

Ollscoil na Gaillimhe

UNIVERSITY OF GALWAY

# CT 420 Real-Time Systems

Dr. Jawad Manzoor **Assistant Professor** School of Computer Science

## Emerging Protocols-I



### Contents

- Web QoS
- Achieving Speed
- Evolution of the web
- Improvements in HTTP



 $\frac{Ollscoil NAGAILLIMHE}{UNIVERSITY OF GALWAY}$ 

# QoS Attribute of Web Services

| QoS Attribute Defin    | ition                                 |
|------------------------|---------------------------------------|
| ~                      |                                       |
| 5                      | rate produced by the service          |
| Accessibility Degre    | e the service is capable of serving   |
| servic                 | e request                             |
| Capacity Limit         | of concurrent requests for guarant    |
| perfo                  | rmance                                |
| Response Time Time     | to complete a Web service request     |
| client                 | perspective)                          |
| Throughput Num         | ber of Web service requests served    |
| given                  | time period                           |
| Availability The p     | robability that the service can resp  |
| the co                 | onsumer requests                      |
| MTTR Mean              | time to repair                        |
| Interoperability The e | ase with which a consumer applica     |
| agent                  | interoperates with a service          |
| Robustness The d       | egree to which a service can functi   |
| correc                 | ctly in the presence of invalid, inco |
| confli                 | cting inputs                          |
| Authentication A me    | asure of how the service authentic    |
| princi                 | pals who can access service and d     |
| Confidentiality A me   | asure of how the service threat the   |
| so tha                 | t only authorized principals can a    |
| modi                   | fy the data                           |



Ollscoil NA GAILLIMHE University of Galway

- a Web
- nteed
- st (from a
- d at a
- pond to
- cation or
- tion omplete or
- cate data e data, access or

Contraction of Contra

# Website speed

U Website speed, or website performance, refers to how quickly a browser is able to load fully functional webpages from a given site.

□ Why is site speed important?

- User experience
- SEO
- Bounce rate



# Web Performance Translates to Revenue

- Well-publicized studies from Google, Microsoft, and Amazon all show that web performance translates directly to revenue
  - e.g., a 2,000 ms delay on Bing search pages decreased per-user revenue by 4.3%!
- Another study of over 160 organizations determined that:
  - an extra one-second delay in page load times led to 7% loss in conversions, 11% fewer page views, and a 16% decrease in customer satisfaction!



# Web Performance Translates to Revenue

- Mobify found that decreasing their homepage's load time by 100 milliseconds resulted in a 1.11% uptick in session-based conversion
- Retailer AutoAnything experienced a 12-13% increase in sales after cutting page load time in half
- Walmart discovered that improving page load time by one second increased conversions by 2%

Faster sites yield more page views, higher engagement, and higher conversion rates.



# How to achieve speed?

- □ There are rules to the universe.
- Information has a speed limit:
  - namely, c, the speed of light
  - light travels about 300,000,000 meters per second.



# Improving the communication link



https://techcrunch.com/2015/11/08/data-the-speed-of-light-and-you/





Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

A connection that's just one millisecond faster than the competition's could boost a high-speed firm's earnings by as much as \$100 million per year

# Improving the communication link

- Google's "Dunant" trans-Atlantic cable has the capacity to deliver a massive 250 terabits per second. (2021)
- The "Grace Hopper" cable has total of 352Tbps system capacity. (2022)
- The newly completed transatlantic cable called Amitié and funded by Microsoft, Meta and others, can carry 400 Tbps. (2023)

An optical fibre about the thickness of a human hair can now carry the equivalent of more than 10 million fast home internet connections running at full capacity.

