
M U L T I T H R E A D E D P R O G R A M M I N G L E C T U R E S

D R A D R I A N C L E A R
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Multithreaded Programming
• A process is an instance of a program being executed.
• In a multitasking environment, multiple processes can be running

concurrently.
• Actually, at a given instance in time, only one process is running on a single

CPU. Time slicing between processes makes it appear as if they are all
running at the same time.

• A thread is a “lightweight process.”
• It’s like a process, but it doesn’t have all the overhead that a process has.

Processes vs. Threads
• Both processes and threads have their own independent CPU

state.
• i.e. their own processor stack, instruction pointer, and CPU register

values.
• Multiple threads can share the same memory address space

(i.e. share the same variables).
• Processes, in general, do not share their address space with

other processes.

Threads and Java
• Java has language level support for threads.
• In Java it is easy to create multiple independent threads of

execution.
• Any class that is a subclass of java.lang.Thread or implements the
java.lang.Runnable interface can can be used to create threads.

java.lang.Runnable

• To create a thread, you instantiate the java.lang.Thread
class.
• One of Thread’s constructors takes objects that implement the
Runnable interface.

• The Runnable interface contains a single method called run():

public interface Runnable {
 public void run();
}

Creating and starting a thread

class Fred implements Runnable {
 //..
 public void run() {
 //..
 }

 public static void main(String args[]) {
 Thread t = new Thread(new Fred());
 t.start();
 }
}

start() and run()
• To create a thread, create an instance of the Thread class.
• To start a thread, call the start() method on the thread.
• When the thread starts, the run() method is invoked.

• The thread terminates when the run() method terminates.

Thread priority and daemons
• Every thread has a priority.
• Threads with higher priority are executed in preference to threads with

lower priority.
• A thread may be marked as a daemon.
• Daemon threads are background threads that are not expected to exit.

• A new thread has its priority initially set equal to the priority of
the creating thread.
• The new thread is a daemon thread if and only if the creating thread is a

daemon thread.

JVM and threads
• When the JVM starts up there is usually a single non-daemon

(user) thread initially.
• This thread calls the main() method of an application.

• The JVM continues to execute threads until either
• The exit() method of the class Runtime is called,
• or all non-daemon (user) threads have died.

Creating a new thread
Method 1

• Create a subclass of java.lang.Thread
• This subclass should override the run() method.

• An instance of this subclass can be created and started.

class PrimeThread extends Thread {
 long minPrime;
 PrimeThread(long minPrime) {
 this.minPrime = minPrime;
 }

 public void run() {
 // compute primes larger than minPrime
 . . .
 }
}

Method 1, continued...
• The following code creates a thread and starts it running
• The thread executes until its run() method terminates or it is hit over the

head by calling the thread’s stop() method.

PrimeThread p = new PrimeThread(143);
 p.start();

Creating a new thread
Method 2
• The other way to create a thread is to declare a class that

implements the Runnable interface.
• An instance of the class can then be allocated, passed as an

argument when instantiating the Thread class, and started.

Method 2 continued...

class PrimeRun implements Runnable {
 long minPrime;
 PrimeRun(long minPrime) {
 this.minPrime = minPrime;
 }
 public void run() {
 // compute primes larger than minPrime
 . . .
 }
}
. . .
PrimeRun p = new PrimeRun(143);
new Thread(p).start();

The death of a thread
• Threads can be killed by calling their stop() method, but this

is not a good idea in general.
• Allow for a thread to die naturally by having its run() method

return.
• This often done by altering some variable that causes a while loop to

terminate in the run() method.

Simple Animation Demo
• When a program creates a thread, it can pass the Thread class

constructor an object whose statements will be executed.
• Using the thread class start function, the program can start a

thread’s execution.
• The start function, in turn, will call the Thread objects run

function.
• Rule of Thumb:
• If an application or applet performs a time-consuming task, it should

create and use its own thread of execution to perform that task.

Simple Animation Demo

Synchronization
• Multi-threaded coding requires special care
• (also more difficult to debug)

• You want to prevent multiple threads from altering the state of
an object at the same time.
• Sections of code that should not be executed simultaneously are called

critical sections.
• You want mutual exclusion of concurrent threads in critical sections of

code.
• This is done in Java using synchronized methods or synchronized

statements.

