
Week 11 Lecture 1

Prolog: Further Examples and Tail Recursion

Deletion
 Representation: del(X, L, L1)

 Delete X from list L resulting in L1

 For example, if del is suitably defined:

 ?- del(a, [c, d, a, f], R).

3

 Base Case:

 If X is head of L then result of deleting X is the tail of L

 Reduce:

 add head of L to Res and delete X from tail of L

Deletion Steps

4

 delete_one(Term, [Term | Tail], Tail).

 delete_one(Term, [Head | Tail], [Head | Result]):-

 delete_one(Term, Tail, Result).

Deletion Steps

5

Question: What happens if the
element is not in the list?

 How can this be fixed?

 Add extra clause at start:

 delete_one(_, [], []).

6

No, stops when/if match found

To delete multiple occurrences:

 Base Cases:

 If L is empty list then result is []

 Reduce:

 If X is head of L then delete X from tail of L.

 If X is not head of L, add head of L to Res and delete
X from tail of L

Question: Will this delete multiple
occurrences of X?

7

delall(_, [], []).

delall(Term, [Term | Tail], Res) :-

delall(Term, Tail, Res).

delall(Term, [Head | Tail] , [Head | Res]):-

delall(Term,Tail,Res).

Question: Will this delete multiple
occurrences of X?

Question: More deletion …

Remove Duplicates from a List

8

 Representation: deldups(L, Res)

 Delete duplicate occurrences of all elements from list L
resulting in list Res

 E.g. if deldups suitable defined:

?- deldups([a, b, a, c, d, c], Res).

Res = [b, a, c, d]

Steps to remove duplicates from a list

9

 Base Case:

 If L is the empty list the result is the empty list.

 Reduction:

 If the first element in the list is a member of the tail of

the list, remove it and check the tail of the list for more

duplicates.

 Otherwise, add it to the result and check the tail of the

list.

Deleting Duplicates in a List

10

deldups([], []).

deldups([H|T], Res1):-

membr(H, T), deldups(T, Res1).

deldups([H|T], [H|Res1]) :-

deldups(T, Res1).

Concatenation of Lists

11

 Representation: conc(L1, L2, L3)

 L1 and L2 are two lists; L3 is their concatenation

 For example, if conc is suitably defined:

 ?- conc([a, b], [c, d], Res).

Res = [a, b, c, d]

 ?- conc([a, b], [c, d], [a, b, a, c, d]).

What is the result?

 So, general rule?

Concatenation/Merging of Two

Lists

12

 Base Case:

 If L1 is empty the result of merging L1 and L2 is?

 Reduce (recursive step):

 keep adding head of L1 to L3 until L1 is empty (i.e. we

reach the base case).

conc([], L, L).

conc([X|L1], L2, [X|L3]):-

conc(L1, L2, L3).

Tail Recursion
 Recursive calls normally take up memory space which is

only freed after the return from the call.

 In special cases, it is possible to execute nested recursive
calls without requiring extra memory

 In such a case a recursive procedure has a special form
called tail recursion.

 A tail recursive procedure only has one recursive call and
this call appears as:

 The last goal of the last clause in the procedure

Tail Recursion

14

 The goals preceding the recursive call must be

deterministic so that no backtracking occurs after the last

call

 In the case of tail recursive procedures, no information is

needed upon the return from a call

 Such recursion can be carried out simply as iteration in

which a next cycle in the loop does not require additional

memory

 When memory efficiency is critical, tail recursive

formulations of procedures help

Reverse Items in a List
 Reverse items in a list (top-level) such that:

 ?- reverselist([a, b, c], R).

 R = [c, b, a]

Steps: reverselist([a,b,c], R).

16

 Base case: If list is empty, result is empty list:

 reverse([], []).

 Reduce:

 Reduce to empty list, by reversing tail of list

 reverse(T,L)

 Add head of list to a new list using merge (conc) already

defined

 conc(L, [H], R).

Using previously defined conc

17

 reverselist([],[]).

 reverselist([H|T], R) :-

reverselist(T, L), conc(L, [H], R).

Try writing tail recursive version
reversetr(L,R)

18

 Use temporary list (Temp) to add each successive
head value of L to.

 Use helper function to call reverse2 with empty list
as current value of the temporary list

 Base Case:
 L is empty, return R

 Reduce:
 Add Head to temporary list for each call of reverse2

Tail recursive version of reverselist

19

reversetr(L, R):-

reverse2(L, [], R).

reverse2([],R,R).

reverse2([H|T], Temp, R) :-

reverse2(T, [H|Temp], R).

