
L E C T U R E 5
U N I T T E S T I N G I N J A V A &

T E S T D R I V E N D E V E L O P M E N T
P A R T 2

- D R . A D R I A N C L E A R -
S C H O O L O F C O M P U T E R S C I E N C E

CT326 Programming III

Objectives
• Learn how to test for exceptions
• Understand how to test code with dependencies

Testing exceptions
• We can use the assertThrows assertion to test if an

exception has been thrown
• Specifying our assumption is that an

IllegalArgumentException will be thrown if we try to add a
null Item to the cart

Don’t forget the ‘.class’

ShoppingCart.java

ShoppingCartTests.java

What tests should we write?
• Test single units of functionality in isolation
• Not integration tests
• Multiple tests for a single piece of logic (multiple

scenarios)
• Each test will cover a single scenario for a single piece of

logic

Unit testing techniques
• Equivalence testing
• possible inputs are partitioned into equivalence classes, and a test

case is selected for each class
• minimises number of test cases
• systems usually behave in similar ways for all members of a class

• Boundary testing
• special case of equivalence testing that focuses on the conditions

at the boundary of the equivalence classes
• boundaries often overlooked by developers

• Path testing
• by exercising all possible paths through the code at least once,

most faults will trigger failures
• requires knowledge of the source code and data structures

Equivalence classes example
• Suppose customers can register for our online shop and we we

want a method to test whether a mobile phone number that
they enter is valid.

• Equivalence classes (valid)
• 10 digit number that begins with 083 (Test case: 0833456789)
• 10 digit number that begins with 085 (Test case: 0853456789)
• 10 digit number that begins with 086 (Test case: 0863456789)
• 10 digit number that begins with 087 (Test case: 0873456789)
• 10 digit number that begins with 089 (Test case: 0893456789)

• Equivalence classes (invalid)
• an input that is not a number (Test case: ABC)
• a <10 digit number (Test case: 55)
• a >10 digit number (Test case: 123456789101112)
• a 10 digit number that doesn’t begin with 083, 085, 086, 087, or 089
(Test case: 0123456789)

Boundary tests
• Focuses on the conditions at the boundary of the equivalence

classes
• Instead of selecting any element in the equivalence class,

boundary testing requires that the elements be selected from
the “edges” of the equivalence class

• Assumption is that developers often overlook special cases at
the boundary of the equivalence classes

• Boundary cases
• a 10-digit input that is not a number (Test case: ABCDEFGHIJ)
• a 10-digit input that begins with 083, 085, 086, 087, or 089 but is not a

number (Test case: 087DEFGHIJ)
• a 9-digit number that begins with 083, 085, 086, 087, or 089 (Test

case: 086123456)
• an 11-digit number that begins with 083, 085, 086, 087, or 089 (Test

case: 08612345678)

Exercise
• Use a TDD approach to write a method in a Customer

class to add a valid mobile phone number

Valid
cases

Invalid cases

Boundary cases

Refactor

Testing code with dependencies

• Often the application logic that we want to test will have
some dependencies on external services or components.

• In unit testing, we want to isolate our component under
test from any dependencies
• otherwise we’re doing integration testing

• This is problematic as our application logic won’t work
without its dependencies

• Solution: We can create a stub to simulate the
functionality of this external component

Stub example: discount vouchers

• Suppose we have functionality to add a voucher to our
shopping cart which can result in a monetary discount

• However, the validation of vouchers is done by an
external web service which returns the value of the
voucher to be discounted from the shopping cart total

• We want to test that when we add a valid voucher, we get
the correct total for our shopping cart

Our test case…

…and our implementation…

we haven’t implemented this yet

• We are going to use a discount variable to keep track of
our total to discount

• We can then change our existing total() method to
subtract the discount before returning the total cost of the
cart.

Our stub…

• Create an interface to represent the external service

Now, let’s use it in our application

…and inject it into our test

TDD guidelines
• Test the expected outcome of an example
• Think about examples and outcomes, not code or how it

should work in detail
• Don’t pre-judge design… let your tests drive it
• Write the minimum code to get your tests to pass
• Each test should validate one single piece of logic

Coverage and Path testing
• Code coverage is a measure of how many lines of your

code are executed by automated tests
• Path testing refers to test cases that exercise all possible

paths through the code at least once
• idea is that most faults will trigger failures in this way

• Requires knowledge of the source code and data
structures

• Impractical to achieve 100% code coverage for large
projects

Summary
• Test Driven Development is an iterative software

development process where the production of tests drive
the development of the code
• Consists of a cycle of Red, Green, Refactor

• Unit testing finds differences between a specification of
an object and its realisation as a component

• Unit testing in TDD involves the production of test cases
which are sets of inputs and expected outcomes for
examples of use of a test component

• The purpose of test cases in TDD is to cause failures and
detect faults that point to missing or erroneous
implementation of specified functionality

Next time…
• Strings

