
CT331

PROGRAMMING PARADIGMS

Andreas Ó hAoḋa
University of Galway

2023-11-10

CONTENTS

Contents

1 Introduction 1
1.1 Lecturer Contact Information . 1
1.2 Syllabus . 1

1.2.1 Marking . 1
1.3 Programming Paradigms . 1
1.4 Influences on Paradigms . 1
1.5 Why Learn Different Paradigms? . 2

1.5.1 Why Learn Functional Programming? . 2
1.5.2 Why Learn Logical Programming? . 2
1.5.3 Why Learn Imperative Programming? . 2
1.5.4 Why Learn Object-Oriented Programming? . 2

2 Overview of Object-Oriented Programming 2
2.1 Fundamentals of Object-Oriented Programming . 3
2.2 Four Major Principles of OOP . 3

2.2.1 Encapsulation . 3
2.2.2 Abstraction . 3
2.2.3 Inheritance . 3
2.2.4 Polymorphism . 3

3 Imperative & Procedural Programming 3
3.1 Imperative Programming . 3
3.2 Procedural Progamming . 3

3.2.1 Structured Programming . 3
3.3 The C Programming Language . 4

3.3.1 Pointers . 5
3.3.2 Arrays & Pointers . 6
3.3.3 Generic Swap function? . 6

3.4 Stacks vs Heaps . 6

4 Dynamic Memory 8

5 Functional Programming 8
5.1 Lisp, Racket, & Scheme . 8

5.1.1 Function vs Literal . 8
5.1.2 S-Expressions . 8

5.2 Lists . 8
5.2.1 define . 9
5.2.2 list& append . 10

i

1 INTRODUCTION

1 Introduction

1.1 Lecturer Contact Information

• Finlay Smith, School of Computer Science.

• finlay.smith@universityofgalway.ie

1.2 Syllabus

This module introduces three different programming paradigms: Procedural, Functional & Logical. This will involve
3 programming languages: C (mostly function pointers - knowledge of C is assumed), LISP (a functional language)
and Prolog (a logical language). Both LISP and Prolog will both be introduced but neither will be fully covered in this
module. There are no books required or recommended for this course.

1.2.1 Marking

30% of the marks for this module will be for the three assignments (one for each paradigm). The remaining 70% of the
marks will be for the written exam.

1.3 Programming Paradigms

A paradigm is a typical example or pattern of something; a pattern or model. A programming paradigm is a pattern
or model of programming. Various types of programming languages are better suited to solving particular problems.
Programming language implementations differ on semantics & syntax:

• Syntax refers to the rules of the language; it allows us to form valid expressions & statements.

• Semantics refers to the meaning of those expressions & statements.

Programming languages can be classified according to the features that they have with respect to both the conceptual &
implementation level. An alternative definition for a programming paradigm is a collection of abstract features that
categorise a group of languages.
“The popularity of a paradigm is due to one community deciding which problems are important to solve and then supporting
the most promising paradigm for attacking these problems.” – Thomas Kuhn.

1.4 Influences on Paradigms

• Computer Capabilities.

• Applications.

• ProgrammingMethods: Language designs have evolved to reflect changing understanding of good methods for
writing large & complex programs.

• ImplementationMethods: Early compilers to optimised compilers; structured engineering to software engineer-
ing; data abstraction to OO.

• Theoretical Studies: Formal maths methods have deepened our understanding of strengths & weaknesses of
language features and thus influenced the choice & inclusion of those features.

• Standardisation (has proved to be a strong conservative influence on the evolution of programming language
design).

1

mailto://finlay.smith@universityofgalway.ie

2 OVERVIEWOFOBJECT-ORIENTED PROGRAMMING

1.5 Why Learn Different Paradigms?

• Different paradigms make different trade-offs; What’s tricky in one paradigm is “baked in” in another.

• Changing paradigms forces you to “change gears”.

• It will prepare you for learning languages that you’ve never heard of or that may not exist yet.

• Helps you to decide what the best tool for the job is.

• Helps you to understand languages at a deeper level.

1.5.1 Why Learn Functional Programming?

• It’s one of the oldest paradigm (Lisp: 1958, still widely used today).

• Heavily based on mathematical concepts (proofs, lambda calculations).

• Elegant solutions (recursion).

• Other paradigms can be interpreted in terms of functional programming.

1.5.2 Why Learn Logical Programming?

• Long history.

• ALlows implementation of things that are difficult in other paradigms.

• Very different

• Helps to conceptualise logical problems.

1.5.3 Why Learn Imperative Programming?

• The oldest paradigm – goes back as far as punch cards &magnetic loops.

• Much closer representation of how the machine actually works, i.e. “closer to the metal”.

• Can help to recognise optimisation issues / computational bottlenecks.

