

Ollscoil na Gaillimhe

UNIVERSITY OF GALWAY

CT 420 Real-Time Systems

Logging, Debugging and Visualization of QUIC Traffic

Dr. Jawad Manzoor Assistant Professor School of Computer Science

Contents

- Traffic Analysis using Wireshark
- qlog and qviz
- Visualization Case Studies

 $\frac{Ollscoil NAGAILLIMHE}{UNIVERSITY OF GALWAY}$

Motivation

- There are many things that can go wrong during network communication that can lead to sub-optimal performance of your web application.
- Logging, debugging and visualizations are used to analyze the protocols and find root cause of the problems.
- For TCP, the most commonly used method is packet capture.
 - Analyze pcap files in Wireshark
- For QUIC, newer methods are developed recently.
 - qlog
 - qviz

Case Study 1

Client experiencing slower speeds on QUIC as compared to TCP.

- Analyze the network traffic to find the root cause.
- Use cURL to download the webpage and capture the network traffic
- CURL is a command line tool that developers use to transfer data to and from a server.
 - It is compatible with almost every operating system and connected device.
 - It is useful for testing endpoints.
 - It has HTTP3 support

Demo

Prerequisites

- Install docker desktop
- Get curl-http3 docker file from the GitHub repo
- https://github.com/rmarx/curl-http3
- Build docker image

docker run -it --rm --volume \$(pwd)/pcaps on host:/srv --env **QLOGDIR**=/srv --env **SSLKEYLOGFILE**=/srv/tls keys.txt

rmarx/curl-http3

bash -c "tcpdump -w /srv/packets.pcap -i eth0 & sleep 1; curl -IL https://www.sre.com --http3; sleep 2; pkill tcpdump; sleep 2"

Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

Runs a container in interactive mode (-it). Mounts a directory (pcaps_on_host) on the host to /srv in the container. Logs QUIC events (qlog) to /srv. Logs TLS keys to /srv/tls_keys.txt for decrypting HTTPS traffic.

•

•

•

- Captures HTTP/3 (QUIC) network traffic for analysis.
- The .pcap file can be opened in Wireshark to inspect HTTP/3 behavior.
- Useful for debugging HTTP/3 connectivity issues.

	Apply a display filter <\%/>				
Ν	lo. Time	Source	Destination	Protocol	Length Info
	13 1.690367	192.168.65.7	172.17.0.2	DNS	210 Standard query response 0xc8b6 A www.sre.com
	14 1.920427	fe80::42:8ff:fedd:…	ff02::16	ICMPv6	110 Multicast Listener Report Message v2
	15 2.111015	fe80::dcb5:52ff:fe	ff02::16	ICMPv6	90 Multicast Listener Report Message v2
	16 2.913194	192.168.65.7	172.17.0.2	DNS	167 Standard query response 0xd0b6 AAAA www.sre
	17 2.942025	172.17.0.2	34.149.87.45	QUIC	1242 Initial, DCID=18394474651962efece7db6a90dfd
Ι	18 2.951631	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce1
	19 2.951643	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce1
	20 2.951644	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce1
	21 2.952664	172.17.0.2	34.149.87.45	QUIC	1242 Handshake, DCID=f8394474651962ef, SCID=a5e93
	22 2.957084	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce1
	23 2.957091	34.149.87.45	172.17.0.2	HTTP3	214 Protected Payload (KP0), DCID=a5e9168be950al

..00 = Packet Type: Initial (0) [.... 00.. = Reserved: 0] [.... ..00 = Packet Number Length: 1 bytes (0)] Version: 1 (0x00000001) Destination Connection ID Length: 16 Destination Connection ID: 18394474651962efece7db6a90dfd0f6 Source Connection ID Length: 20 Source Connection ID: a5e9168be950abe294ffd1e2ce154f5e4a24f755 Token Length: 0 Length: 290 [Packet Number: 0] Payload [truncated]: a9deacd95eae53c3315dc7c8d6e78655443fe28036bebaec19e348ec542c5518b9a796b035c7214cf454e84f98138c5e1ea375 ✓ CRYPT0 Frame Type: CRYPTO (0x00000000000000) Offset: 0 Length: 269 Crypto Data TLSv1.3 Record Layer: Handshake Protocol: Client Hello Handshake Protocol: Client Hello Handshake Type: Client Hello (1) Length: 265 Version: TLS 1.2 (0x0303) Random: f50c5856c0f677d01e467a1b046786ad7fae2561ae266ab7e7ee4184916d66c2 Session ID Length: 0 Cipher Suites Length: 6 > Cipher Suites (3 suites) Compression Methods Length: 1 > Compression Methods (1 method) Extensions Length: 218 > Extension: server_name (len=16) name=www.sre.com

