N

PART 1: INTRODUCTION TO FIRESTORE AND
CREATING OUR FIRST DATABASE

OLLSCOILNAGAILLIMHU

.‘v;f UNIVERSITY oF GALWAY

Lecture Overview

I e
0 Firestore Database
1 Overview of Document Driven Databases

O Creating our first database

0 Connecting the database to our Firebase functions
0 Writing our comment data to the database
O Reading our comment data from the database

0 All will be tested using POSTMAN

Purpose of the lecture
N

0 The goal is to introduce you to Firestore, from the
point of view of using it as a backend for your
applications. The majority of the discussion will be
practically focussed, with little theory concerning
more advanced database concepts such as
sharding, normalisation, concurrency, BSON, locking
writes /reads etc.

0 It will be a basic introduction on how to get a
database connected to your applications.

Architecture
)

Firebase
Clients] .
Functions Firestore (Database)
(Node.js)
//Qg Call API endpoin'r; orlapi Query data

A

@ Return JSON Return JSON
V] ‘ B

- ¥4 Cloud
What is Firestore? ’) Firestore
N

0 Firestore is a Document Driven Database.

0 Documents follow a property:value format
o JSON

0 Scalable, highly performant and document oriented.

0 The databases tend to scale more easily horizontally.

Database concepts
N

1 Records in Firestore are known as “Documents”
0 These documents are just JSON data

0 Documents are grouped into “Collections” which
are equivalent to tables in relational databases

0 Queries are still queries, however there is NoSQL!

SQL to Firestore Terminology

8 saL b,
&
Database Database
Table Collection
Record /Tuple /Row Document
Column Field

Creating our first database
B

Login to the Firebase dashboard, click on Firestore
and then “Create database”

Project Overview O

Hosting CIOUd Fire$t0re

) Functions Realtime updates, powerful queries, and
automatic scaling

Create database
Extensions

Open in production mode
N

0 Start in production mode

Create database

o Secure rules for Cloud Firestore 2 Set Cloud Firestore location

After you define your data structure, you will need to write rules to secure your data.
Learn more [

(®) start in production mode

2°;

Yaur n:IE..tla is private by n:efe.JIt. Client T

read/write access will only be L . o

granted as specified by your security ases/{database}/documents

rules document=+x}

allow read, write: if false:

O Start in test mode Y

Your data is open by default to

enable quick setup. However, you 1

must update your security rules '

within 30 days to enable long-term

client read/write access o All third party reads and writes will be denied
Enabling Cloud Firestore will prevent you from using Cloud Datastore with this project, notably from the associated cancel Nexi

App Engine app

Choosing a region
N

0 The latency should be fairly low so the default
region will be fine, but if you want to place it in
Europe please select it in the dropdown and then
click enable

Create database

° Secure rules for Cloud Firestore a Set Cloud Firestore location

Your location setting is where your Cloud Firestore data will be stored.

A After you set this location, you cannot change it later. Also, this location setting will be the location for your
default Cloud Storage bucket.

Learn more

Cloud Firestore location

eur3 (europe-west) -

Enab ng Cloud F »—3t re will prevent you from using Cloud Datastore with this project, notably from the cancel
associated App Engine app

Database is now created

00 You can create a collection and add documents
manually via this web interface. But the next step is

to connect to it with our functions and read /write
data.

Cloud Firestore

Rules Indexes Usage % Extensions @D

@ Protect your Cloud Firestore resources from abuse, such as billing fraud or phishing

Panel view Query builder

= my-awesome-project-86da3

-+ Start collection

Summary Overview

o2
oFirestore Databease
a : £ D Driven Destel
Croati et dotel

0 Connecting the database to our Firebase functions
O Writing our comment data to the database

O Reading our comment data from the database

Writing data to the database
B

0 To motivate data writing we will reuse the
postcomments function

0 This is known as “Creating” a document

0 I'll create a new document every time the postcomments
function is called and save it in the database

O https://firebase.google.com/docs /firestore

https://firebase.google.com/docs/firestore

Firebase admin
T

0 Firebase provides an admin library to allow your
server code (functions) to run in an authenticated
mode

0 This means your code can connect to the database,
create docs, delete docs, update etc. all securely

const functions = require('firebase-functions'");
const admin = require('firebase-admin') ;
admin.initializeApp() ;

Promise — More async hell
N

0 In ES6 a new concept was added to JavaScript to
handle Callback hell

0 These are called promises

0 What's the difference between callbacks and promises?
O Callback is passed as an argument

O Promise is something that is achieved or completed in the
future.

® Promise is an object, then() method (if promise is fulfilled) and
catch (if promise is rejected)

Code examples
N

asyncFunc(result =>{ = Callback
console.log(result);

}i

Promise
const promise = qsyncFunc((7=>{//

return new Promise...

