
PART 1: INTRODUCTION TO FIRESTORE AND 

CREATING OUR FIRST DATABASE



Lecture Overview
2

 Firestore Database

 Overview of Document Driven Databases

 Creating our first database

 Connecting the database to our Firebase functions

 Writing our comment data to the database

 Reading our comment data from the database

 All will be tested using POSTMAN



Purpose of the lecture
3

 The goal is to introduce you to Firestore, from the 
point of view of using it as a backend for your 
applications. The majority of the discussion will be 
practically focussed, with little theory concerning 
more advanced database concepts such as 
sharding, normalisation, concurrency, BSON, locking 
writes/reads etc.

 It will be a basic introduction on how to get a 
database connected to your applications. 



Architecture
4

Functions 

(Node.js)

Firestore (Database)

Return JSON

Firebase

Query data

Return JSON

Call API endpoint
url:api

Clients



What is Firestore?
5

 Firestore is a Document Driven Database. 

 Documents follow a property:value format

 JSON

 Scalable, highly performant and document oriented.

 The databases tend to scale more easily horizontally.



Database concepts
6

 Records in Firestore are known as “Documents”

 These documents are just JSON data

 Documents are grouped into “Collections” which 

are equivalent to tables in relational databases

 Queries are still queries, however there is NoSQL!



SQL to Firestore Terminology
7

Database

Table

Record/Tuple/Row

Database

Collection

Document

Column Field



Creating our first database
8

Login to the Firebase dashboard, click on Firestore

and then “Create database”



Open in production mode
9

 Start in production mode



Choosing a region
10

 The latency should be fairly low so the default 

region will be fine, but if you want to place it in 

Europe please select it in the dropdown and then 

click enable



Database is now created
11

 You can create a collection and add documents 

manually via this web interface. But the next step is 

to connect to it with our functions and read/write 

data. 



Summary Overview
12

 Firestore Database

 Overview of Document Driven Databases

 Creating our first database

 Connecting the database to our Firebase functions

 Writing our comment data to the database

 Reading our comment data from the database



Writing data to the database
13

 To motivate data writing we will reuse the 

postcomments function

 This is known as “Creating” a document

 I’ll create a new document every time the postcomments

function is called and save it in the database

 https://firebase.google.com/docs/firestore

https://firebase.google.com/docs/firestore


Firebase admin
14

 Firebase provides an admin library to allow your 

server code (functions) to run in an authenticated 

mode

 This means your code can connect to the database, 

create docs, delete docs, update etc. all securely

const functions = require('firebase-functions');

const admin = require('firebase-admin');

admin.initializeApp();



Promise – More async hell
15

 In ES6 a new concept was added to JavaScript to 
handle Callback hell

 These are called promises

 What’s the difference between callbacks and promises?

 Callback is passed as an argument

 Promise is something that is achieved or completed in the 
future. 

◼ Promise is an object, then() method (if promise is fulfilled) and 
catch (if promise is rejected)



Code examples
16

asyncFunc(result => {

console.log(result);

});

Callback

const promise = asyncFunc(()=>{

return new Promise…
});

promise.then(result => {

console.log(result);

});

Promise



Adding a document
17

const functions = require('firebase-functions');

const admin = require('firebase-admin');

admin.initializeApp();

exports.postcomments = functions.https.onRequest((request, response) => {

// 1. Receive comment data in here from user POST request

// 2. Connect to our Firestore database

return admin.firestore().collection('comments').add(request.body).then(()=>{

response.send("Saved in the database");

});

});

myCoolApp/Functions/index.js



Using POSTMAN POST to the fn
18



Check the database to see if it saved
19

 If you check on Firebase you should now see your 

comment



Reading our documents
20

myCoolApp/Functions/index.js

exports.getcomments = functions.https.onRequest((request, response) =>

{

// 1. Connect to our Firestore database

let myData = []

admin.firestore().collection('comments').get().then((snapshot) => {

if (snapshot.empty) {

console.log('No matching documents.');

response.send('No data in database');

return;

}

snapshot.forEach(doc => {

myData.push(doc.data());

});

// 2. Send data back to client

response.send(myData);

})

});



Test the function with POSTMAN
21



22

const functions = require('firebase-functions');

const admin = require('firebase-admin');

admin.initializeApp();

exports.postcomments = functions.https.onRequest((request, response) => {

// 1. Receive comment data in here from user POST request

// 2. Connect to our Firestore database

admin.firestore().collection('comments').add(request.body);

response.send("Saved in the database");

});

exports.getcomments = functions.https.onRequest((request, response) => {

// 1. Connect to our Firestore database

let myData = []

admin.firestore().collection('comments').get().then((snapshot) => {

if (snapshot.empty) {

console.log('No matching documents.');

response.send('No data in database');

return;

}

snapshot.forEach(doc => {

myData.push(doc.data());

});

// 2. Send data back to client

response.send(myData);

})

}); myCoolApp/Functions/index.js



OrderBy
23

 So far when reading comments from the database 

we have not given any consideration to their order

 Perhaps it would be useful to order them by 

postdate or perhaps by the number of likes etc.

 To do this we need to modify our Firebase functions 

postcomments and getcomments to order the 

comments



Creating comments - postcomments
24

 The Firestore database supports a timestamp field, 

which we can use to store the date and time each 

comment was posted. 

 Once this is recorded on each document we can 

return the comments to the user in order of their 

post date/time.



Posting comments
25

exports.postcomment = functions.https.onRequest((request, response) => {

console.log("Request body", request.body);

// Create a timestamp to add to the comment document

const currentTime = admin.firestore.Timestamp.now();

request.body.timestamp = currentTime;

admin.firestore().collection('comments').add(request.body).then(()=>{

response.send("Saved in the database");

});

});

myCoolApp/functions/index.js

Don’t forget to hit firebase deploy 

once you have made your changes



Check database
26

 When you post a comment you should now see a 

timestamp beside each comment



Ordering documents by timestamp
27

 We now modify the get comments firebase function 

to order the comments by timestamp

exports.getcomments = functions.https.onRequest((request, response) => {

// 1. Connect to our Firestore database

let myData = []

admin.firestore().collection('comments').orderBy('timestamp').get().then((snapshot) => {

if (snapshot.empty) {

console.log('No matching documents.');

response.send('No data in database');

return;

}

snapshot.forEach(doc => {

myData.push(doc.data());

});

// 2. Send data back to client

response.send(myData);

})

});

myCoolApp/functions/index.js



Lecture Overview
28

 Firestore Database

 Overview of Document Driven Databases

 Creating our first database

 Connecting the database to our Firebase functions

 Writing our comment data to the database

 Reading our comment data from the database