•	\rightarrow
---	---------------

CNAME cdn1.wixdns.net CNAME td-ccm-ne	g-87-45	.wixdn	s.net	Α		
	07					
com CNAME cdn1.w1xdns.net CNAME td-ccm	-neg-8/	/-45.W1		ie:		
/16, SCID=a3e9108De950aDe2941101e2ce154		CPVPTO	PNN:	<i>ס</i> ,		
415e4a241755, SCID=10594474051902e1, Fi	KN: 2,	CRYPTO				
4f5e4a24f755, SCID=f8394474651962ef, P	KN: 4.	CRYPTO				
68be950abe294ffd1e2ce154f5e4a24f755, Pl	KN: 0.					
4f5e4a24f755. SCID=f8394474651962ef. P	KN: 5.	CRYPTO)			
e294ffd1e2ce154f5e4a24f755. PKN: 7. ST	REAM(3)	. SETT	INGS			
		,				
	0000	02 42	08 dd	c7	e1	0
	0010	04 CC	69 5C	40 01	00 hh	4 0
	0030	18 39	44 74	65	19	6
	0040	14 a5	e9 16	8b	e9	5
	0050	5e 4a	24 f7	55	00	4
	0060 0070	C3 31	50 C/	60	06 54	e 2
	0080	4c f4	54 e8	4f	98	1
	0090	f2 9d	ac ab	5e	c7	f
	00a0	a2 0a	9d 1e	a8	6a	7
	00b0	4† †8	89 27	09	C6 06	9 ⊿
c4623d9ff29dacab5ec7f82d5d5cae7270015	00d0	3c $1e$	dd f4	6C	4b	4 C
	00e0	53 2e	91 78	81	d9	d
	00f0	4b f0	73 57	59	b5	f
	0100	6c 28	fd fd	80	3c	C A
	0110	dd f1	1c 78	36	9C 79	4 a
	0130	74 ae	7c 7f	4f	dc	1
	0140	8a 99	f3 07	1e	f0	а
	0150	b2 13	59 97	2a	9d	8
	0100	24 21 ad 31	0C 09 2h 37	a5 5e	25 73	9 5
	0180	00 00	00 00	00	00	0
	0190	00 00	00 00	00	00	0
	01a0	00 00	00 00	00	00	0
	0100	00 00	00 00	00 00	00	0
	01d0	00 00	00 00	00	00	0
	01e0	00 00	00 00	00	00	0
	01f0	00 00	00 00	00	00	0
	0200	00 00	00 00	00 00	00 00	0
	Erame (1	24	crypted		: (27	0
		24 De	ciypted	QUIC	(27.	••

Packets: 38 · Displayed: 38 (100.0%)

