CT421 Artificial Intelligence

CT421 Artificial Intelligence 1/33



Uninformed Search
®00000000000000000

Uninformed Search

CT421 Artificial Intelligence



Uninformed Search
O@0000000000000000

m Many problems can be re-cast or viewed as a search problem.
m Consider designing an algorithm to solve a suduko puzzle.

= In every step, we are effectively searching for a move (an action) that takes us to a
correct legal state. To complete the game, we are iteratively searching for an
action that brings us to legal board and so forth until complete.

Other Examples:

m Searching for a path in a maze
= Word ladders
m Chess/Checkers

CT421 Artificial Intelligence 3/33



Uninformed Search
O0@000000000000000

Suduko

3 4 2|1 6
4 8 1.6
1 6 5 9 +
7 8 319
5 8 6 4 3
419 2 5
7 4 2
2 1 5
3 2|5 8

CT421 Artificial Intelligence 4/33



Uninformed Search
0O00@00000000000000

Formalizing the problem statement

Problem can be in various states

Start in an initial state

There are a set of actions available

Each action changes the state

Each action has an associated cost

Want to reach some goal while minimizing cost

CT421 Artificial Intelligence 5/33



Uninformed Search
O000@0000000000000

More formally

m Set of states S

m Startstate sp € S

m Set of actions A and action rules a(s) — s

m Agoal test g(s) — 0,1

m Cost function C(s, a, s') —+R

m Search can be defined by the 5-tuple (S, s, a, g, C)

CT421 Artificial Intelligence 6/33



Uninformed Search
000008000000 000000

Problem Statement

Find a sequence of actions aj ... an and corresponding states s; . . . Sp such that

m Sy)y=S
m s = ai(Si_1)
m g(sp) =1

while minimizing: >°7_, ¢(a;)

CT421 Artificial Intelligence



Uninformed Search
0O00000@00000000000

m Sudoku States: all legal Sudoku boards.

m Start state: a particular, partially filled-in, board.
m Actions: inserting a valid number into the board.
m Goal test: all cells filled and no collisions.

m Cost function: 1 per move.

CT421 Artificial Intelligence 8/33



Uninformed Search
0000000 @0000000000

m We can conceptualise this search as a search tree.
m A node represents a state.

m The edges from a state represent the possible actions from that state. The edge
point to the new resulting state from the action.

CT421 Artificial Intelligence 9/33



Uninformed Search
0O0000000e000000000

Important factors of a search tree

m The breadth of the tree (branching factor)
m The depth of the tree

m The minimum solution depth

m Size of the tree O(bY)

m The set of unexplored nodes that are reachable from any currently explored node
is known as the frontier

m Choosing which node to explore next is the key in search algorithms

CT421 Artificial Intelligence 10/33



Uninformed Search
000000000 e00000000

Initialise

visited = {};

frontier = {sp};
goal_found = false;

while l(goal_found)
node = frontier.next();
frontier.del(node);
if(g(node));
goal_found = true;
else
visited.add(node)
forall child in node.children
if(not visited.contains(child))
frontier.add(child)

CT421 Artificial Intelligence 11/33



Uninformed Search
000000000 0e0000000

|
= The manner in which we expand the node is key to how the search progresses.
m The way in which we implement (frontier.next()) determines the type of search.
m Otherwise the basic approach above remains unchanged.

CT421 Artificial Intelligence 12/33



Uninformed Search
00000000000 e000000

Uninformed Search

m Nothing known (or used) about solutions in the tree.
m Possible approaches?

m Expand deepest node (depth-first search)

m Expand closest node (breadth-first search)
m Properties

m Completeness

m Optimality

m Time Complexity (total number of nodes visited)
m Space Complexity (size of frontier)

CT421 Artificial Intelligence 13/33



Uninformed Search
000000000000 e00000

Depth First Search

m Space: O(bd)

m Time: O(b?)

m Completeness: Only for finite trees.
= Optimality: No.

CT421 Artificial Intelligence 14/33



Uninformed Search
0000000000000 e0000

Breadth First Search

m Space: O(b™t1), where m is the depth of the solution

m Time: O(b™), where m is the depth of the solution in the tree
m Completeness: Yes.

m Optimality: Yes (assuming constant costs)

CT421 Artificial Intelligence 15/33



Uninformed Search
000000000000 00e000

Introduction

m DFS: good regarding memory cost; however, suboptimal solution.
m BFS: optimal solution, but expensive memory cost.

