b3

Index file

bl

James E Borg,, 888665555, veey 1
b2

Alicia Z Zelaya, 999887777, o, 4

Jennifer S Wallace, 987654321, o, 4

Ahmad V Jabbar, , 987987987, veen, 4
b3

John B Smith, , 123456789, ceeey S

Franklin T Wong, , 333445555, , 5

Ramesh K Narayan, 666884444, veery 5
b4

Joyce A English,, 453453453, ey D

Option 3:

Use a Secondary Index
and sequential file
organisation

A secondary index is an index
whose index (clustering) value
specifies an order different to the
underlying sequential order of the
file.

Any attribute can be chosen as
the clustering index value.

Any number of secondary indexes
can be built with different
clustering index values.

b1l

John B Smith,... ,123456789, veeey 5
Franklin T Wong, ., 333445555, ... veeey 5
Joyce A English, ., 453453453, . e, 5
b2
Ramesh K Narayan,666884444, ceey B
James E Borg,, 888665555, veey 1
Jennifer S Wallace, 987654321, veee, 4
b3
Ahmad V Jabbar, , 987987987, ceen, 4
Alicia Z Zelaya, 999887777, e 4

Option 3:

Secondary
Index

Index
value

(dno)

4 B

Clustering
Index file

Secondary
Indexes

A

b2

b2

b3

b2

b1l
John B Smith,... ,123456789, , 5
Franklin T Wong, ., 333445555, ... , 5
Joyce A English, ., 453453453, 5
b2
Ramesh K Narayan,666884444, , 5
James E Borg,, 888665555, , 1
Jennifer S Wallace, 987654321, ., 4
b3
Ahmad V Jabbar, , 987987987, . 4

Alicia Z Zelaya, 999887777,

SECONDARY INDEXES

*Does not impact the actual storage of records (which
blocks they reside in — which can be sequential)

*Can define multiple secondary indexes as well as a
primary index

For example:

Secondary Indexes bl
A John B Smith,... ,123456789, ey 5
b2 Franklin T Wong, ., 333445555, ... veee, 5
Joyce A English, ., 453453453, . e, 5
Clustering
Index
1A B
b2 | b3 b2
4 B
Ramesh K Narayan,666884444, ceeey 5
James E Borg,, 888665555, veey 1
C Jennifer S Wallace, 987654321, veee, 4
Primary index bl [b2

123456789 b1 =
Ahmad V Jabbar, , 987987987, ceen, 4

666884444 b2 | | | | 0B
987987987 b3

Alicia Z Zelaya, 999887777, e 4

{_/

i el

P

B_TREES IRECIEEN B EIREDEIR
'l SN — L Ly
357 111213 |15 16 19 2022 23 25 30031 32 3335 27
insert{13)

Most commercial systems use an indexing structure called
B-trees, and specifically B+ trees.

B-trees allow as many levels of indexes as is appropriate

for the file being indexed

B-trees manage the space in blocks so that every block is
between half-used and completely full

B-trees consist of sequences of pointers arranged in a tree

data structure

CLASS WORK
WINTER 2017 QUESTION ON FILE ORGANISATIONS

Given an unspanned memory organisation, fixed record length, a blocking
factor of 3, and five records with the following primary keys:

25, 34,48, 69,76

With the aid of examples, outline the main advantages and disadvantages of
placing the given records in blocks under a sequential file organisation. (5)

With the aid of a diagram, and using sequential file organisation, differentiate
between a dense and non-dense indexing of the given five records. (5)

(1130 | With the aid of an example, describe what is meant by secondary indexing. (5)
(20 |) With the aid of a diagram, show where the given five records would be

placed in blocks under a hashed file organisation. The mod function (mod 7)
should be used in addition to linear probing. (5)

Given an unspanned memory organisation, fixed record length, a
blocking factor of 3, and five records with the following primary

keys:

25, 34, 48, 69, 76 " With the aid of examples, outline the main advantages and disadvantages of

placing the given records in blocks under a sequential file organisation. (5)

okl | Flos faa [l 4e
block?2 I 69 I 76 I

Advantages ... reading on key field value (in order)
Disadvantages ... maintaining sorted order when adding records

With the aid of a diagram, and using sequential file organisation, differentiate
between a dense and non-dense indexing of the given five records. (5)

Dense

25 block]

34 block1

48 block] block] I - I » I e
69 block?2

76 block?2 block?2 I 59 I e I

Non Dense (Primary Index)
25 block1

69 block?2 With dense indexing we should have an entry for

every record; 5 records implies 5 index entries
With non-dense indexing we should have an entry
for every block associated with the file; 2 blocks
implies 2 index entries. The key value of the first
record in each block is used as the index value.

m With the aid of an example, describe what is meant by secondary indexing. (5)

Example: Assuming the primary keys are student IDs (e.g., 25, 34, 48) and
we also store the course code for each student (e.g., 2BA, 3BP, etc.) as well
as other student information (not shown). Records are assigned to blocks
based on the primary key, with a blocking factor of 3.