A team of Japanese, Australian, Dutch, and Italian researchers has set a new speed record for an industry standard optical fibre, achieving 1.7 Petabits over a 67km length of fibre.

https://www.sciencedaily.com/releases/2023/05/230530125447.htm





# Improving the protocols

Apps: useful user-level functions

Transport: provide guarantees to apps

Network: best-effort global packet delivery

Link: best-effort local packet delivery





# History of the Internet



ARPANET 1969-1977. Wikipedia



### $\frac{Ollscoil NA Gaillimme}{University of Galway}$

# History of the Internet

- □ 1965 Lawrence Roberts (MIT) & Thomas Marill create first Wide-Area Network connection via long distant dial-up between computers in Massachusetts and California.
- □ 1967 ARPAnet design begins
- □ 1973 TCP/IP protocol development begins, headed by Vint Cerf (Stanford) and Robert Kahn (DARPA).
- □ 1981 Internet protocol version 4, or IPv4, was officially defined in RFC 791.
- 1989 Tim Berners-Lee Creates the World Wide Web (WWW)



# History of the Internet





# Evolution of the Web

There is a paradigm shift in the way the Internet is accessed

- Transformation from native applications to web applications
- Traditional applications are getting migrated to the cloud
- Web applications and services are getting extremely complex
- QoS is web applications is very important













# Evolution of the Web

An average web page size and the number of requests to load a web page has increased manyfold.







Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

- Desktop — Mobile

# Anatomy of a Modern Web App



Photographers capture stunning images of underwater life



The innovations making aviation greener



These elusive and adorable wild cats are under threat





### **Paid Content**

Paid Content

Framed ad



[Gallery] Vets Agree, Adopting These Dog Breeds Should Be Forbidden HeraldWeekly



A young Swiss brand is changing the face of traditional watchmaking CODE41



Cardiologist: Too Much Belly Fat? Do This Before Bed Health News



### **OLLSCOIL NA GAILLIMHE** UNIVERSITY OF GALWAY



Recommended by Outbrain D



[Gallery] This Jet Always Tailgates Air Force One, Here's Why HeraldWeekly

# Anatomy of a Modern Web App

```
ad.gif from ads.com
  _____+
 -----+
Analytics .js | | jQuery.js from
 from google.com | | from cdn.foo.com
 -----+
   HTML (text inputs, buttons)
+-----
 Inline .js from foo.com (defines
 event handlers for HTML GUI inputs)
 _____+
 -----+
frame: https://facebook.com/likeThis.html||
+----+ +-----+ ||
 Inline .js from | | f.jpg from https:/
 https://facebook.com | | facebook.com |||
+----+ +-----+ ||
_____+
```