Profile: Default

⊿ 🔳 🗟 🎯 🖿 🗎 🖄 🙆 🔍 ← 🗢 警 吞 👱 📰 🔍 🔍 🔍 💷

pac	kets1	.pcai	0

Арріу	a display filter < жр	>				
No.	Time	Source	Destination	Protocol	Length Info	
	16 2.913194	192.168.65.7	172.17.0.2	DNS	167 Standard query response 0xd0b6 AAAA www.sre.com CNAME cdn1.wixdns.net CNAME td-ccm-neg-87-45.wixdns.ne	
	17 2.942025	172.17.0.2	34.149.87.45	QUIC	1242 Initial, DCID=18394474651962efece7db6a90dfd0f6, SCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 0,	
	18 2.951631	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, SCID=f8394474651962ef, PKN: 2, CRYPT0	
	19 2.951643	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, SCID=f8394474651962ef, PKN: 3, CRYPT0	
	20 2.951644	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, SCID=f8394474651962ef, PKN: 4, CRYPT0	
	21 2.952664	172.17.0.2	34.149.87.45	QUIC	1242 Handshake, DCID=f8394474651962ef, SCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 0, ACK	
	22 2.957084	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, SCID=f8394474651962ef, PKN: 5, CRYPT0	
	23 2.957091	34.149.87.45	172.17.0.2	HTTP3	214 Protected Payload (KP0), DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 7, STREAM(3), SETTINGS	
	24 2.958653	172.17.0.2	34.149.87.45	QUIC	173 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 0, ACK	
	25 2.958838	172.17.0.2	34.149.87.45	HTTP3	92 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 1, STREAM(2), SETTINGS	
	26 2.958890	172.17.0.2	34.149.87.45	HTTP3	74 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 2, STREAM(6)	
	27 2.958907	172.17.0.2	34.149.87.45	HTTP3	74 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 3, STREAM(10)	
	28 2.958913	172.17.0.2	34.149.87.45	HTTP3	143 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 4, STREAM(0), HEADERS: HEAD /: HEAD /	
	29 2.958918	172.17.0.2	34.149.87.45	HTTP3	99 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 5, STREAM(14)	
	30 2.963838	34.149.87.45	172.17.0.2	QUIC	564 Protected Payload (KP0), DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 8, CRYPT0	
	31 2.963855	34.149.87.45	172.17.0.2	QUIC	188 Protected Payload (KP0), DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 9, ACK, DONE, NT, NCI	
	32 2.963856	34.149.87.45	172.17.0.2	QUIC	85 Protected Payload (KP0), DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 10, ACK	

Client sent 1x -> 1242 bytes Server is limited to $3x \rightarrow 1242 * 3 = 3726$ bytes

🛑 🕘 🔵								
🚄 🔳 🗟 🕥 🖿								

Ann	v a dien	lav filter	~ H/~
2 P P	iy a uispi	ay me	\ 00/~

No.	Time	Source	Destination	Protocol	Length Info
	16 2.913194	192.168.65.7	172.17.0.2	DNS	167 Standard query response 0xd0b6 AAAA www.sre.com CNAME cdn1.wixdns.net CNAME td-co
Г	17 2.942025	172.17.0.2	34.149.87.45	QUIC	1242 Initial, DCID=18394474651962efece7db6a90dfd0f6, SCID=a5e9168be950abe294ffd1e2ce15
+	18 2.951631	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, SCID=f8394474651962ef,
+	19 2.951643	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, SCID=f8394474651962ef,
+	20 2.951644	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, SCID=f8394474651962ef,
	21 2.952664	172.17.0.2	34.149.87.45	QUIC	1242 Handshake, DCID=f8394474651962ef, SCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755,
+	22 2.957084	34.149.87.45	172.17.0.2	QUIC	1242 Handshake, DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, SCID=f8394474651962ef,
+	23 2.957091	34.149.87.45	172.17.0.2	HTTP3	214 Protected Payload (KP0), DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 7, S
	24 2.958653	172.17.0.2	34.149.87.45	QUIC	173 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 0, ACK
	25 2.958838	172.17.0.2	34.149.87.45	HTTP3	92 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 1, STREAM(2), SETTINGS
	26 2.958890	172.17.0.2	34.149.87.45	HTTP3	74 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 2, STREAM(6)
	27 2.958907	172.17.0.2	34.149.87.45	HTTP3	74 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 3, STREAM(10)
	28 2.958913	172.17.0.2	34.149.87.45	HTTP3	143 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 4, STREAM(0), HEADERS: HEAD
	29 2.958918	172.17.0.2	34.149.87.45	HTTP3	99 Protected Payload (KP0), DCID=f8394474651962ef, PKN: 5, STREAM(14)
	30 2.963838	34.149.87.45	172.17.0.2	QUIC	564 Protected Payload (KP0), DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 8, (
	31 2.963855	34.149.87.45	172.17.0.2	QUIC	188 Protected Payload (KP0), DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 9, A
	32 2.963856	34.149.87.45	172.17.0.2	QUIC	85 Protected Payload (KP0), DCID=a5e9168be950abe294ffd1e2ce154f5e4a24f755, PKN: 10,