Course code can be used as a clustering index and the actual references
to the blocks holding the student records are stored in a secondary index.

Albl |b2
bl
I25 2BCT1 I34 ... 3BP1 I48 ... 2BA1
Bl b
Clustered Index b2
2BCT1 A o9 .28a1 [76...28cT1]
3BP1 B Dbl |b2
3BLET C
2BA1 D
Secondary Indexes
2BDS1 E

20 i With the aid of a diagram, show where the given five records would be
placed in blocks under a hashed file organisation. The mod function (mod 7)
should be used in addition to linear probing. (5)

25, 34, 48, 69,76

block4 25 c]:llé::]g.: tIi];xsg :

...... 25 mod 7 =

blocké I 34 I 48 I 69 34 mod 7 =
48 mod

block7 I 76 I I o g

70 mod

U S N N BN
|
o o o o b

SUMMARY: IMPORTANT TO KNOW

*Blocking factor

*Basic 3 organisations: Heaped, Sequential and Hashed
(with collision resolution)

°Indexed — Dense and non-dense

*Clustered Index and secondary indexes (not B+ trees)

NN\ Y4

TJANVIANVIANVIANVIANY Y

(1230 Summar y &
DATABASE SYSTEMS e

EVALUATION FORM AVAILABLE ON

BLACKBOARD

Please complete!

£££3-L 1430 Datapase >ystems |

2223-CT230 Database Anno
Systems |
Announcements
Module Information c1
Po
Lectures
De
C/A: Labs and Tests
Setting up your Databases
In
Exam Information
Qwickly Attendance
Th
Module Questionnaire Jo
Module Questionnaire
Virtual Classroom
My Grades
Help o

Question Completion Status:

QUESTION 1

The expected outcomes of the module were clear to me.
(O l.agree (O 2.agree somewhat (O 3.unsure/notapplicable () 4.disagree somewhat

QUESTION 2

The module was well organised.
(O l.agree (O 2.agree somewhat (O 3.unsure/notapplicable () 4.disagree somewhat

QUESTION 3

I had access to sufficient materials to support my learning.

(O 1.agree () 2.agree somewhat () 3.unsure/notapplicable () 4.disagree somewhat
QUESTION 4

| received feedback on my performance to help me improve my learning.

(O 1.agree () 2.agree somewhat () 3.unsure/notapplicable () 4.disagree somewhat
QUESTION 5

The lectures were well prepared and easy to follow.
(O 1.agree () 2.agree somewhat () 3.unsure/notapplicable () 4.disagree somewhat

(O 5.disagree

(O 5.disagree

() 5.disagree

() 5.disagree

() 5.disagree

(1230 TOPICS

O Introductory material: Databases and Database Management Systems;
File System approach Vs Database approach [no exam question]

O The Relational Model — definitions

O The Relational Model and Constraints

o SQL: DDL and DML SELECT

O ER Models

o Normalisation (1, 2 and 3 NF)

O Relational Algebra

O Query Processing and Cost Estimates and Heuristic Optimisation

o File Organisations: Heaped, Sequential, Hashed, Indexed — Dense,
Non-dense, Clustered, Secondary

(1230 LEARNING OUTCOMES

On successful completion of this module the learner
will be able fo:

LO1|Define and explain terms, concepts, properties and constraints of Relational
Database Systems

LO2 |Identify the theoretical and practical issues in the storage, manipulation,
organisation and indexing of large quantities of data

LO3|Program a database management system for database creation and
manipulation

LO4 |Use Relational Algebra for relational database retrieval

LO5|Program using SQL for relational database retrieval and manipulation

LO6 |Create and apply Entity Relationship Diagrams (ERD) as part of database
development

LO7 |Specify functional dependencies and differentiate between relations in 1st
Normal Form, 2NF, 3NF. Apply the process of normalization

LO8|Define and explain the process of query processing and optimisation. Apply
guery optimisation heuristics to develop a query tree that represents an
efficient evaluation strategy for a given query.