# Anatomy of a Modern Web App

| 🕞 🖬 📔 Elements Console So                              | ources    | Network      | Performance Memory A           | pplication Security | Lighthouse        | Recorder 👗 Performanc         | e insights 👗 🛛 A  | dblock Plus |
|--------------------------------------------------------|-----------|--------------|--------------------------------|---------------------|-------------------|-------------------------------|-------------------|-------------|
| 🔵 🛇   🍸 🔍   🔲 Preserve log                             | 🖌 Disabl  | le cache No  | o throttling 🔻 🧙 🛉 🛓           | Ł                   |                   |                               |                   |             |
| Filter Invert                                          | 🔲 Hide da | ata URLs A   | II Fetch/XHR JS CSS Img        | Media Font Doc V    | VS Wasm Manife    | st Other 🔲 Has blocked co     | okies 🔲 Blocked R | lequests 🗌  |
| 5000 ms 10000 ms 15000 ms                              | 20000 ms  | 25000 ms     | 30000 ms 35000 ms 4000         | 00 ms 45000 ms 5    | 50000 ms 55000 ms | s 60000 ms 65000 ms           | 70000 ms 75000 ms | s 80000 n   |
| Name                                                   | Status    | Protocol     | Domain                         | Remote Address      | Туре              | Initiator                     | Size              | Time        |
| onsite-v2_cf4d7bb5ab0fde22ad6ae                        | 200       | h3           | assets.bounceexchange.com      | 34.98.72.95:443     | script            | <u>main-v2_243804abr.js:2</u> | 5.9 kB            |             |
| ads-v2_531e4f2ee859d37adbf3da3                         | 200       | h3           | assets.bounceexchange.com      | 34.98.72.95:443     | script            | <u>main-v2_243804abr.js:2</u> | 45.0 kB           |             |
| 🗌 otFlat.json                                          | 200       | h2           | cdn.cookielaw.org              | 104.18.170.114:443  | fetch             | <u>VM174:2</u>                | 3.2 kB            |             |
| otPcCenter.json                                        | 200       | h2           | cdn.cookielaw.org              | 104.18.170.114:443  | fetch             | <u>VM174:2</u>                | 12.9 kB           |             |
| otCommonStyles.css                                     | 200       | h2           | cdn.cookielaw.org              | 104.18.170.114:443  | fetch             | <u>VM174:2</u>                | 3.9 kB            |             |
| b2?c1=2&c2=6035748&cs_it=b9&c                          | 204       | h2           | sb.scorecardresearch.com       | 18.66.171.45:443    | text/plain        | <u>beacon.js:1</u>            | 223 B             |             |
| <ul> <li>pixel;r=230031680;rf=3;a=p-D1yc5z</li> </ul>  | 200       | h2           | pixel.quantcount.com           | 91.228.74.200:443   | gif               | <u>quant.js:2</u>             | 210 B             |             |
| <ul> <li>pixel;r=1523932168;event=rule;labe</li> </ul> | 200       | h2           | pixel.quantcount.com           | 91.228.74.200:443   | gif               | <u>quant.js:2</u>             | 210 B             |             |
| data.cdnbasket.net                                     | 200       | http/1.1     | data.cdnbasket.net             | 34.149.56.191:443   | xhr               | <u>(index):10936</u>          | 338 B             |             |
| page.cdnbasket.net                                     | 200       | http/1.1     | page.cdnbasket.net             | 34.149.148.173:443  | xhr               | <u>(index):10936</u>          | 338 B             |             |
| view.cdnbasket.net                                     | 200       | http/1.1     | view.cdnbasket.net             | 34.117.241.125:443  | xhr               | <u>(index):10936</u>          | 338 B             |             |
| get?url=https%3A%2F%2Fedition                          | 200       | h2           | mv.outbrain.com                | 199.232.26.132:443  | script            | outbrain.js:272               | 10.3 kB           |             |
| o jquery-3.5.1.min.js                                  | 200       | h3           | assets.bounceexchange.com      | 34.98.72.95:443     | script            | main-v2_243804abr.js:2        | 30.9 kB           |             |
| ot_guard_logo.svg                                      | 200       | h2           | cdn.cookielaw.org              | 104.18.170.114:443  | fetch             | <u>VM174:2</u>                | 498 B             |             |
| ■ wmLogo.png                                           | 200       | h2           | cdn.cookielaw.org              | 104.18.170.114:443  | png               | <u>(index)</u>                | 5.8 kB            |             |
| 90 / 92 requests 3.6 MB / 3.6 MB trans                 | sferred 1 | 0.0 MB / 10. | 0 MB resources   Finish: 1.5 n | nin DOMContentLoa   | ded: 590 ms Loa   | ud: 1.62 s                    |                   |             |



# How to Improve Web Performance?

The complexity of web content over the years necessitated the need to update the Hypertext Transfer Protocol (HTTP) protocol.







# HTTP History

□ HTTP is the foundation of data communication for the Web

- Originally designed for the transfer of simple web pages over the Internet in early 90's
- https://home.cern/science/computing/birth-web/short-history-web
- info.cern.ch was the address of the world's first website and Web server, running on a computer at CERN.



Tim Berners-Lee, pictured at CERN (Image: CERN)



# HTTP History

### **HTTP/0.9**

In 1991, the first documented official version of HTTP was written as a plain document, less than 700 words long, and this version was named HTTP/0.9, which supported only GET method, allowing clients to only retrieve HTML documents from the server, but not supporting any other file formats or information upload.



□ In May 1996, <u>RFC 1945</u> was published as a final HTTP/1.0

In HTTP 1.0, each request/response pair requires opening a new connection.

### New Features:

- Header: The HTTP header was introduced, thus allowing the transmission of metadata that made the protocol flexible and extensible.
- Status code: HTTP responses now contained a status code, thus enabling the receiver to check the request processing status (successful or failed).
- Content-type: HTTP could transmit other documents types than a plain HTML file.
- New methods: Two new methods POST and HEAD were provided, besides GET.