• Contextualises many other systems (UNIX, Linux, etc.).

1.5.4 Why Learn Object-Oriented Programming?

• Tries to represent the real world.

• Abstraction & inheritance.

• Object-Oriented is everywhere.

2 Overview of Object-Oriented Programming

Object-Oriented languages include:

• Java.

• C#.

• VB.NET.

• Scala.

• JavaScript.

• Python.

• PHP.

• Smalltalk.

• Ruby.

2

3 IMPERATIVE & PROCEDURAL PROGRAMMING

2.1 Fundamentals of Object-Oriented Programming

• Everything is an object.

• Computation is performed by message-passing.

• Every object is an instance of a classwhich is a grouping of similar objects.

• Inheritance describes the relationships between classes.

Object-Oriented Programming focuses on the objects that the program represents and allows them to exhibit “be-
haviour”.

2.2 Four Major Principles of OOP

2.2.1 Encapsulation

Data is hidden as if encapsulatedwithin the object. Direct access to the data is restricted, instead we use methods to
get, set, & manipulate data. Manipulation of data is hidden. The object caller doesn’t need to know what’s actually
going on behind the scenes. We can be (fairly) sure that nobody else is fiddling with our data.

2.2.2 Abstraction

Functionality can be defined without actually being implemented. High-level interfaces provide method types/names
without implementation. This allows case-specific implementation, allows one person to define the functionality &
another to implement, and allows the representation to be changed without affecting “public” view of the class. This is
helpful when designing large systems.

2.2.3 Inheritance

Classes can inherit functionality without re-implementing. This prevents the duplication of code. This is also helpful
when designing large systems; it encourages a well-structured codebase.

2.2.4 Polymorphism

Objects of one class can be treated like objects of other classes.

3 Imperative & Procedural Programming

3.1 Imperative Programming

Imperative programming involves telling the computer to perform a set of actions, one after the other. Most
programming languages have imperative aspects. Imperative programming consists of a list of instructions, GOTO
statements, and little or no structure. E.g., Assembly.

3.2 Procedural Progamming

Procedural progamming splits actions into procedures or tasks. Procedures can be made up of other procedures
(composition, recursion). The code is structured, uses “functions” or procedures, encourages code re-use, and encourages
encapsulation & composition. Note that procedural functions are not to be confused with Functional Programming.

3.2.1 Structured Programming

Examples of structured programming languages include basically everything except Assembly.

• Code is structured.

• while, for, if, else, switch, class, function, etc.

3

3 IMPERATIVE & PROCEDURAL PROGRAMMING

• Less emphasis on GOTO statements.

• Creating a structure to manage instructions.

• Allows more complex programs to be built.

• Easier to understand.

• Helps to avoid GOTO bugs & spaghetti code.

3.3 The C Programming Language

C is a procedural, imperative, structured “systems language”. It came into being around 1969-1973 in parallel with the
development of the UNIX operating system. Basic Compiled Programming Language (BCPL)→B→C... C has had
an ANSI standard since the 1980s. Now one of the most popular & powerful languages in use today.

1 // header inclusion: functionally defined in stdio.h is added into the program by the compiler,

specifically the Linker step of the compiler↪→

2 // "stdio" is short for "Standard Input / Output"

3 #include <stdio.h>

4

5 // function prototype: tells the compiler that the function exists before it has been implemented

6 // allows the compiler to handle recursion, or functions calling each other

7 void sayHello();

8

9 // function definition: implements the function

10 // note: data type, arguments, return

11 void sayHello() {

12 // calling a function: printf takes a char* argument

13 printf("Hello World!\n");

14 }

15

16 // main function: the entry point to the progam

17 // returns int

18 // takes two arguments: argc (the number of command-line arguments) & argv (an array of the

arguments)↪→

19 int main(int argc, char* argv[]) {

20 // calling a function: sayhello takes no argument. nothing is returned

21 sayHello();

22 return 0;

23 }

Listing 1: Example C Program: helloWorld.c

1 #include <stdio.h>

2

3 int add(int a, int b);

4

5 int add(int a, int b) {

6 return a+b;

7 }

8

9 int main(int argc, char* argv[]) {

10 printf("Let's add some numbers...\n");

11 int first = 8;

4

3 IMPERATIVE & PROCEDURAL PROGRAMMING

12 int second = 4;

13 printf("The first number is %d\n", first);

14 printf("The second number is %d\n", second);

15

16 // "add" is a function that returns an int

17 // the returned int is stored in the "result" variable - they must have the same data type

18 int result = add(first, second);

19

20

21 // "%d" is for ints - strictly decimal ints

22 // "%i" is any int including octal and hexadecimal

23 printf("When we add them together we get: %d\n", result);

24

25 return 0;

26 }

27

Listing 2: Example C Program: addNumbers.c

3.3.1 Pointers

1 int* p; // variable p is a pointer to an integer value

2 int i; // integer value

You can dereference a pointer into a value with *.

