
CT5106 SOFTWARE ENGINEERING II

2 SERVLETS

Java Enterprise Edition Architecture

3

Typical process in a Servlet

 Regardless of the application, servlets usually carry
out the following routine:

1) Read any data sent by the user
 Capture data submitted by an HTML form.

2) Look up any HTTP information
 Determine the browser version, host name of client, cookies,

etc.
3) Process the submitted data & Generate the Results

 Connect to databases, connect to legacy applications, etc.
 E.g. LoginServlet might get username and password from a

form, check the data against the username/password in the
database, and return result or forward the user to the next
page

4

Life of a Servlet (cont.)

4) Format the Results
 Generate HTML on the fly

5) Set the Appropriate HTTP headers
 Tell the browser the type of document being

returned or set any cookies.

6) Send the document back to the client

5

What can you build with Servlets?
 Search Engines
 Personalization Systems
 E-Commerce Applications

 Shopping Carts
 Product Catalogs
 Intranet Applications

 Groupware Applications: bulletin boards, file sharing, etc.

Servlet

 Receive request from client (normally a Get or Post
request)

 Read the data sent by the client
 Process data and generate results
 Compose response
 Send response (explicit and implicit) to client

Servlets - Introduction

 A Java Servlet is a Java
object that responds to
HTTP requests. It runs
inside a Servlet container

 The servlet container
initialises the servlet, from
when it is available for
processing requests (GET,
POST)

 Can be used to
dynamically generate
HTML to return to browser

 Simple building block of
Java web applications

 The servlet life cycle is managed by the servlet
container. The steps are:

1. Load Servlet Class.

2. Create Instance of Servlet.

3. Call the servlets init() method.

4. Call the servlets service() method.

5. Call the servlets destroy() method.

 Step 1, 2 and 3 are executed only once, when the
servlet is initially loaded.

 By default the servlet is not loaded until the first
request is received for it.

 Step 4 is executed multiple times - once for every
HTTP request to the servlet.

 Step 5 is executed when the servlet container
unloads the servlet.

Servlet lifecycle

Useful interfaces used in servlets

Interface Description

HttpSession Allows state to be stored for a user across
one or more HTTP requests

Cookie Object used to store small amounts of
information on the client browser

ServletContext Provides methods to communicate with the
servlet container

Filter Provides means to intercept and pre-
process / post-process requests and
responses

Simple first servlet in NetBeans

Specify name for servlet and package
to put it in

Don’t need to use web.xml since JEE7

Done!

 You’ve now created a Java class which implements
the servlet methods, and which is mapped to the
URL pattern you specified

Run servlet – right click and “Run File”

 Just click OK here

Browser displays the response from the
servlet

 The servlet creates a default html page which is
sent back to the browser

 You should try changing it to print something else

Basics

 Servlets typically extend HttpServlet and override doGet or doPost, depending
on whether the data is being sent by GET or by POST.

 If you want a servlet to take the same action for both GET and POST requests,
simply have doGet call doPost, or vice versa.

 In NetBeans, this is done for us – both doGet and doPost are redirected to
processRequest by default (you can of course change this if you want)
 Expand doGet and doPost code to see the redirection

Request / Response

 Both doGet and doPost take two arguments: an
HttpServletRequest and an HttpServletResponse.
 The HttpServletRequest lets you get at all of the incoming data; the class has

methods by which you can find out about information such as form (query)
data, HTTP request headers, and the client’s hostname.

 The HttpServletResponse lets you specify outgoing information such as HTTP
status codes (200, 404, etc.) and response headers (Content-Type, Set-Cookie,
etc.).

 Most importantly, HttpServletResponse lets you obtain a
PrintWriter that you use to send document content back
to the client. For simple servlets, most of the effort is
spent in println statements that generate the desired
page.

The HttpRequest object

 Provides methods to access different parts of the
request, e.g.
 Request URI
 Parameters
 Passed from client to server

 Attributes
 Can be added to request by server for passing on to next

object that processes this request
 Session
 Plus headers, request body via getInputStream() , info

on remote host etc.