D;

promise.then(result => {
console.log(result);

hE

Adding a document
I

const functions = require('firebase-functions');
const admin = require('firebase-admin’);
admin.initializeApp();

exports.postcomments = functions.https.onRequest((request, response) => {
// 1. Receive comment data in here from user POST request
// 2. Connect to our Firestore database
return admin.firestore().collection('comments').add(request.body).then(()=>{
response.send('Saved in the database");

Di
};

myCoolApp /Functions /index.js

Using POSTMAN POST to the fn

¥ Post Comments

POST ¥ | htpsdifus-central1-my-cool-web-app-37271.doudfunctions.net/postcomments

Params Authorization Headers (9) Body @ Pre-request Script Tests Settings
none form-data w-www-form-urlencoded @ raw binary GraphQL JSON -
1
2 "ghandle" : "EndaB",
3 "comment" : "Thiz iz my second comment™
4 [

Body Coockies Headers (9) TestResults

Pretty Raw Preview Visualize HTML - 5

1 Saved in the database

Check the database to see if it saved
B

0 If you check on Firebase you should now see your
comment

ﬁ > comments » 7vOWQ7430p5SR..

== my-cool-web-app-37271 K comments = i B 7vewQ7430pSRIJIUFCT
<+ Start collection + Add document -+ Start collection
comments > 71bdGlLyi3CO9THLYyHxTA + Add field
7voWQ7430p5RIJLUTCTq &

Thandle: "EndaB"

OcbTBZ1GzpEBsaumsXRK o)
comment: "Thisis my second comment’

Reading our documents
N

exports.getcomments = functions.https.onRequest ((request, response) =>

{

// 1. Connect to our Firestore database
let myData = []
admin.firestore() .collection('comments').get().then((snapshot) => {

if (snapshot.empty) {
console.log('No matching documents.');
response.send('No data in database');
return;

snapshot.forEach (doc => {
myData.push (doc.data()) ;

});

// 2. Send data back to client

response.send(myData) ;

1) myCoolApp /Functions /index.js

})

Test the function with POSTMAN

¥ Post Comments

GET ¥ | hupsiffus-central1-my-cool-web-app-37271.cloudfunctions.net/getcomments
Params Authorization Headers (7) Body Pre-request Script Tests Settings
® none form-data x-www-form-urlencoded raw binary GraphQL

Body Coockies Headers (9) TestResults

Pretty Raw Preview Visualize 50N 5

1 [

2 il

3 "@handle": "lchnD",

4 "comment"”: "This is my first comment"

5 e

6 {

7 "comment"”: "This is my second comment",
8 "@handle": "EndaB"

9 Is

12 {

11 "comment"”: "This is my first comment"”,
12 "@handle": "EndaB"

13 }

[y
=
—

const functions = require('firebase-functions');
const admin = require('firebase-admin');
admin.initializeApp()

exports.postcomments = functions.https.onRequest ((request, response) => {

// 1. Receive comment data in here from user POST request
// 2. Connect to our Firestore database

admin.firestore() .collection('comments') .add(request.body);
response.send("Saved in the database™);

})
exports.getcomments = functions.https.onRequest ((request, response) => {

// 1. Connect to our Firestore database
let myData = []
admin.firestore().collection('comments').get().then((snapshot) => {

if (snapshot.empty) {
console.log('No matching documents.');
response.send('No data in database');
return;

snapshot.forEach (doc => {
myData.push (doc.data());

})

// 2. Send data back to client
response.send(myData) ;

}
o%; myCoolApp /Functions /index.js

OrderBy

0 So far when reading comments from the database
we have not given any consideration to their order

0 Perhaps it would be useful to order them by
postdate or perhaps by the number of likes etc.

0 To do this we need to modify our Firebase functions
postcomments and getcomments to order the
comments

Creating comments - postcomments
I

0 The Firestore database supports a timestamp field,
which we can use to store the date and time each
comment was posted.

0 Once this is recorded on each document we can
return the comments to the user in order of their
post date /time.

Posting comments
I

exports.postcomment = functions.https.onRequest((request, response) => {
console.log("Request body", request.body);
// Create a timestamp to add to the comment document
const currentTime = admin.firestore.Timestamp.now();
request.body.timestamp = currentTime;

admin.firestore().collection('comments').add(request.body).then(()=>{
response.send("Saved in the database");

}i
Di

Don’t forget to hit firebase deploy
once you have made your changes myCoolApp /functions /index.js

Check database

0 When you post a comment you should now see a
timestamp beside each comment

A > comments > BEKo0aLOAQEK..

== my-cool-web-app-37271 Il comments = B B6Ko0aLOAQEKZkrWiRz4
+4 Start collection <+ Add document -+ Start collection
comments > B6KoBalLOAQEKZkriWtRz4 > + Add field

KsCMMTSWTpVePyUb21Hj

comment: "3rd comment"
XpgCNwgqV8sujMuF4bRU)

handle: "EndaB"
adJEjXwpFRdbiCeutFCQ

timestamp: December 11, 2020 at 1:10:14 PM UTC
heriNw5jEhs128Hoy8Js

Ordering documents by timestamp
B

0 We now modify the get comments firebase function

to order the comments by timestamp

exports.getcomments = functions.https.onRequest ((request, response) => {

)

// 1.

Connect to our Firestore database

let myData = []
admin.firestore() .collection('comments') .orderBy('timestdmp') .get() .then((snapshot) => {

b

if (snapshot.empty) {
console.log('No matching documents.'");
response.send('No data in database');
return;

}

snapshot.forEach (doc => {
myData.push (doc.data()) ;
})

// 2. Send data back to client
response.send (myData) ;

myCoolApp /functions/index.js

Lecture Overview
T

0 Firestore Database
1 Overview of Document Driven Databases

0 Creating our first database

0 Connecting the database to our Firebase functions
O Writing our comment data to the database

O Reading our comment data from the database