[Packet Number: 5]

Payload [truncated]: 024ae86f91cab0a5fde09238b4f86e623efdacab20a2eeecef7d8545ec756ccbb0cea749412fd57b6495a9e1b9c0fbd2814cc0b2e1ccff0aeee69ae6dfffa36411d949e1197

 \vee CRYPT0

Frame Type: CRYPTO (0x00000000000000)

Offset: 3269

Length: 1141

Crypto Data

 TLSv1.3 Record Layer: Handshake Protocol: Multiple Handshake Messages Handshake Protocol: Certificate (last fragment)

> [4 Reassembled Handshake Fragments (3969 bytes): #18(819), #19(1141), #20(1141), #22(868)]

v Handshake Protocol: Certificate

Handshake Type: Certificate (11)

Length: 3965

Certificate Request Context Length: 0

3965 > 3726

Handshake time: Theory

 $\frac{Ollscoil NA Gaillimme}{University of Galway}$

Handshake time: Practice

Why limit response to 3x?

To prevent UDP reflection / amplification attack

Memcached: **51000x** amplification

https://blog.cloudflare.com/memcrashed -major-amplification-attacks-from-port-11211

 $\frac{OLLSCOIL NA GAILLIMHE}{UNIVERSITY OF GALWAY}$

DNS

50x bandwidth amplification towards victim

Impact of 3x limit

Benefit

- TLS certificate size can sometimes be ulletover the 3x limit
- ulletcomplete the handshake
- Large TLS certificates impede QUIC • performance

Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

Drawback

Multiple round trips are required to

Countermeasures

- cURL uses initial packet size of 1240 bytes
- Different clients use different sizes, so the performance can vary.
- Many deployments ignore 3X and go to 4, 5 or 6X to get handshake done in 1 RTT

Case Study 2

A research experiment shows HTTP/3 is around 50% faster than HTTP/2 in Time To First Byte(TTFB), but it should be 33% (or 66% if using 0-RTT)

Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

Time to First Byte

India: 47.50% faster! 1000ms vs 560ms!

> Philippines: 55% faster! 1230ms vs 550ms!

Traffic Analysis

- To find the root cause we capture traffic and analyze it
- Through traffic analysis we discover that DNS time in included in HTTP2
- But why is DNS time not present in HTTP3?

Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

= unfair comparison

Browser only do HTTP/3 after *discovery*

- When talking to a new domain, the browser does not start with HTTP3 because its not sure if the server supports it
- For a new hostname browser performs the following:

WíX

Mean: 31% faster! 330ms vs 220ms!

> Philippines: 34% faster! 630ms vs 410ms!

Why do we need other tools

Why can't we just use Wireshark?

- QUIC is heavily encrypted and very little information is visible in Wireshark without decryption keys
 - Don't always have TLS decryption keys.
- A lot of core performance information is not sent on the wire, it is only available at the end points
- Some features not fully supported
 - HTTP/3 QPACK header decoding was added just a few months ago.
- Wireshark JSON/XML output isn't easy to use by default.
- Wire image does not contain all info
 - Internal state information is missing, e.g. no congestion window

Log Information

There is a lot of useful information in the application log

- However, parsing random application logs is not fun!
- A standard format is needed!