### $\frac{Ollscoil NAGAILLIMHE}{UNIVERSITY OF GALWAY}$



Establishing a TCP connection using 3-way handshake is expensive. 2 RTTs between client and server are required to establish a connection.







- □ In January 1997, RFC 2068 was officially released as HTTP/1.1 specifications.
- □ The following are the most relevant enhancements:
- **Persistent connections:** In HTTP 1.1, it is possible to execute several requests using a single connection, and thus amortize the cost of the initial connection establishment and slow start across multiple requests
- New methods: besides the already available methods of HTTP 1.0, the 1.1 version added six extra methods: PUT, PATCH, DELETE, CONNECT, TRACE, and OPTIONS



OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY



HTTP/1.1 **Persistent Connections Request Queuing** 

- With persistent connections, multiple requests could share the same connection, but they still had to be serialized one after the other
  - So a client and server could only execute a single request/response exchange at any given time for each connection.
- As the web evolved, more concurrency was required when fetching and rendering web pages with a large number of resources (CSS, JavaScript, images, ...).
- The only way to gain concurrency at the network layer was to use multiple TCP. connections to the same origin in parallel. But it has several negative effects.
  - Initial Overhead Establishing and maintaining multiple connections requires additional overhead
  - Network Congestion Multiple parallel connections increase the amount of traffic on the network
  - Inefficient Use of Resources Every TCP connection requires resources on both the client and server sides, such as buffers, sockets, and memory
  - Fairness Issues Some users or applications may monopolize bandwidth by opening many TCP connections



## SPDY

- An unofficial HTTP protocol developed by Google in 2009 as an experimental protocol to improve the web performance
  - SPDY opens one connection per domain
  - Multiple data streams are multiplexed over this single TCP connection for efficiency
  - Transfer higher priority resources faster than low priority resources
  - Reduces the amount of redundant header information each time a new page is requested.
- SPDY was supported by Chrome browser and deployed in most Google services



## SPDY





https://blog.cloudflare.com/http3-the-past-present-and-future/





## SPDY Performance



Page load time comparison for a dummy web page using 10Mbps connection

https://www.microsoft.com/en-us/research/publication/a-comparison-of-spdy-and-http-performance/ (2012)



### Ollscoil NA GAILLIMHE UNIVERSITY OF GALWAY



## HTTP 2.0

□ It was officially released in 2015, (<u>RFC 7540</u>) about 18 years after the HTTP 1.1

□ It was decided to derive it from SPDY

□ HTTP 2.0 implemented several new features to improve the protocol performance:



## HTTP 2.0 Features

1. Request multiplexing: HTTP 1.1 is a sequential protocol. So, we can send a single request at a time. HTTP 2.0, in turn, allows to send requests and receive responses asynchronously. In this way, we can do multiple requests at the same time using a single connection



http://manning.com/book/http2-in-action



## HTTP 2.0 Features

- **2. Request prioritization:** We can set a priority for requests. Thus, we can be explicit in which order we expect the responses, such as getting a webpage CSS before its JS file
- **3. Header compression:** Headers are compressed with HPACK (RFC 7541)
  - 76% compression of ingress header
  - 69% compression of egress header (https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/)
- **4. Server push:** to avoid a server receiving lots of requests, HTTP 2.0 introduced a server push functionality. With that, the server tries to predict the resources that will be requested soon. So, the server proactively pushes these resources to the client cache



## HTTP version comparison





# HTTP 2.0 performance



"Is HTTP/2 really faster than HTTP/1.1?." 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2015.



### Ollscoil na Gaillimhe UNIVERSITY OF GALWAY

Impact of latency on page load time

# Question

- Compare HTTP2's multiplexing of multiple resources and HTTP/1.1 downloading multiple resources in parallel using multiple connections.
- Which of these two approaches has better performance?







# Can we do better?

- Improvements at the application layer have been implemented in HTTP 2.0
- To further improve the performance, fundamental changes to the underlying transport layer are required



 $\frac{OLLSCOIL NA GAILLIMHE}{UNIVERSITY OF GALWAY}$ 

### nented in HTTP 2.0 es to the underlying transport

# Can we do better?





Ollscoil NA GAILLIMHE University of Galway



# Thank you for your attention!

University *of*Galway.ie