
CT5106

JPA (Java Persistence API)

Connecting to DB’s

 There are number of ways we can connect to the DB – we will
look at the first 2 for now:

1. Connecting IDE (NEtBeans) to DB (MySQL)
 The purpose of this is to allow us to explore / query DB from with the

IDE environment

2. Connecting application server (Payara) to DB (MySQL)
1. The purpose of this is to allow our application to use JPA (which

uses the JDBC driver) which relies on connection pools we create
from within the Payara admin tool

3. Adding a dependency to Java (Maven) project to allow
reverse engineering of database (to classes)

You need a MySQL database

 You can use the MySQL database you used for other modules
 If you don’t have one, you can create it on the CS school

intranet: https://www2.it.nuigalway.ie/intranet/
 You will need to use the admin userid and password that you

receive when you set up the database

https://www2.it.nuigalway.ie/intranet/

1. Connecting IDE (NetBeans) to DB
(MySQL)

 We can create connections to databases from within
NetBeans

 These connections can be used to run queries, see
DB structure, insert / delete records etc

 These connections can also be used to engineer
database tables and relations to create entity
classes

Download MySQL JDBC connector

 Go to https://dev.mysql.com/downloads/connector/j/

 Select ‘Platform Independent’ as the OS and then click on ‘Go to Download
Page’

 It will bring you to the MySQL Community Downloads page, and you should
click on the ‘Download Now’ page,
 but this will bring you to the Oracle site - you will need to log in to the Oracle site to

access the download

 Download the ‘mysql-connector-java-xxx.zip’ file – I downloaded the
mysql-connector-java-8.0.30.zip version

 Unzip and put somewhere you will remember – I put mine in the NetBeans
installation folder

 Then go back to NetBeans

https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-8.0.30.zip

Start with connecting to MySQL

 In NetBeans

 Select Services tab

 Right-click on Databases

 Select ‘New Connection’

 Select Driver: MySQL

 You will need to select the ‘Add’ button to
add the driver file

Set connection properties and test
connection
 Enter your MySQL

database connection
properties

 Check the ‘Remember
password’ box

 Click on ‘Test Connection’

 Hopefully it will say
‘Connection Succeeded’

 Click Next

Choose database schema

 If you have only one schema in the database, this will show no
schema to select, like this, so click on ‘Next’

Give your connection a name

 Something short would be good!
 Then click ‘Finish’ and it’s done

See what’s in your database

 You should be
able to drill
down into the
database and
see the tables,
views and
procedures

Run an SQL query

 Right click on ‘Tables’
and select ‘Execute
Command’

Write and run query

 This will open a query tab on the RHS
 Enter a simple query and click on the green triangle

to run

Query results

 These will be shown in a tab on the bottom RHS

2. Connecting application server (Payara)
to DB (MySQL)

 We just added it to NetBeans so that we can see
into your database from there, but to run
applications that use JPA (and hence the jdbc
connector to MySQL), we need to add the mysql
connector .jar to the application server

 Go to your Payara server installation folder and
open the /bin folder

 You should see just a few files there, including
‘asadmin.bat’

 Double click on ‘asadmin.bat’ to run it

Add library in asadmin

 Enter the command ‘add-library’

 Then provide the location of the mysql connector jar file, like in the example
below

It should put the .jar file in

<Payara install directory> \glassfish\domains\domain1\lib

Open Payara admin tool

 Right click on your server in NetBeans and select ‘View Domain Admin
Console’

 Go down to Resources and drill down to JDBC Connection Pools

 …and select New

Create new JDBC connection pool

 Pick a simple name
 Resource type: javax.sql.DataSource
 Database Driver Vendor: MySQL

…next

 Replace the Datasource Classname with:
 com.mysql.cj.jdbc.MysqlDataSource

…next

 Then scroll down to ‘Additional Properties’

 Select all properties and delete them. Then add the following properties - using
your own values of course!