1 // ineger i2 is assigned the integer value that the pointer p is pointing to

2 int i2 = *p;

You can get a pointer to a value with &.

1 // pointer p2 points to the address of integer i

2 int* p2 = &i;

A function effectively breaking the convention that arguments are not changed in a function is a side effect. This is
done by passing addresses.

1 #include<stdio.h>

2

3 void swap(int* x, int* y) {

4 int temp = *x;

5 *x = *y;

6 *y = temp;

7 }

8

9 int main(int argc, char* arv[]) {

10 int a = 8;

11 int b = 4;

12 swap(&a, &b); // this should make a=4 & b=8

13 }

5

3 IMPERATIVE & PROCEDURAL PROGRAMMING

3.3.2 Arrays & Pointers

1 int intArr[5]; // an integer array of size 5

2 // intArr is a pointer to the 0th element of the array - the same as &intArr[0]

3

4 intArr[2] = 3; // same as *(intArr+2) = 3;

5 // (intArr + 2) is of type (int*) while intArr[2] is of type int

6 // in the latter case, the pointer is dereferenced

7 // (intArr + 2) is the same as (&(intArr[2]))

8 // note that the + operator here is not simple addition - it moves the pointer by the size of the

type↪→

3.3.3 Generic Swap function?

What about a swap function that works on any data type?

1 void swap(void* x, void* y) {

2 void temp = *x; // won't work!

3 // we don't know what size data *x points to, so void temp can't work

4 // it is impossible to have a variable of type void for this reason

5 // but we can have a pointer of type void*

6

7 *x = *y;

8 *y = temp;

9 }

Listing 3: (Non-functional) Attempt at a Generic swap Function
void* is a specific pointer type which points to some location in memory. It has no specific type and therefore no
specific size.

sizeof(<type>) returns the size in bytes of the object representation of <type>. sizeof() is built-in to the C lan-
gauge.

void* memcpy(void* to, const void* from, size_t size). The memcpy() function copies size number of bytes
from the object beginning at location from into the object beginning at location to. The value returned by memcpy() is
the value of to. The memcpy() function is defined in string.h.

1 #include <string.h>

2

3 void generic_swap(void* vp1, void* vp2, int size) {

4 char temp_buff[size]; // need malloc?

5 memcpy(temp_buff, vp1, size);

6 memcpy(vp1, vp2, size);

7 memcpy(vp2, temp_buff, size);

8 }

Listing 4: Generic Swap Function

3.4 Stacks vs Heaps

A stack is a LIFO data structure of limited size & limited access. It supports only two operations: PUSH&POP. Stacks
are very fast. The limited size of stacks can result in stack overflow, and you cannot free memory in a stack except by
POPping. To continue the swap() function from above:

6

3 IMPERATIVE & PROCEDURAL PROGRAMMING

1 // first, a, b, & c are pushed onto the stack

2 char a = 'a';

3 int b = 100;

4 int c = 50;

5

6 // when swap() is called, x, y, & temp are pushed onto the stack

7 void swap(int* x, int* y) {

8 int temp = *x;

9 *x = *y;

10 *y = temp;

11

12 // when swap returns, x, y, & temp are popped from the stack and their memory is no longer in

use↪→

13 }

14

15 swap(b, c);

But what if we want to keep track of temp and use it later?

A heap is an unordered data structure of (theoretically) unlimited size and global access. The heap operations are
allocate & free. Heaps are slower than stacks. Heaps are also harder to manage than stacks as they can get memory leaks.

1 // first, b & c are pushed onto the stack

2 int b = 100;

3 int c = 50;

4

5 // when swap() is called, x, y, & temp are pushed onto the stack

6 void* swap(int* x, int* y) {

7 int temp = *x;

8

9 // we allocate space in memory to perm using malloc

10 int* perm = malloc(int);

11 perm = &temp;

12 x = y;

13 y = *perm;

14

15 // when swap returns, x, y, & temp are popped from the stack

16 // the memory allocated to perm is still in use

17 return perm;

18 }

19

20

21 void* p = swap(b, c);

22 free(p);

Why not just return temp in the same way?

• Even when this function terminates, another function can access perm using that pointer.

• If we need to store a large or undeterminable amount of data, we can safely use the heap as there is no risk of
stack overflow and no risk of losing reference or accidental de-allocation of memory.

7

5 FUNCTIONAL PROGRAMMING

4 Dynamic Memory

FINISHOFF

5 Functional Programming

Given the same problem to solve, a program for said problem in any programming language can be considered equivalent
to any other at themachine level in that the programswill result in changes to values contained inmemory cells. However,
there can be quite significant differences at both the conceptual & implementation level.