The synchronized statement

• expression: must resolve to an object or an array.
• statement: the critical section, usually a statement block (i.e.

surrounded by { and }).
• A synchronized statement attempts to acquire a lock for the object or

array specified by the expression.
• Statement is not executed until the lock is obtained.

synchronized (expression) statement

More on synchronized
• You do not have to use the synchronized statement unless multiple

threads share data.

public static void sortArray(int[] a) {
 synchronized (a) {
 // sort the array here
 }
}

Synchronized methods
• The synchronized keyword is most often used as a method

modifier in Java.
• Indicates that the entire method is a critical section.
• Static synchronized methods: Java obtains a lock for the class.
• Instance methods: Java obtains an exclusive lock for the class instance.

public synchronized void sort() {
 // whole method a critical section
}

Deadlocks
• Using synchronization can actually cause problems.
• Only the thread that holds the lock can execute the critical section.
• When more than one lock is used a situation called deadlock can occur.
• This happens when two or more threads are all waiting to acquire a lock

that is held by one of the other waiting threads.
• Each thread waiting for a lock will never release the locks they currently hold

(impasse).

Dining Philosophers Problem
• The story goes like this:
• Five philosophers are sitting at a round table.
• In front of each philosopher is a bowl of rice.
• Between each pair of philosophers is one chopstick.
• Before an individual philosopher can take a bite of rice he must have two

chopsticks one taken from the left, and one taken from the right.
• The philosophers must find some way to share chopsticks such that they

all get to eat.

Dining Philosophers Problem
• The algorithm works as follows:
• The philosopher always reaches for the chopstick on his right first.
• If the chopstick is there, he takes it and raises his right hand.
• Next, he tries for the left chopstick.
• If the chopstick is available, he picks it up and raises his other hand.

• Now that the philosopher has both chopsticks, he takes a bite of rice and
then puts both chopsticks down, allowing either of his two neighbours to
get the chopsticks.

Dining Philosophers Problem
• The philosopher then starts all over again by trying for the right chopstick.
• Between each attempt to grab a chopstick, each philosopher pauses for a

random period of time.
• This algorithm always ends up in deadlock!
• All the philosophers are frozen with their right hand in the air. Why?
• Because each philosopher immediately has one chopstick and is waiting on a

condition that cannot be satisfied ...
• They are all waiting for the left chopstick, which is held by the philosopher to

their left.

Solution to Dining Philosophers Problem
• For most Java programmers, the best choice is to prevent

deadlock rather than to try and detect it.
• Deadlock detection is complicated and the simplest approach to to

preventing deadlock is to impose ordering on the condition variables.
• In the dining philosopher algorithm, there is no ordering imposed on the

condition variables because the philosophers and the chopsticks are
arranged in a circle.

• All chopsticks are equal.

Solution to Dining Philosophers Problem
• We can number the chopsticks 1 through 5 and insisting that

the philosophers pick up the chopstick with the lower number
first.
• The philosopher who is sitting between chopsticks 1 and 2 and the

philosopher who is sitting between chopsticks 1 and 5 must now reach for
the same chopstick first (chopstick 1) rather than picking up the one on
the right.

• Whoever gets chopstick 1 first is now free to take another one.
• Whoever doesn't get chopstick 1 must now wait for the first philosopher to

release it.
• Deadlock is not possible ...

Producer Consumer Problem
• The Producer generates an integer between 0 and 9

(inclusive), stores it in an IntBuffer object, and prints the
generated number.

• To make the synchronization problem more interesting, the
Producer sleeps for a random amount of time between 0 and
100 mS before repeating the number generating cycle:

• The Consumer, being ravenous, consumes all integers from
the IntBuffer (the exact same object into which the Producer
put the integers in the first place) as quickly as they become
available.

Producer Consumer Problem
public class Producer extends Thread {

private IntBuffer cubbyhole;
private int number;

public Producer(IntBuffer c, int number) {
cubbyhole = c;
this.number = number;

}

Producer Consumer Problem
public void run() {

for (int i = 0; i < 10; i++) {
cubbyhole.put(i);
System.out.println("Producer #" + this.number + " put: " + i);
try {

sleep((int)(Math.random() * 100));
} catch (InterruptedException e) { }

}
}

}

Producer Consumer Problem
public class Consumer extends Thread {

private IntBuffer cubbyhole;
private int number;

public Consumer(IntBuffer c, int number) {
cubbyhole = c;
this.number = number;

}

Producer Consumer Problem
public void run() {

int value = 0;
for (int i = 0; i < 10; i++) {

value = cubbyhole.get();
System.out.println("Consumer #" +

this.number + " got: " + value);
}

}
}

Producer Consumer Problem
• The Producer and Consumer in this example share data

through a common IntBuffer object.
• Note that neither the Producer nor the Consumer makes any

effort whatsoever to ensure that the Consumer is getting each
value produced once and only once.