If you are successful

 When you finish you should be able to successfully
Ping the database

Now create a JDBC resource which uses
that connection pool

 Under JDBC Resources select ‘New’

Set up the new JDBC Resource

 Give it a JNDI name: it must be of the form: jdbc/xxx

 Select the pool you have just created

 That’s it – select ‘OK’

Next Create Persistence Unit

 This is used by the application container to get connections to the database

 Right click on the Project name

 Select New -> Other

Select Persistence Unit

 The ‘New file’ dialog pops up
 Select ‘Category’ -> ‘Persistence’ and then

‘FileTypes:’ -> ‘Persistence Unit’
 Click on ‘Next’

Persistence Unit properties

 You should give the PU (Persistence Unit) a simple name

 Then for the Data Source, select the new JDBC Resource you just created

 And accept the other default settings

Persistence Unit file

 NetBeans will create a file called ‘persistence.xml’ which contains the information
you have entered

 You shouldn’t have to change anything in it for now, so just close it

JPA overview

 Bridging the gap between object-oriented and relational
models : ORM (Object-Relational Mapping)

 Used to persist our object data in relational form
 Generally 1:1 mapping is not a problem, although you may

have to map parts of a Java object to different columns, e.g.

Java DB

Relations are where it get’s tricky

 There can be multiple scenarios for mapping classes to tables or vice-versa

 We may have to introduce PK’s or associate classes at either end

Java

DB

Inheritance also needs handling

 A is the simplest scenario, but queries are separate for emp types

 B is efficient but not normalised, and mapping is more complicated

 C is the likely DB design choice, but requires more complicated classes, queries and
additional association class

Classes or Tables first

 You will generally have to deal with both situations
 Applications for which you generate a new DB schema based on the classes

 Applications which access existing database (schemas) and where you have to
decide how to manage the ORM

 JPA supports (on the Java side) all of the mappings you would expect, e.g.
 One-to-one

 One-to-many

 Many-to-one

 Many-to-many

 These mappings (and other aspects of the ORM) are defined on the Java
side using annotations, e.g.
 @Entity

 @Table

 @OneToMany

@Entity

 An entity (from the JPA perspective at least) is an object
 Is persistable

 Is unique (must have a primary key / unique id)

 Transactional (can perform create, update, delete)

 Granularity (not primitive types)

 Basic requirements to transform Java class into entity
 No-argument constructor

 Annotation – at a minimum we need:
 @Entity, @Id

 Generally entities don’t have to be serialisable, but keys / composite key classes
do

Employee entity class
@Entity

@Table(name = "Employee")

public class Employee implements Serializable

{

 @Id

 @Column(name="id")

 private int empid;

 @Column(name = "name")

 private String name;

 @Column(name = "salary")

 private long salary;

 public Employee()

 {

 }

 public Employee(int empid, String name, long salary)

 {

 this.empid = empid;

 this.name = name;

 this.salary = salary;

 }

Identify the class as a JPA entity

Specify which table to map to

Serializable not strictly speaking necessary but no
harm

This is the PK

@Column : Can specify
which columns to map

to – obviously types
must be compatible

Empty constructor

Also provide other
constructor(s)

PLUS getters and setters
mandatory

@Entity and @Id

Are the minimum
requirements for JPA to
be able to persist objects

JPA Entity Manager

 We need an entity manager (em), which implements the JPA
 The entity manager is the interface by which we interact with the Persistence Context (basically a

cache within which entities and transactions are managed)

 The em is used to access the db and run all queries

 Objects are managed by the em

 An Entity Manager Factor (emf) interface is used to provide an em, e.g.
EntityManagerFactory emf=Persistence.createEntityManagerFactory(PUame");

 Where PuName is the name of a persistence unit (defined in Persistence.xml)

 Rather than create the emf and em ourselves, though, we can use Context
Dependency Injection, where the application container provides and manages the
em
 This just requires adding these lines to the class where you want to use the em:

@PersistenceContext(unitName = "MyPU")

private EntityManager em;

Benefits of container managed entity
manager

 Don’t need to open and close the em / emf ourselves
 It provides container-managed transactions (which can span

different objects with the application)

A simple example
 Look at the GetEmployees.java servlet in the sample code

@WebServlet(name = "GetEmployees", urlPatterns = {"/GetEmployees”})

public class GetEmployees extends HttpServlet
{
 @PersistenceContext(unitName = "MyPU")
 private EntityManager em;

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
 throws ServletException, IOException
 {
 List<Employee> employees = new ArrayList<>();

