CT421 Artificial Intelligence

Uninformed Search

Search

- Many problems can be re-cast or viewed as a search problem.
- Consider designing an algorithm to solve a suduko puzzle.
- In every step, we are effectively searching for a move (an action) that takes us to a correct legal state. To complete the game, we are iteratively searching for an action that brings us to legal board and so forth until complete.

Other Examples:

- Searching for a path in a maze
- Word ladders
- Chess/Checkers

Uninformed Search	
000000000000000000000000000000000000000	

Informed Search

Suduko

			3	4	2	1	6	
4			8	1	6			
	1	6	7	5	9			4
		7		8	3	9		
5	8			6			4	3
		4	9	2	5	7		
7					4	8	2	
			2		1			5
	3	2	5		8			

Formalizing the problem statement

- Problem can be in various states
- Start in an initial state
- There are a set of actions available
- Each action changes the state
- Each action has an associated cost
- Want to reach some goal while minimizing cost

More formally

- Set of states S
- Start state $s_0 \in S$
- Set of actions A and action rules $a(s) \rightarrow s'$
- A goal test $g(s) \rightarrow 0, 1$
- Cost function $C(s, a, s') \rightarrow \mathbb{R}$
- Search can be defined by the 5-tuple (*S*, *s*, *a*, *g*, *C*)

Problem Statement

Find a sequence of actions $a_1 \dots a_n$ and corresponding states $s_0 \dots s_n$ such that

$$s_0 = s$$

$$s_i = a_i(S_{i-1})$$

$$g(s_n) = 1$$

while minimizing: $\sum_{i=1}^n c(a_i)$

Suduko

- Sudoku States: all legal Sudoku boards.
- Start state: a particular, partially filled-in, board.
- Actions: inserting a valid number into the board.
- Goal test: all cells filled and no collisions.
- Cost function: 1 per move.

- We can conceptualise this search as a search tree.
- A node represents a state.
- The edges from a state represent the possible actions from that state. The edge point to the new resulting state from the action.

Important factors of a search tree

- The breadth of the tree (branching factor)
- The depth of the tree
- The minimum solution depth
- Size of the tree O(b^d)
- The set of unexplored nodes that are reachable from any currently explored node is known as the *frontier*
- Choosing which node to explore next is the key in search algorithms

Initialise

visited = {}; frontier = { s_0 }; goal_found = false;

```
while !(goal_found)
    node = frontier.next();
    frontier.del(node);
    if(g(node));
        goal_found = true;
    else
        visited.add(node)
        forall child in node.children
        if(not visited.contains(child))
        frontier.add(child)
```

- The manner in which we expand the node is key to how the search progresses.
- The way in which we implement (*frontier.next*()) determines the type of search.
- Otherwise the basic approach above remains unchanged.

Uninformed Search

- Nothing known (or used) about solutions in the tree.
- Possible approaches?
 - Expand deepest node (depth-first search)
 - Expand closest node (breadth-first search)

Properties

- Completeness
- Optimality
- Time Complexity (total number of nodes visited)
- Space Complexity (size of frontier)

Depth First Search

- Space: O(bd)
- Time: *O*(*b*^{*d*})
- Completeness: Only for finite trees.
- Optimality: No.

Breadth First Search

- Space: $O(b^{m+1})$, where *m* is the depth of the solution
- Time: $O(b^m)$, where m is the depth of the solution in the tree
- Completeness: Yes.
- Optimality: Yes (assuming constant costs)

Introduction

- DFS: good regarding memory cost; however, suboptimal solution.
- BFS: optimal solution, but expensive memory cost.

Iterative Deepening Search

- Iterative Deepening attempts to overcome some of the issues of both of the above.
- Run DFS to a fixed depth z.
- Start at d = 1 If no solution, increment d and rerun.

Efficiency?

- Low memory requirements (equal to DFS).
- Not many more nodes expanded than BFS.
- Note the leaf level will have more nodes than the previous layers

- Let's consider the case where the costs are not uniform; thus far we have assumed each edge has a fixed cost.
- Neither DFS or BFS are guaranteed to find the least-cost path, in the case where action costs are not uniform.
- Approach: chose the one with lowest cost?

- Order the nodes in the frontier by cost-so-far (Cost of the path from the start state to the current node)
- Explore next the node with the smallest cost-so-far
- Give the optimal solution
- Complete solution (given all positive costs)

Informed Search

So far, we have assumed we know nothing about the search space? What should we do if we know something about the space?

- We know the cost of getting to the current node
- Remaining cost of finding solution: cost from current node to goal state
- Total cost: Cost of getting from start to current node + cost of getting from current node to goal state

Approach

- Use an heuristic h(s) to estimate the remaining cost
- h(s) = 0 if s is a goal.
- Problem specific

A* algorithm

- Let *g*(*s*) be the cost of the path so far
- This algorithm expands the node *s* to minimise g(s) + h(s)
- Manage frontier nodes as priority queue.
- If *h* never overestimates the cost, the algorithm will find the optimal solution.

Uninformed Search	Informed Search	Adversarial Search
	00000	

Heuristics

- Fast to compute.
- Close to real costs.

Adversarial Search

Typical Game Setting

- 2 player
- Alternating
- Zero-sum: Gain for one loss for another.
- Perfect information

"Solved" Games

- A game is solved if an optimal strategy is known.
- Strong solved: all positions.
- Weakly solved: some (start) positions.

Set of possible states
Start state
Set of actions
End states (many)
Objective function
Control over actions alternates

Minimax Algorithm

- Compute value for each node, going backwards from the end-nodes.
- Max (min) player: select action to maximize (minimize) return.
- Assumes perfect play, worst case.
- For optimal play, require the agent to evaluate the whole tree

Issues to consider

- Noise/randomness
- Efficiency size of tree
- Many game trees too deep
- Many game trees too broad

Alpha Beta Pruning

- A means to reduce the search space.
- Can prune sibling nodes based on previously found values.
- Maintain the current maximum (for player 1) and current minimum (for player 2)
- Allows us to discard whole subtrees

- In reality, for many search scenarios in games, even with alpha beta pruning, the space is much too large to get to all end states.
- Instead, we use an evaluation function effectively an heuristic to estimate the value of a state (probability of win/loss)
- Run search to fixed depth; evaluate all states at that depth
- Perform look ahead from best states to another fixed depth.

Frame Title

Horizon Effects

- What if something interesting/unusual/unexpected occurs at horizon + 1?
- How do you identify?
- When to generate and explore more nodes?
- several algorithms developed to take this into account
- Deceptive problems?