• The synchronization between these two threads actually
occurs at a lower level, within the get() and put() methods of
the IntBuffer object.

Producer Consumer Problem
• Race conditions arise from multiple, asynchronous executing

threads trying to access a single object at the same time and
getting the wrong result.

• Race conditions in the producer/consumer example are
prevented by having the storage of a new integer into the
IntBuffer by the Producer be synchronized with the retrieval of
an integer from the IntBuffer by the Consumer.

• The Consumer must consume each integer produced by the
Producer exactly once.

wait() and notify()
• Java monitors are re-entrant:
• Once a thread obtains a monitor (lock) it can release it again and wait,

using wait(), pending the completion of some other event or action by
another thread.

• Useful in situations where separate threads are supplying and consuming
data or events.

• Can only be executed within synchronized code or methods and helps
prevent deadlock and uncoordinated access to shared data ...

• IntBuffer implementation uses these methods.

IntBuffer Implementation
• Here's the code skeleton for the IntBuffer class:

public class IntBuffer {
private int contents;
private boolean available = false;

public synchronized int get() {
...

}

public synchronized void put(int value) {
...

}
}

IntBuffer Implementation
• Note that the method declarations for both put and get contain

the synchronized keyword.
• Hence, the system associates a unique lock with every

instance of IntBuffer (including the one shared by the Producer
and the Consumer).

• Whenever control enters a synchronized method, the thread
that called the method locks the object whose method has
been called.

• Other threads cannot call a synchronized method on the same
object until the object is unlocked.

IntBuffer Implementation
• When the Producer calls IntBuffer's put method, it locks the IntBuffer, thereby

preventing the Consumer from calling the IntBuffer's get method:

public synchronized void put(int value) {
// IntBuffer locked by the Producer
..
// IntBuffer unlocked by the Producer

}

• When the put method returns, the Producer unlocks the IntBuffer.

IntBuffer Implementation
• Similarly, when the Consumer calls IntBuffer's get method, it locks the

IntBuffer, thereby preventing the Producer from calling put:

public synchronized int get() {
// IntBuffer locked by the Consumer
...
// IntBuffer unlocked by the Consumer

}

IntBuffer Implementation
• The IntBuffer stores its value in a private member variable called

contents.
• IntBuffer has another private member variable, available, that is a

boolean.
• available is true when the value has just been put but not yet gotten and

is false when the value has been gotten but not yet put.
• There follows one possible implementation for the put and get methods:

IntBuffer Implementation
public synchronized int get() { // won't work!

if (available == true) {
available = false;
return contents;

}
}
public synchronized void put(int value) { // won't work!

if (available == false) {
available = true;
contents = value;

}
}

IntBuffer Implementation
• As implemented, these two methods won't work. Look at the

get() method…
• What happens if the Producer hasn't put anything in the

IntBuffer and available isn't true? get() does nothing.
• Similarly, if the Producer calls put() before the Consumer got

the value, put() does nothing.
• You really want the Consumer to wait until the Producer puts

something in the IntBuffer and the Producer should then notify
the Consumer when it's done so.

IntBuffer Implementation
• Similarly, the Producer must wait until the Consumer takes a

value (and notifies the Producer of its activities) before
replacing it with a new value.

• The two threads must co-ordinate more fully and can use
Object's wait() and notifyAll() methods to do so.

• There follows the new implementations of get() and put() that
wait on and notify each other of their activities:

IntBuffer Implementation
public synchronized int get() {

while (available == false) {
try {

// wait for Producer to put value
wait();

} catch (InterruptedException e) {
}

}
available = false;
// notify Producer that value has been retrieved
notifyAll();
return contents;

}

IntBuffer Implementation
public synchronized void put(int value) {

while (available == true) {
try {

// wait for Consumer to get value
wait();

} catch (InterruptedException e) {
}

}
contents = value;
available = true;
// notify Consumer that value has been set
notifyAll();

}

IntBuffer Implementation
• The code in the get() method loops until the Producer has

produced a new value - each time through the loop, get() calls
the wait() method.

• The wait() method relinquishes the lock held by the Consumer
on the IntBuffer (thereby allowing the Producer to get the lock
and update the IntBuffer) and then waits for notification from
the Producer.

• When the Producer puts something in the IntBuffer, it notifies
the Consumer by calling notifyAll().

IntBuffer Implementation
• The Consumer then comes out of the wait state, available is

now true, the loop exits, and the get() method returns the value
in the IntBuffer.

