5. Random Variables and Probability Distributions

Learning Objectives

- 1. Determine probabilities from probability mass functions and cumulative distribution functions.
- 2. Understand the assumptions for probability distributions.
- 3. Select an appropriate probability distribution to calculate probabilities.
- 4. Calculate probabilities, means and variances for probability distributions.

Definitions

A **random variable** is a function that associates a real number with each element in the sample space.

The probability distribution of a random variable *X* gives the probability for each value of *X*.

Random variables

3

A random variable takes a $\ensuremath{\textbf{numeric}}$ value based on the outcome of a random event.

Denote by capital letter -X, Y, Z, etc.

A particular value of a random variable will be denoted with a lower case letter — x, y, z

There are two types of random variables:

- Discrete random variables: can take one of a finite number of distinct outcomes.
- Continuous random variables: can take any numeric value within a range of values.

4

Example: Discrete Random Variable

Computer chips may be classed as defective (D) or non-defective (N). A large batch contains a proportion 0.1 of defectives, and 3 are sampled at random.

Example: Discrete Random Variable

Computer chips may be classed as defective (D) or non-defective (N). A large batch contains a proportion 0.1 of defectives, and 3 are sampled at random.

The possible outcomes, together with their probabilities are:-

Sample	prob	X
NNN		
DNN		
NDN		
NND		
DDN		
DND		
NDD		
DDD		

OPO E KENKENKENKENKE

5

Random variable X is the number of defectives in the sample.

(E) E 090

Example: Discrete Random Variable

Computer chips may be classed as defective (D) or non-defective (N). A large batch contains a proportion 0.1 of defectives, and 3 are sampled at random.

The possible outcomes, together with their probabilities are:-

Sample	Prob	X
NNN	$(0.9)^3$	
DNN	$(0.1)(0.9)^2$	
NDN	(0.9)(0.1))0.9)	
NND	$(0.9)^2(0.1)$	
DDN	$(0.1)^2(0.9)$	
DND	(0.1)(0.9)(0.1)	
NDD	$(0.9)(0.1)^2$	
DDD	$(0.1)^3$	

Random variable X is the number of defectives in the sample.

10) (B) (E) (E) (E) (B) (O)

Example: Discrete Random Variable

Computer chips may be classed as defective (D) or non-defective (N). A large batch contains a proportion 0.1 of defectives, and 3 are sampled at random.

The possible outcomes, together with their probabilities are:-

Sample	Prob	X	
NNN	$(0.9)^3$	0	
DNN	$(0.1)(0.9)^2$	1	
NDN	(0.9)(0.1))0.9)	1 1	
NND	$(0.9)^2(0.1)$		
DDN	$(0.1)^2(0.9)$	2	
DND	(0.1)(0.9)(0.1)	2	
NDD	$(0.9)(0.1)^2$	2	
DDD	$(0.1)^3$	3	

Random variable X is the number of defectives in the sample.

Probability model (discrete)

The collection of all possible values of a random variable together with associated probabilities is called the **probability model**

In the example, Pr(X = 1) can be determined by adding up the probabilities of the 3 sample points associated with the event X = 1, etc

Probability model (discrete)

The collection of all possible values of a random variable together with associated probabilities is called the **probability model**

In the example, Pr(X = 1) can be determined by adding up the probabilities of the 3 sample points associated with the event X = 1, etc

x	$\Pr(X = x)$
0	(0.9) ³
1	$3(0.1)(0.9)^2$
2	$3(0.1)^2(0.9)$
3	(0.1) ³

10) (B) (E) (E) E (O)(C

10

Example

A couple having children will stop when they have a child of each sex or three children.

outcome	GGG	GGB	GB	BG	BBG	BBB
Probability						

Let the random variable X be the number of girls in the family

Probability function for a discrete random variable represented pictorially by a **bar graph**.

11

Example

A couple having children will stop when they have a child of each sex or three children.

outcome	GGG	GGB	GB	BG	BBG	BBB
Probability	<u>1</u> 8	<u>1</u> 8	<u>1</u> 4	$\frac{1}{4}$	18	18

Let the random variable X be the number of girls in the family

x	0	1	2	3	
P(X = x)	18	58	<u>1</u> 8	18	•

Probability function for a discrete random variable represented pictorially by a **bar graph**.

Probability Function: Bar Graph

Class survey: choosing a number at random

Frequency

Choosing a number at random

Probability

survey		lato	a %>%	sel	.ect	(ni	umber]) %>%	table	e %>%	prop.	table %>	>% r	round(-		
numbe	er														1	~	>	<
1		2	3		4	5	6	7	8	9	10							
0.02	0.	11	0.10	0.1	.2 0	.09	0.09	0.22	0.13	0.10	0.03							