EXAM: SEMESTER 1 2022

Name: CT230: Database Systems |
Time allowed: Two hours *

Date: 08/12/2022 at 13:00

(as of 21/11/2022 — double check closer to the exam time)

* unless you have a LENS report

EXAM FORMAT AND INSTRUCTIONS
(as in previous years)

You will be given a description of a new (unseen) database (no data)
Exam will comprise 4 questions, Answer Question 1 and 2 others:

Question 1: SQL Questions based on database given. Compulsory. Answer
all questions. (40 marks)

Answer any 2 questions from 3 (30 marks per question):

Question 2: Based on database given. Relational Algebra and Query Processing
and Optimisation

Question 3: File Organisations and Normalisation

Question 4: ER Diagrams and Mapping to Tables.

PREVIOUS EXAM PAPERS AVAILABLE
from exams database:

OLLSCOIL NAGAILLIMHE ~ LIBRARY ~ AA STUDENTS & STAFF

OLLSCOIL NA GAILLIMHE
UNIVERSITY oF GALWAY | © Prospective Students © curent Students © visitors

Colleges Research & Business Alumni, Eriends Community

) About
Cailged University Life)i ercity Of Galway & Schools Innovation & Industry & Supporters Engagement

HOME > REGISTRY > EXAMINATIONS OFFICE 3 EXAM TIMETABLE, PAST PAPERS & ALTERNATE ARRANGEMENTS.

Exam Timetable, Past Papers & Alternate
Arrangements

Overview

Exam Timetable, Past
Papers & Alternate
Arrangements

Exam Timetable
EXAM TIMETABLE

Past Exam Papers

Exam Venues

Alternative Exam
Arrangements

Deferrals

Examinations FAQs
Exam Results
Academic Dates
Policies and Procedures

Thesis Submission

Services for Staff, DEFERRALS
Invigilators and External
Examiners

Exams Office
Communications

NOTES:

There is no question specific to MySQL or Adminer or
phpMyAdmin, ReLax calculator, MS Visio or equivalent or asking
how to perform a task in these

One database schema (tables and description only) will be used
for the SQL, relational algebra and query processing questions.
This will be a new database description (with no data given).

A different database schema will be used for the normalisation
question and a different example will be used for the ER model.

NOTES ON QUESTION T (SQL)

Only SQL questions (DDL and SQL SELECT)

*No sample data is given. Only code is important for
exam, not the answer to the queries.

*Have to make reasonable guess about data types for
any DDL question

MARKS

Exam paper: 80% of final mark
*Question 1:

*2 Questions (2, 3, 4):

5 quizzes
* Worth 20% of final mark

STUDY AIDS

Lecture Notes

Code examples from lectures
Problem Sheets and sample solutions
Sample tests

Past exam papers

Elmasri & Navathe book and relevant chapters as
highlighted in lectures

Note: You will not be expected to know any material
outside of that which | presented

HINTS ON THE DAY ...

* Decide on the questions you will answer
* Decide on the amount of time you will give to each question

* Take some time at the start to read through the database
description a few times rather than starting to answer
questions straight away

* More time should be given to Q1 but do not spend all your
time on Q1

* Try not to get confused between Relational Algebra Syntax
and SQL syntax

* Unless you find material easy and have extra time do not
answer extra questions ... rarely is an advantage

GENERAL EXAM HINTS

Note the amount of marks allocated to each question ...
unless you have time to spare, do not spend 20 minutes on
a question worth 2 marks.

Try /attempt all required questions and all parts in each
question

Answer what is asked ... e.qg. “with the aid of examples”;
“explain the approach taken”

If short on time, try sketch down main points first, then
return and add detail if any time remains.

EXAMINATION RESULTS

Except for visiting students, no official results will be
available before the Examinations Office send results in
summer.

For any official exams, lecturers will provide a provisional
mark (date tbc by the Registrar but usually by the start of
February)

EXAMINATION BOARDS

“Examination Boards will be held at the end of a Stage,
normally Semester 2, and after the repeat examinations in
August.”

“The Examination Board will determine the overall result and
will apply compensation provisions.”

“Only those decisions approved by the Examinations Board will
be formally recognized as official University examination results
— relating to Passing, Progression, Determination of Honours,
and Granting of Deferrals.”

CS USEFUL CONTACTS

Josephine.Griffith@universityofgalway.ie

School Administration: Deirdre King (deirdre.king@nuigalway.ie)

| Help is available:

If you need help, especially coming up to exams, you can contact:
* DISC

* SUMS

* Your college office and student advisors
* Your lecturers and year tutors

* The Student Information Desk (SID)

* Student counsellors

* Chaplains

All will be ready to help...you just need to ask

Remember if are unable to sit your exams you should request a
deferral

-17 -