Iterative Deepening Search

m [terative Deepening attempts to overcome some of the issues of both of the above.
m Run DFS to a fixed depth z.
m Start at d = 1 If no solution, increment d and rerun.

CT421 Artificial Intelligence 16/33



Uninformed Search
000000000000 000e00

m Low memory requirements (equal to DFS).
= Not many more nodes expanded than BFS.
= Note the leaf level will have more nodes than the previous layers

CT421 Artificial Intelligence



Uninformed Search
000000000000 0000e0

m Let’s consider the case where the costs are not uniform; thus far we have
assumed each edge has a fixed cost.

m Neither DFS or BFS are guaranteed to find the least-cost path, in the case where
action costs are not uniform.

m Approach: chose the one with lowest cost?

CT421 Artificial Intelligence 18/33



Uninformed Search
0000000000000 0000e

m Order the nodes in the frontier by cost-so-far (Cost of the path from the start state
to the current node)

m Explore next the node with the smallest cost-so-far
m Give the optimal solution
m Complete solution (given all positive costs)

CT421 Artificial Intelligence 19/33



Informed Search
®0000

Informed Search

CT421 Artificial Intelligence




Informed Search
O®000

m So far, we have assumed we know nothing about the search space? What should
we do if we know something about the space?

|
m We know the cost of getting to the current node
m Remaining cost of finding solution: cost from current node to goal state

m Total cost: Cost of getting from start to current node + cost of getting from current
node to goal state

CT421 Artificial Intelligence 21/33



Informed Search
[e]e] lele}

Approach

m Use an heuristic h(s) to estimate the remaining cost
m h(s) =0if sis agoal.
m Problem specific

CT421 Artificial Intelligence 22/33



Informed Search
00080

A* algorithm

m Let g(s) be the cost of the path so far

m This algorithm expands the node s to minimise g(s) + h(s)

m Manage frontier nodes as priority queue.

m If h never overestimates the cost, the algorithm will find the optimal solution.

CT421 Artificial Intelligence 23/33



Informed Search
[e]e]e]e] ]

m Fast to compute.
m Close to real costs.

CT421 Artificial Intelligence 24/33



Adversarial Search
®00000000

Adversarial Search

CT421 Artificial Intelligence



Adversarial Search
O®@0000000

Typical Game Setting

m 2 player

m Alternating

m Zero-sum: Gain for one loss for another.
m Perfect information

CT421 Artificial Intelligence 26/33



Adversarial Search
[e]e] Je]e]ele]e]e]

“Solved” Games

m A game is solved if an optimal strategy is known.
m Strong solved: all positions.
m Weakly solved: some (start) positions.

CT421 Artificial Intelligence



Adversarial Search
000800000

|
Set of possible states

Start state

Set of actions

End states (many)

Objective function

Control over actions alternates

CT421 Artificial Intelligence 28/33



Adversarial Search
[e]e]e]e] lele]e]e]

Minimax Algorithm

m Compute value for each node, going backwards from the end-nodes.
m Max (min) player: select action to maximize (minimize) return.

m Assumes perfect play, worst case.

m For optimal play, require the agent to evaluate the whole tree

CT421 Artificial Intelligence 29/33



Adversarial Search
[e]e]e]e]e] Jele]e]

Issues to consider

= Noise/randomness

m Efficiency - size of tree

m Many game trees too deep
m Many game trees too broad

CT421 Artificial Intelligence




Adversarial Search
[e]e]e]e]e]e] Jele]

Alpha Beta Pruning

= A means to reduce the search space.

m Can prune sibling nodes based on previously found values.

® Maintain the current maximum (for player 1) and current minimum (for player 2)
m Allows us to discard whole subtrees

CT421 Artificial Intelligence




Adversarial Search
[e]e]e]e]e]e]e] Te]

m In reality, for many search scenarios in games, even with alpha beta pruning, the
space is much too large to get to all end states.

m Instead, we use an evaluation function - effectively an heuristic to estimate the
value of a state (probability of win/loss)

m Run search to fixed depth; evaluate all states at that depth
m Perform look ahead from best states to another fixed depth.

CT421 Artificial Intelligence 32/33



Adversarial Search
O0000000e

Frame Title

Horizon Effects

m What if something interesting/unusual/unexpected occurs at horizon + 1?
m How do you identify?

m When to generate and explore more nodes?

m several algorithms developed to take this into account

m Deceptive problems?

CT421 Artificial Intelligence 33/33



	Uninformed Search
	Informed Search
	Adversarial Search