• The put() method works in a similar fashion, waiting for the
Consumer thread to consume the current value before allowing
the Producer to produce a new one.

• The notifyAll() method wakes up all threads waiting on the
object in question (in this case, the IntBuffer).

IntBuffer Implementation
• The awakened threads compete for the lock - one thread gets

it, and the others go back to waiting.
• The java.lang.Object class also defines the notify()

method, which arbitrarily wakes up only one of the threads
waiting on this object.

• The Object class also contains two other versions of the wait
method:
• wait(long timeout) waits for notification or until the timeout period (in mS)

has elapsed.
• wait(long timeout, int nanos) waits for notification or until timeout mS plus

nS nanoseconds have elapsed.

Concurrency Utilities
• The Java 2 platform now includes a new package of
concurrency utilities.
• These are classes which are designed to be used as building

blocks in building concurrent classes or applications.
• The Concurrency Utilities include a high-performance,

flexible thread pool; a framework for asynchronous execution
of tasks; a host of collection classes optimized for concurrent
access; synchronization utilities such as counting
semaphores; atomic variables; locks; and condition
variables.

Concurrency Utilities
• Using the Concurrency Utilities, instead of developing

components such as thread pools yourself, offers a number of
advantages:
• Reduced programming effort. It is far easier to use a standard class than

to develop it yourself.
• Increased performance. The implementations in the Concurrency Utilities

were developed and peer-reviewed by concurrency and performance
experts; these implementations are likely to be faster and more scalable
than a typical implementation, even by a skilled developer.

• Increased reliability. Developing concurrent classes is difficult -- the low-
level concurrency primitives provided by the Java language
(synchronized, volatile, wait(), notify(), and notifyAll()) are difficult to use
correctly, and errors using these facilities can be difficult to detect and
debug.

Concurrency Utilities
• By using standardized, extensively tested concurrency

building blocks, many potential sources of threading hazards
such as deadlock, starvation, race conditions, or excessive
context switching are eliminated.

• Improved maintainability. Programs which use standard
library classes are easier to understand and maintain than
those which rely on complicated, homegrown classes.

• Increased productivity. Developers are likely to already
understand the standard library classes, so there is no need
to learn the API and behavior of ad-hoc concurrent
components.

Thread Pools
• A thread pool is a managed collection of threads that are

available to perform tasks. Thread pools usually provide:
• Improved performance when executing large numbers of tasks

due to reduced per-task invocation overhead.
• A means of bounding the resources, including threads,

consumed when executing a collection of tasks.
• In addition, thread pools relieve you from having to manage the

life cycle of threads. They allow to take advantage of threading,
but focus on the tasks that you want the threads to perform,
instead of the thread mechanics.

Thread Pools
• To use thread pools, you instantiate an implementation of the

ExecutorService interface and hand it a set of tasks.
• The choices of configurable thread pool implementations are

ThreadPoolExecutor and ScheduledThreadPoolExecutor.
• These implementations allow you to set the core and maximum

pool size, the type of data structure used to hold the tasks, how
to handle rejected tasks, and how to create and terminate
threads.

• However, it is recommended that you use the more convenient
factory methods of the Executors class listed in the following
table. These methods preconfigure settings for the most
common usage scenarios.

Thread Pools
• Factory Methods in the Executors Class

Method Description
newFixedThreadPool(int) Creates a fixed size thread pool.
newCachedThreadPool Creates unbounded thread pool,

 with automatic thread reclamation.
newSingleThreadExecutor Creates a single background thread.

Thread Pools
public class WorkerThread implements Runnable {
 private int workerNumber;

 WorkerThread(int number) {
 workerNumber = number;
 }

 public void run() {
 for (int i=0;i<=100;i+=20) {
 // Perform some work ...
 System.out.println("Worker number: "
 + workerNumber
 + ", percent complete: " + i);
 try {
 Thread.sleep((int)(Math.random() * 1000));
 } catch (InterruptedException e) {
 }
 }
 }
}

Thread Pools
import java.util.concurrent.*;
public class ThreadPoolTest {
 public static void main(String[] args) {
 int numWorkers = Integer.parseInt(args[0]);
 int threadPoolSize = Integer.parseInt(args[1]);

 ExecutorService tpes =
 Executors.newFixedThreadPool(threadPoolSize);

 WorkerThread[] workers = new WorkerThread[numWorkers];
 for (int i = 0; i < numWorkers; i++) {
 workers[i] = new WorkerThread(i);
 tpes.execute(workers[i]);
 }
 tpes.shutdown();
 }
}