Servlet That Generates HTML

 Most servlets generate HTML. To generate HTML, you
add three steps to the process just shown:
1. Tell the browser that you’re sending it HTML.
2. Modify the println statements to build a legal Web page.

 You accomplish the first step by setting the HTTP
Content-Type response header to text/html.

 The way to designate HTML is with a type of text/html,
so the code would look like this:

response.setContentType("text/html");

Dynamic HTML output

 Just building the response in HTML

 Can also append to the response using getWriter().append()

Sample output

GET vs POST

The GET Method
Note that query strings (name/value pairs) is sent in the URL of
a GET request:

/test/demo_form.asp?name1=value1&name2=value2

Some other notes on GET requests:

GET requests can be cached
GET requests remain in the browser history
GET requests can be bookmarked
GET requests should never be used when dealing with sensitive data
GET requests have length restrictions
GET requests should be used only to retrieve data

GET vs POST

The POST Method
Note that query strings (name/value pairs) is sent in the
HTTP message body of a POST request:

POST /test/demo_form.asp HTTP/1.1
Host: w3schools.com
name1=value1&name2=value2
Some other notes on POST requests:

POST requests are never cached
POST requests do not remain in the browser history
POST requests cannot be bookmarked
POST requests have no restrictions on data length

Using query string to send parameters

 You can send request parameters (e.g. from HTML
form) in the URL (GET) or in the body (POST)

 To use the GET method, right click in the body of the
servlet code

 You can then add parameters in the URL, e.g.

Retrieving request parameters

Browser displays response from the servlet

Sending request from a form

HTML form

The servlet code

Result

Dynamic => need changing data

 Normally we build the web pages dynamically
using data, typically just simple POJO’s / Java
Bean classes which carry data back from the
persistence layer to our View layer

 Servlets often used as the routers, forwarding
requests to the appropriate business logic (session
beans), and to the view layer (e.g. Java Server
Pages)

e.g. add new user object

 Starting with form which calls a servlet to create a
new user

Output from servlet

 Simple example, but shows that we can build fairly useful web
app using simple building blocks

 Also shows the need for Persistence (data layer), session
management (keep track of current state of user session /
application), validation (e.g. of inputs(), redirect (if user
creation fails, then redirect to error page or back to user
creation page

Request Dispatcher

 The RequestDispatcher class enables your servlet to "call"
another servlet from inside another servlet. The other servlet is
called as if an HTTP request was sent to it by a browser.

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException

{
 RequestDispatcher requestDispatcher =
request.getRequestDispatcher("/anotherURL.simple");

// You can call the RequestDispatcher using either its include()
// or forward() method:

requestDispatcher.forward(request, response);

}

requestDispatcher example

 Check if user exists before proceeding, and redirect
if yes

Filters

 Would be useful to be able to apply some filtering
to URLs and requests / responses before sending
them on their way

 For example, there could be checks to perform on
headers, body, request parameters etc. before
passing on to any servlets

 Or in this following simple example, we can use to
check the email address for the presence of the ‘@’
symbol

Create new class will implement the
Filter interface

Specify the URL pattern

 Which URL patterns to apply the filter to
 /* would apply to all
 Here we only apply to calls to a specific servlet

Filter code

 Here we are interrupting processing of the filter chain (there could be multiple
filters applied to some URL patterns) and redirecting back to the addUser.html
page

Session management

 A Session is a conversation between client and server – multiple
requests and responses

 We need a way to identifying which session (client) each request
belongs to

 There are a number of ways of doing this
 URL rewriting

 Attaching a session identifier with every request and response
 Servlets support doing this in case cookies are disabled

 Cookies – storing small pieces of information on client (sent back via
data in the response header)

 Session Management API
 Server just stores a single piece of information on the client (jsessionid) as a

cookie and uses it to associate the client with it’s own session object which is
held on the server

Session Tracking

 Cookies?
 You can use cookies to store an ID for a shopping session; with each subsequent

connection, you can look up the current session ID and then use that ID to extract
information about that session from a lookup table on the server machine. So,
there would really be two tables: one that associates session IDs with user tables,
and the user tables themselves that store user-specific data.