100000036	0xb5080d83e89acbce1e6e4b907633809109	pkt tx pkt 0 dcid=0x108c2996a1d18a8bb1f7611937eb5f30 scid=0xb5080d83e09
100000036	8xb5080d83e09acbce1e6e4b907633009109	frm tx 0 Short(0x00) STREAM(0x13) id=0x0 fin=1 offset=0 len=16 uni=0
100000036	0xb5080d83e09acbce1e6e4b907633009109	rcv loss_detection_timer=1541515004932932352 last_hs_tx_pkt_ts=15415150
100000090	0xb5080d83e89acbce1e6e4b907633809109	con recv packet len=63
100000090	0xb5080d83e09acbce1e6e4b907633009109	pkt rx pkt 2 dcid=0xb5080d83e09acbce1e6e4b907633009109 scid=0x108c2996a
100000090	8xb5080d83e89acbce1e6e4b987633809109	frm rx 2 Handshake(0x7d) ACK(0x1a) largest ack=0 ack_delay=6(863) ack_b
100000090	8xb5080d83e09acbce1e6e4b907633009109	frm rx 2 Handshake(0x7d) ACK(0x1a) block=[00] block count=0
100000090	0xb5080d83e09acbce1e6e4b907633009109	rcv latest rtt=47 min rtt=32 smoothed rtt=34.076 rttvar=15.920 max ack
100000090	8xb5080d83e89acbce1e6e4b907633809109	rcv packet 0 acked, slow start cwnd=13370
100000090	8xb5080d83e09acbce1e6e4b907633009109	pkt read packet 63 left 0
100000092	0xb5080d83e09acbce1e6e4b907633009109	rcv loss detection timer fired
100000092	8xb5080d83e89acbce1e6e4b987633809109	<pre>rcv handshake count=0 tlp count=1 rto count=0</pre>
100000092	8xb5080d83e09acbce1e6e4b907633009109	con transmit probe pkt left=1
100000092	0xb5080d83e09acbce1e6e4b907633009109	pkt tx pkt 1 dcid=0x108c2996a1d18a8bb1f7611937eb5f30 scid=0xb5080d83e09
100000092	8xb5080d83e89acbce1e6e4b987633809109	frm tx 1 Short(0x00) PING(0x07)
100000092	0xb5080d83e09acbce1e6e4b907633009109	con probe pkt size=35
100000103	0xb5080d83e09acbce1e6e4b907633009109	con recv packet len=169
100000103	0xb5080d83e89acbce1e6e4b907633809109	pkt rx pkt 0 dcid=0xb5080d83e09acbce1e6e4b907633009109 scid=0x type=Sho
100000103	0xb5080d83e09acbce1e6e4b907633009109	frm rx 0 Short(0x00) CRYPTO(0x18) offset=0 len=130
Ordered CF	YPTO data	
000000000	84 80 80 3d 80 80 1c 28 db 3d 8e 65	08 00 00 00 =
00000010	00 00 00 00 00 00 20 da 41 9b 6d 9d	d0 6b 98 4f [A.mk.0]
00000020	bc bc 57 57 7a eb 74 3e a2 11 ea fd	e4 cd 1b d5 WWz.t>
00000030	5b 1b 75 f3 51 1a 09 00 08 00 2a 00	04 ff ff ff [[.u.Q*]
00000040	ff 04 00 00 3d 00 00 1c 20 06 2e 42	d3 08 00 00 =B
00000050	00 00 00 00 00 01 00 20 25 05 93 85	08 6b e5 8f %k
00000068	43 63 a9 b7 5b c4 e9 d4 9b 63 9d 27	1f 16 67 68 [Cc[c.'gh]
00000070	78 a0 42 3f cb b2 77 f8 00 08 00 2a	00 04 ff ff x.B?w*
00000080	ff ff	
00000082		

 $\frac{OLLSCOIL NA GAILLIMHE}{UNIVERSITY OF GALWAY}$

rt(0x00) len=0

qlog

- Structured endpoint logs
- Log metadata and state in the endpoints (client and server) in the QUIC implementations.
- qlog is a schema for JSON describing QUIC events
- Each glog event is defined by a timestamp, a category (e.g., "transport"), an event type (e.g., "packet_sent") and some type specific data (e.g., the size of the sent packet and its header fields).
- qlog is flexible
 - New event categories, types and metadata can trivially be added, modified and extended

[qlog]

qlog examples

. . .

```
"time": 15000,
"name": "transport:packet_received",
"data": {
    "header": {
        "packet_type": "1rtt",
        "packet_number": 25
    },
    "frames": [
    Ł
        "frame_type": "ack",
        "acked_ranges": [
            [10, 15],
            [17,20]
     }]
}}
```

. "time": 15001, "data": { "min_rtt": 25, "smoothed_rtt": 30, "latest_rtt": 25,

Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

```
"name": "recovery:metrics_updated",
  "congestion_window": 60,
  "bytes_in_flight": 77000,
```

qlog adoption

- >70% of QUIC implementations have (partial) support:
- aioquic
- quic-go
- quiche
- mvfst
- picoquic
- haskell
- ngtcp2
- -...