Choosing a number at random

Probability

F

15

	```{r} survey	.data	<b>a</b> %>%	select	: (nı	umber)	) %>%	table	e %>%	prop.t	able %>%	round(digit	33 <b>≚</b> S =	
	numbe	r										á	\$	×
Х	1	2	3	4	5	6	7	8	9	10				
P(X=x)	0.02	0.11	0.10	0.12 0	.09	0.09	0.22	0.13	0.10	0.03				

Note that capital X denotes the random variable while small x denotes one of its value

### **Discrete Probability Distributions**

The set of ordered pairs (x, f(x)) is a **probability function**, **probability mass** function, or **probability distribution** of the discrete random variable X if, for each possible outcome x,

1.  $f(x) \ge 0$ ,

2.  $\sum f(x) = 1,$ 

3. P(X = x) = f(x).

Capital letters for random variables, small letter for one of its values.

# Definitions

The **cumulative distribution function** 
$$F(x)$$
 of a discrete random variable  $X$  with probability distribution  $f(x)$  is
$$F(x) = P(X \le x) = \sum_{t \le x} f(t), \quad \text{for } -\infty < x < \infty.$$

The cumulative distribution function, is the probability that a random variable X with a given probability distribution will be found at a value less than or equal to x.

### **Cumulative Distribution Functions**

Consider the probability distribution for the 'choose a number' example. Find the probability of choosing a 3 or less

• The event  $(X \le 3)$  is the total of the events:

(X = 0), (X = 1), (X = 2), and (X = 3).

• From the table:

1 2 3 4 5 6 7 8 9 10 0.02 0.11 0.10 0.12 0.09 0.09 0.22 0.13 0.10 0.03

 $P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.23$ 

### Continuous Probability Distributions

The function f(x) is a **probability density function** (pdf) for the continuous random variable X, defined over the set of real numbers, if

- 1.  $f(x) \ge 0$ , for all  $x \in R$ .
- 2.  $\int_{-\infty}^{\infty} f(x) \, dx = 1.$
- 3.  $P(a < X < b) = \int_{a}^{b} f(x) dx.$



17



P(a < X < b)



# Popular discrete and continuous distributions

#### • Discrete:

- Binomial
- Poisson
- Hypergeometric
- Continuous:
  - Uniform
  - Normal
  - Exponential
- What do they look like ?
- When are they used ?

### Expected Value — Location

A useful summary of interest is the average, or expected value, of a random variable — denoted by E[X] and  $\mu$ .

### Expected Value — Location

A useful summary of interest is the average, or expected value, of a random variable — denoted by E[X] and  $\mu$ .

The expected value of a random variable can be found by summing the products of each possible value by the probability that it occurs:

$$\mu = E[X] = \sum_{x} x P(X = x)$$

### Expected Value — Location

A useful summary of interest is the average, or expected value, of a random variable — denoted by E[X] and  $\mu$ .

The expected value of a random variable can be found by summing the products of each possible value by the probability that it occurs:

$$\mu = E[X] = \sum_{x} x P(X = x)$$

Example

 $E[No.defectives] = 0 \times (0.9)^3 + 1 \times 3(0.1)(0.9)^2 + 2 \times 3(0.1)^2(0.9) + 3 \times (0.1)^3 = 0$ 

#### Variance, Standard Deviation - Spread

The variance of a random variable measures the squared deviation from the mean:

$$\sigma^2 = \operatorname{Var}(X) = E\left[(X - \mu)^2\right] = \sum_x (x - \mu)^2 P(X = x)$$

#### Variance, Standard Deviation - Spread

The variance of a random variable measures the squared deviation from the mean:

$$\sigma^2 = Var(X) = E[(X - \mu)^2] = \sum_x (x - \mu)^2 P(X = x)$$

Or more usefully the standard deviation is:

$$\sigma = \operatorname{sd}(X) = \sqrt{\operatorname{Var}(X)}$$

this has the advantage of being in the same units as X (and  $\mu$ ).

10) 10) (E) (E) (E) (O)

### Variance, Standard Deviation — Spread

The variance of a random variable measures the squared deviation from the mean:

$$\sigma^{2} = \operatorname{Var}(X) = E\left[(X - \mu)^{2}\right] = \sum_{x} (x - \mu)^{2} P(X = x)$$

Or more usefully the standard deviation is:

$$\sigma = \operatorname{sd}(X) = \sqrt{\operatorname{Var}(X)}$$

this has the advantage of being in the same units as X (and  $\mu$ ).

Example

:

 $Var(\textit{No.defectives}) = ((0 - 0.3)^2 \times 0.9^3) + ((1 - 0.3)^2 \times 3 \times 0.1 \times 0.9^2) + (0.3)^2 \times 0.1 \times 0.9^2) + (0.3)^2 \times 0.1 \times 0.9^2 + 0.3 \times 0.1 \times 0.9^2) + (0.3)^2 \times 0.9^2 + 0.3 \times 0.1 \times 0.9^2) + (0.3)^2 \times 0.9^2 + 0.3 \times 0.1 \times 0.9^2) + 0.3 \times 0.1 \times 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.9^2 + 0.$ 

 $((2-0.3)^2 \times 3 \times 0.1^2 \times 0.9) + ((3-0.3)^2 \times 0.1^3) = 0.27$ 

Variance of a Random Variable

 $Var(X)=E(X^2)-E^2(X)$ 

Where

$$E(X^2) = \sum x^2 P(X = x)$$

More on Means and Variances

Adding or subtracting a constant from data shifts the mean but does not change the variance or standard deviation:

$E\left[X+c\right]=E\left[X\right]+c$	$\operatorname{Var}(X+c) = \operatorname{Var}(X)$	$\operatorname{sd}(X+c)=\operatorname{sd}(X)$
$E\left[X-c\right]=E\left[X\right]-c$	$\operatorname{Var}(X-c) = \operatorname{Var}(X)$	$\operatorname{sd}(X-c) = \operatorname{sd}(X)$

Multiplying a random variable by a constant multiplies the mean by that constant and the variance by the square of the constant:

E[aX] = aE[X]  $Var(aX) = a^2 Var(X)$  sd(aX) = |a| sd(X)

``{r} urvey.data %>% select ( ariance = var(number, n um([is.na(number)))				•
Description: df [1 × 4]				£ ^
mean <dbl></dbl>	variance <dbl></dbl>	sd <dbl></dbl>	nas <int></int>	
5.705202	5.813752	2.411172	4	

30