 URL Rewriting
 With this approach, the client appends some extra data on the end of each URL.

That data identifies the session, and the server associates that identifier with user-
specific data it has stored. For example, with
http://host/path/file.html;jsessionid=a1234, the session identifier is attached as
jsessionid=a1234, so a1234 is the ID that uniquely identifies the table of data
associated with that user.

Sending and Receiving Cookies

 To send cookies to the client, a servlet should use the Cookie constructor to
create one or more cookies with designated names and values, set any
optional attributes with cookie.setXxx (readable later by cookie.getXxx), and
insert the cookies into the HTTP response headers with response.addCookie.

 To read incoming cookies, a servlet should call request.getCookies, which
returns an array of Cookie objects corresponding to the cookies the browser
has associated with your site (null if there are no cookies in the request). In
most cases, the servlet should then loop down this array calling getName on
each cookie until it finds the one whose name matches the name it was
searching for, then call getValue on that Cookie to see the value associated
with the name.

Reading Cookies

Using Servlet HttpSession API

 Accessing the session object associated with the current request.
 Call request.getSession to get an HttpSession object, which is a simple hash

table for storing user-specific data.

 Looking up information associated with a session.
 Call getAttribute on the HttpSession object, cast the return value to the

appropriate type, and check whether the result is null.

 Storing information in a session.
 Use setAttribute with a key and a value.

 Discarding session data.
 Call removeAttribute to discard a specific value. Call invalidate to discard an

entire session. Call logout to log the client out of the Web server and invalidate
all sessions associated with that user.

Accessing the session object

protected void doPost(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
IOException

{

 HttpSession session = request.getSession();

}

get / set attribute values in the session object

session.setAttribute("userName", "John123");

 We keep Attributes on the session, whereas Parameters are what are
passed in on the request (e.g. from a Form)

 We will see further on that we can also associate attributes to both
the request and the application scope, as well as the session scope
 E.g. we can set attributes that just live for the scope of the

request, or also ones that can be shared across the application
with all clients

String userName = (String) session.getAttribute("userName")

Simple example

 Use session to keep track of number of visits to a
page

Servlet code

 System output

 If session doesn’t already
exist for this client, then a
new one is created and
returned by getSession()

	CT5106 Software Engineering II
	Java Enterprise Edition Architecture
	Typical process in a Servlet
	Life of a Servlet (cont.)
	What can you build with Servlets?
	Servlet
	Servlets - Introduction
	Servlet lifecycle
	Useful interfaces used in servlets
	Simple first servlet in NetBeans�
	Specify name for servlet and package to put it in
	Don’t need to use web.xml since JEE7
	Done!
	Run servlet – right click and “Run File”
	Browser displays the response from the servlet
	Slide Number 16
	Basics
	Request / Response
	The HttpRequest object
	Servlet That Generates HTML
	Dynamic HTML output
	Sample output
	GET vs POST
	GET vs POST
	Using query string to send parameters
	Retrieving request parameters
	Browser displays response from the servlet
	Sending request from a form
	HTML form
	The servlet code
	Result
	Dynamic => need changing data
	e.g. add new user object
	Slide Number 34
	Output from servlet
	Request Dispatcher
	requestDispatcher example
	Slide Number 38
	Filters
	Create new class will implement the Filter interface
	Specify the URL pattern
	Slide Number 42
	Slide Number 43
	Filter code
	Session management
	Session Tracking
	Sending and Receiving Cookies
	Reading Cookies
	Using Servlet HttpSession API
	Accessing the session object
	get / set attribute values in the session object
	Simple example
	Servlet code