 Query q = em.createQuery("select e from Employee e");
 employees = q.getResultList();

 HttpSession session = request.getSession();
 session.setAttribute("employees", employees);
 RequestDispatcher dispatcher =
request.getRequestDispatcher("displayEmployees.jsp");
 dispatcher.forward(request, response);
 }

Use a container-managed
entity manager

This is a JPA Query, written in
JPQL

Inserting an entity

 Look at code in CreateEmployee.java servlet

 Some of the more important lines:

@PersistenceContext(unitName = "MyPU")

private EntityManager em;

@Resource

private UserTransaction userTransaction;

…

Employee e1 = new Employee(id, name, (long) salary);

userTransaction.begin();

em.persist(e1);

em.flush();

userTransaction.commit();

Using a container managed
persistence context

Using a container managed
transaction

Begin a transaction

Save entity to database

Make sure changes in the persistence context are saved to the DB

Commit the transaction

Running a query

 Just some selected lines from servlet SalariesAbove.java

@PersistenceContext(unitName = "MyPU")

private EntityManager em;

…
String sthreshold = request.getParameter("threshold");

List<Employee> employees = new ArrayList<>();

Query q = em.createQuery("select e from Employee e where

e.salary > " + sthreshold);

employees = q.getResultList();
Create a Query

Run query and get resultset

find

 Used to find an entity given it’s primary key
 Sample lines from FindEmployee.java

@PersistenceContext(unitName = "MyPU")
private EntityManager em;
...

String id = request.getParameter("id");
int iid = Integer.parseInt(id);

Employee e = em.find(Employee.class, iid);

remove

 Like create, update and delete type queries, this must be in a transaction

 Select lines from DeleteEmployee.java:

 @PersistenceContext(unitName = "MyPU")

private EntityManager em;

@Resource

private UserTransaction userTransaction;

..

String sid = request.getParameter("id");

int iid = Integer.parseInt(sid);

userTransaction.begin();

 Employee e = em.find(Employee.class, iid);

 em.remove(e);

 em.flush();

userTransaction.commit();

Must (find) bring entity into the
persistence context first – i.e. it is then

in the ‘managed’ state

Querying the Persistence Storage

 The Java Persistence query language (JPQL) allows you to perform both
dynamic and static queries on the entities in your application.

 The language is like SQL in many ways. However, it does have benefits over
SQL. The Java Persistence query language operates over the entities and
their relationships rather than over the actual relational database schema.
This makes queries portable regardless of the underlying database.

 Queries come in three different flavours: select, update, and delete.
 A select query returns a set of entities from your database. The set usually has

specific constraints that limit the result set.

 An update query changes one or more properties of an existing entity or set of
entities.

 A delete statement removes one or more entities from the database.

40

Select

 You have several options to create a query. The most basic way is to simply ask the
entity manager for one. The select query applies your specific criteria when it
retrieves entities.

 you may want to programmatically set the parameters of the where clause. You can
do that by calling the query object's setParameter method when it has parameterized
elements. The following code creates the same query and prints the results, but it
allows you to dynamically set the name:

41

Query q1 = em.createQuery("select e from Employee e where e.name = 'mary'");

Query q2 = em.createQuery("select e from Employee e where e.name = :name");

q2.setParameter("name", "mary");

Employee e2 = (Employee) q2.getSingleResult();

Update

 One you've retrieved a managed entity, either by querying the database with the
query language or by using the find method, updating the entity is as easy as
modifying its properties and committing the open transaction.

42

userTransaction.begin();

{

 e2.setSalary((long) 450000.00);

 em.persist(e2);

}

userTransaction.commit();

More sample queries
43

 From JPQLQueries.java

 No transaction needed for straight query without change to DB

// Select Query

Query q1 = em.createQuery("select e from Employee e where e.name = 'mary'");

Employee e1 = (Employee) q1.getSingleResult();

System.out.println("Employee with name mary has id: " + e1.getEmpid());

System.out.println();

 Using parameterised elements allows us to easily insert data
values into queries

// Select Query with parameterised elements

Query q2 = em.createQuery("select e from Employee e where e.name = :name");

q2.setParameter("name", "Marg");