5.1 Lisp, Racket, & Scheme

LISP (more commonly referred to as Lisp) is a contraction of List Processing. Scheme is a dialect of Lisp, andRacket
is an implementation of Scheme. Lisp uses prefix (Polish) notation, e.g.: (+ 3 4), (* 5 6), (- 4 (* 5 6)), etc.

5.1.1 Function vs Literal

Parentheses are used to represent a function:

1 (+ 3 4) ; = 7

2 (* 5 6) ; = 30

3 (- 4 (* 5 6)) ; = -26

A single quote is used to represent a literal:

1 (+ 3 4) ; = 7

2 '(+ 3 4) ; = '(+ 3 4)

Rather than considering + as the name of a function, the quote means to take everything literally, i.e. “+” is just a word.
Nothing is evaluated.

5.1.2 S-Expressions

Both code & data are structured as nested lists in Lisp. Symbolic Expressions or s-expressions, sexprs, or sexps are a
notation for nested list structures. They are defined with a very simple recursive grammar, but produce a very flexible
framework for computing. An s-expression is defined as:

1. An atom. Atoms are considered to be “indivisible”. Primitive data types like numbers, strings, booleans, etc. are
atoms. Lists & pairs (s-expressions) are not.

2. An expression in the form (X . Y), where X& Y are s-expressions.

A pair is two pieces of data together. They are created by the cons function, which is short for “construct”, e.g.
(cons 1 2). The two values joined with cons are printed between parentheses interspaced by a . (a period):

> (cons "banana" "split")

'("banana" . "split")'

5.2 Lists

A list is an ordered group of data. List elements are separated by a space. The list syntax is a shorthand for an s-expression.
Lists are displayed between parentheses using the ' (single quote character).

'(1 2 3) ; list of numbers

'("this" "that" "the other") ; list of strings

'(1 2 "three" 4) ; list of mixed data types

8

5 FUNCTIONAL PROGRAMMING

Lisp uses nested lists (which are essentially linked lists). We can access the first element of a list using the car function:

> (car '(1 2 3))

1

We can access the rest of the list using the cdr function:

> (cdr '(1 2 3))

'(2 3)

cdr is analogous to element->rest in our C linked list.

> (car (cdr '(1 2 3)))

2

There is a shorthand for a combination of cars & cdrs (up to 4 operations usually but it depends on the Scheme
environment), where * is a or d or a combination (if supported). For example, write a sequence of cars & cdrs to extract:
“d” from list (a b c d e f) named lis:

1 ;;;; these two are equivalent

2 (car (cdr (cdr (cdr lis))))

3 cadddr(lis)

Lists are really just cons pairs where these second element is another list or empty; empty is a special word, similar to
NULL in other languages.

> (cons 2 empty)

'(2)

> (cons 1 (cons 2 empty))

'(1 2)

The built-in functions list& append provide a more convenient way to create lists.

5.2.1 define

define binds a variable to some data. Its format is (define variable value). define is used for user-defined functions.
Note that user-defined functions can be used within other use defined functions as long as the functions are defined
before they are invoked.

1 (define (function_name parameter-list)

2 Function-body

3)

4

5 ;;; calculates the absolute addition of two numbers where the function abs returns the absolute

value of a number↪→

6 (define (sumabs num1 num2)

7 (+ (abs num1) (abs num2))

8)

> (sumabs 2 -3)

5

9

5 FUNCTIONAL PROGRAMMING

5.2.2 list& append

The list function constructs a list from components. It takes the form (list el-1 el-2 el-n). These components
can be symbols, numbers, or lists.

append collects components from several lists into one list. Its arguments must be lists. append takes the form
(append list1 list2 listn).

10

	Introduction
	Lecturer Contact Information
	Syllabus
	Marking

	Programming Paradigms
	Influences on Paradigms
	Why Learn Different Paradigms?
	Why Learn Functional Programming?
	Why Learn Logical Programming?
	Why Learn Imperative Programming?
	Why Learn Object-Oriented Programming?

	Overview of Object-Oriented Programming
	Fundamentals of Object-Oriented Programming
	Four Major Principles of OOP
	Encapsulation
	Abstraction
	Inheritance
	Polymorphism

	Imperative & Procedural Programming
	Imperative Programming
	Procedural Progamming
	Structured Programming

	The C Programming Language
	Pointers
	Arrays & Pointers
	Generic Swap function?

	Stacks vs Heaps

	Dynamic Memory
	Functional Programming
	Lisp, Racket, & Scheme
	Function vs Literal
	S-Expressions

	Lists
	define
	list & append