Others do something similar:

- msquic
- google quiche

Facebook has deployed it in production

Store over 30 billion glog events daily

IETF standardization in-progress https://datatracker.ietf.org/doc/html/draft-ietf-quic-qlogmain-schema-11

< qvis >

- qviz is open-source toolsuite that can directly ingest and visualize glog files
- □ It provide a number of tools:
 - Sequence diagram
 - High-level statistics overview
 - Congestion control
 - Multiplexing
 - Packetization

Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

Visualization Case Studies

University *of*Galway.ie

Sequence Diagram

The sequence tool generates a sequence diagram.

- The green squares on both sides represent events.
- All the green boxes, event names and packet information can be clicked which brings up the corresponding glog file in plaintext, allowing for further, more detailed packet inspection

Stream Multiplexing and Prioritization

- Modern protocol stacks often multiplex data from several parallel "streams" onto one connection (e.g., HTML, CSS and image files when loading a web page).
- This multiplexing can happen in various ways
- (e.g., files are sent sequentially as a whole or are scheduled via Round-Robin (RR) after being subdivided in chunks) and is typically steered using a prioritization system
- qvis multiplexing diagram can be used to verify and debug an implementation.
- It shows the response payload carrying frames, displayed on a horizontal line with different colors to distinguish the stream each frame belongs to.

Stream Multiplexing and Prioritization

- This example shows multiplexing behavior across three different QUIC stacks when downloading 10 MB files in parallel
 - Each small colored rectangle is one payload frame belonging to a file.
 - Black areas indicate which frames above them contain retransmitted data.
 - Data arrives from left to right.

Debugging QUIC and HTTP/3 with qlog and qvis, RobinMarx et. al, AppliedNetworking Research Workshop (ANRW '20)

Stream Multiplexing and Prioritization

Observations

- RR schemes show frequent color changes(1, 2)
- Long contiguous swaths (3) mean sequential transfers
- In (3) later streams are interrupted with retransmissions of earlier ones
- (2) interleaves retransmissions with new data
- (1) changes its multiplexing behavior from RR to sequential for lost data

Abnormalities

- (1) normally uses RR but has a long sequential period at the start
- (3) unintentionally sent data in Last-In First-Out order, the worst-case for web performance

Request order:	<mark> </mark> 1	2	3	4	5	6	7	
(1) Round-Robin pe	r frame (w	ith anomal	lous sequer	ntial perio	d at the sta	rt (yellow)))	Se
								1
(2) Round-Robin per	r 14 frame	S					F	Round-
3 Sequential in LI	O order							Se

Congestion Control (CC)

- CC is topic of active research which is more open to experimentation in QUIC.
- Debugging CCs is a major reason for create custom visualizations.
- qvis suite includes a comprehensive congestion control graph.
- It plots data sent, acknowledgements received, flow control limits, congestion window, bytes in flight, and employed RTT measurements on a timeline.

Congestion Control (CC)

Observations

- With pacing, the bytes in flight grow slowly over time as data is spread out, while without pacing, it jumps up quickly.
- Pacing is the practice of spreading out packets across an RTT instead of sending them in short bursts, and is thought to reduce packet loss.

Debugging QUIC and HTTP/3 with glog and gvis - ANRW '20: Proceedings of the 2020 Applied Networking Research Workshop

Congestion Control (CC)

Practical uses

- Facebook diagnosed their BBR code not entering the probeRTT state at the right time.
- They also identified large-scale pacing issues between their transatlantic data centers due to errors in RTT measurement.
- Cloudflare used qvis to debug their Cubic CC with 'hystart' implementation.
- Bugs were found in QUIC's retransmission logic during its complex handshake.

https://qvis.quictools.info/

 $\frac{Ollscoil NAGAILLIMHE}{UNIVERSITY OF GALWAY}$

Acknowledgement

□ The content is adapted from Dr. Robin Marx's presentation at SREcon23

https://www.usenix.org/conference/srecon23emea/presentation/marx

 $\frac{OLLSCOIL NA GAILLIMHE}{UNIVERSITY OF GALWAY}$

ion at SREcon23 sentation/marx

Thank you for your attention!

University *of*Galway.ie