Employee e2 = (Employee) q2.getSingleResult();

System.out.println("Employee with name Marg has id: " + e2.getEmpid());

System.out.println();

 To save changes to an entity which is already ‘managed’ (has
already been retrieve / created using the entity manager) use
the merge() method

// Update

e2.setSalary((long) 450000.00);

userTransaction.begin();

{

 em.merge(e2);

 em.flush();

}

userTransaction.commit();

46

47

48

Entity Relationship mapping

 Example where I have a table artworks, with a
single foreign key, referencing the table artists

JPA mapping on the artists side

 Need a Collection to hold the artworks
 Specifying the name of the Java property used to

reference this Artist object on the other side of the
relationship in Artworks

JPA mapping on the artworks side

 Just need to reference a single Artist object
 Specifying the name of the property and column to

map to in the Artist object

Autogenerate classes using
NetBeans

 Need to fill in all these correctly

 Pick schema if there is one

 Accept default here

Some other examples

 Many to many

 Since both sides should be able to reference the other, we need to create a
separate table to hold the foreign keys

 In such a join table, the combination of the foreign keys will be its composite
primary key

https://www.baeldung.com/jpa-many-to-many

@Entity class Student
{
 @Id
 Long id;

 @ManyToMany
 @JoinTable(name = "course_like",
 joinColumns = @JoinColumn(name =
 "student_id"), inverseJoinColumns
 = @JoinColumn(name = "course_id"))
 Set<Course> likedCourses;

// additional properties
// standard constructors, getters,
and setters
}

@Entity class Course
{
 @Id
 Long id;

 @ManyToMany (mappedBy =
"likedCourses")
 Set<Student> likes;

// additional properties
// standard constructors, getters,
and setters
}

Using a composite key

 when the relationship itself has an attribute

 Need another table

 Need to create a composite (primary) key class

@Embeddable class CourseRatingKey implements Serializable
{
 @Column(name = "student_id")
 Long studentId;

 @Column(name = "course_id")
 Long courseId;

 // standard constructors, getters, and setters
 // hashcode and equals implementation
}

Then the entity class itself

@Entity class CourseRating
{
 @EmbeddedId
 CourseRatingKey id;

 @ManyToOne
 @MapsId("studentId")
 @JoinColumn(name = "student_id")
 Student student;

 @ManyToOne
 @MapsId("courseId")
 @JoinColumn(name = "course_id")
 Course course;

 int rating;

 // standard constructors, getters, and setters
}

@Entity class Student
{
 @Id
 Long id;

 @OneToMany(mappedBy = "student")
 Set<CourseRating> ratings;

// additional properties
// standard constructors, getters,
and setters
}

@Entity class Course
{
 @Id
 Long id;

 @OneToMany(mappedBy = "course")
 Set<CourseRating> ratings;

 // additional properties
 // standard constructors, getters,
and setters
}

	CT5106
	Connecting to DB’s
	You need a MySQL database
	1. Connecting IDE (NetBeans) to DB (MySQL)
	Download MySQL JDBC connector
	Start with connecting to MySQL
	Set connection properties and test connection
	Choose database schema
	Give your connection a name
	See what’s in your database
	Run an SQL query
	Write and run query
	Query results
	2. Connecting application server (Payara) to DB (MySQL)
	Add library in asadmin
	Open Payara admin tool
	Create new JDBC connection pool
	…next
	…next
	If you are successful
	Now create a JDBC resource which uses that connection pool
	Set up the new JDBC Resource
	Next Create Persistence Unit
	Select Persistence Unit
	Persistence Unit properties
	Persistence Unit file
	JPA overview
	Relations are where it get’s tricky
	Inheritance also needs handling
	Classes or Tables first
	@Entity
	Employee entity class
	JPA Entity Manager
	Benefits of container managed entity manager
	A simple example
	Inserting an entity
	Running a query
	find
	remove
	Querying the Persistence Storage
	Select
	Update
	More sample queries
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Entity Relationship mapping
	JPA mapping on the artists side
	JPA mapping on the artworks side
	Autogenerate classes using NetBeans
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Some other examples
	Slide Number 64
	Using a composite key
	Slide Number 66
	Then the entity class itself
	Slide Number 68

