
Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing System
& Organisation

Lecture 5: CPU Management -
Scheduling

Content

2

• Process scheduler organisation
• Scheduler types:

• Non-preemptive

• Preemptive

• Scheduling algorithms
• FCFS (First Come First Served)

• SRTN (Shortest Remaining Time Next)

• SJF (Shortest Job First)

• Time slice (Round Robin)

• Priority based preemptive scheduling

• MLQ (Multiple Level Queue)

• MLQF (Multiple Level Queue with Feedback)

Scheduling

• Scheduling allows one process to use the CPU
while the execution of another process is on hold
(i.e., in waiting state) due to unavailability of any
resource like I/O etc

• Aims to make the system efficient, fast and fair.

• Scheduling is part of the process manager

3

CPU

Scheduling
• Scheduling is the mechanism that handles
• the removal of the running processes from the CPU
• and the selection of another process

• It is responsible for multiplexing processes on the CPU.
-> when it is time for the running process to be removed from the CPU (in a

ready or suspended state), a different process is selected from the set of

processes in the ready state

• The selection of another process is based on a particular strategy.
• The scheduling algorithm will determine the order in which the OS will

execute the processes.

4

Scheduler Organisation

5

Ready List
Enqueuer

Dispatcher Context switcher CPU

Ready process
Process

Descriptors

Scheduler

From
other
states

Remove the running process
From other

states
(New, Running,

Blocked)

When a process is changed in the ready state,
the enqueuer places a pointer to the process
descriptor into a ready list

Context switcher saves the content of all
processor registers of the process being removed
into the process’ descriptor, whenever the
scheduler switches the CPU from executing a
process to executing another

Ø Voluntary context switch
Ø Involuntary context switch

The dispatcher is invoked after the current
process has been removed from the CPU; the
dispatcher chooses one of the processes
enqueued in the ready list and then allocates CPU
to that process by performing another context
switch from itself to the selected process

Scheduler Types
• Cooperative scheduler (voluntary CPU sharing)

• Each process will periodically invoke the process scheduler, voluntarily sharing the
CPU

• Each process should call a function that will implement the process scheduling.
• yield (Pcurrent, Pnext) (sometimes implemented as an instruction in hardware), where Pcurrent is

an identifier of the current process and the Pnext is an identifier of the next process)

• Preemptive scheduler (involuntary CPU sharing)
• The interrupt system enforces periodic involuntary interruption of any process’s

execution; it can force a process to involuntarily execute a yield type function (or
instruction)

• This is done by incorporating an interval timer device that produces an interrupt
whenever the time expires

6

Cooperative Scheduler
• Possible problems:
• If the processes do not voluntarily

cooperate with the others, one

process could keep the CPU forever

• Cooperative multitasking allows
much simpler implementation of
applications
• because their execution is never

unexpectedly interrupted by the

process scheduler

7

Process P1
…
yield (*, scheduler);
…

Process scheduler

Process P2

Scheduler {
 s = select(…);
 yield (*,s);
}

…
yield (*, scheduler);
…

O
p

e
ra

tin
g

 S
ys

te
m

 I
n

te
rf

a
ce

Process descriptor for scheduler

Process descriptor for P2

...

...

Process descriptor for P1

Preemptive Scheduler
• A programmable interval timer will cause an interrupt to

run every K clock ticks of an interval time
• thus causing the hardware to execute the logical equivalent of

a yield instruction to invoke the interrupt handler

• The interrupt handler for the timer interrupt will call the
scheduler to reschedule the processor without any action
on the part of the running process

• The scheduler decides which process is run next

• The scheduler is guaranteed to be invoked once every K
clock ticks
• Even if a given process will execute an infinite loop, it will not

block the execution of the other processes

8

IntervalTimer{
InterruptCount = InterrptCount -1;
if (InterruptCount <=0){
InterruptRequest = TRUE
InterruptCount = K;

}
}

SetInterval(<programableValue>{
K = programmableValue;
InterruptCount = K;

}

Performance Elements
• Having a set of processes P={pi, 0<=i<n}

• Service time, τ(pi) – the amount of time a process needs to be in active/running state
before it completes

• Wait time, W(pi) – the time the process waits in the ready state before its first transition
in the active state

• Turn around time, TTRnd(pi) – the amount of time between the moment a process enters
the ready state and the moment the process exits the running state for the last time

• Those elements are used to measure the performance of each scheduling
algorithm

9

Selection Strategies

• Non-preemptive strategies
• Allow any process to run to completion once it has been allocated the control of the CPU
• A process that gets the control of the CPU, releases the CPU whenever it ends or when it

voluntarily gives up the control of the CPU

• Preemptive strategies
• The highest priority process among all ready processes is allocated the CPU
• All lower priority processes are made to yield to the highest priority process whenever it

requests the CPU
• The scheduler is called every time a process enters the ready queue as well as when an interval timer

expires
• It allows for equitable resource sharing among processes at the expense of overloading the

system

10

Scheduling Algorithms
• FCFS (First Come First Served)

• SJF (Shortest Job First)

• SRTN (Shortest Remaining Time Next)

• Time slice (Round Robin)

• Priority based preemptive scheduling

• MLQ (Multiple Level Queue)

• MLQF (Multiple Level Queue with Feedback)

11

First Come First Served
• Non-preemptive algorithm
• This scheduling strategy assigns priority to processes in the order in which

they request the processor
• The priority of a process is computed by the enqueuer by time stamping all incoming

processes and then having the dispatcher select the process that has the oldest time
stamp

• Possible implementation: using a FIFO data structure (where each entry points to a
process descriptor)
• the enqueuer adds processes to the tail of the queue and the dispatcher removes processes from

the head of the queue

• Easy to implement
• It is not widely used because of processes unpredictable

• turn around time
• waiting time

12

FCFS Example

• Average turn around time:
• TTRnd = (350 +475 +950 + 1200 + 1275)/5 = 850

• Average wait time:
• W = (0 + 350 +475 + 950 + 1200)/5 = 595 13

Pi τ(Pi)

0 350

1 125

2 475

3 250

4 75

P0 P1 P2 P3 P4

0 350 475 950 1200 1275

TTRnd(pi)

Shortest Job First
• Non-preemptive

• It is an optimal algorithm from the point of view of average turn around
time

• It minimises the average turn around time

• Preferential service of short jobs

• It requires the knowledge of the service time for each process

• In the extreme case, where the system has little idle time, the processes
with large service time will never be served

• In the case where it is not possible to know the service time for each
process, this is estimated using predictors.

14

SJF Example

• Average turn around time:
• TTRnd = (800 + 200 +1275 + 450 + 75)/5 = 560

• Average wait time:
• W = (450 + 75 +800 + 200 + 0)/5 = 305

15

P0P1 P2P3P4

0 75 200 450 800 1275

Pi τ(Pi)

0 350

1 125

2 475

3 250

4 75

TTRnd(pi)

Shortest Remaining Time Next (SRTN)

• Similar to SJF
• But preemptive

• a long job which is mostly complete might have a very short time
remaining, and would therefore be prioritised

16

Time Slice (Round Robin)
• Preemptive algorithm
• Each process gets a time slice of CPU time, distributing the processing time equitably among all

processes requesting the processor

• Whenever the time slice expires, the control of the CPU is given to the next process in the ready list
• the process being switched is placed back into the ready process list

• It implies the existence of a specialized timer that measures the processor time for each process
• every time a process becomes active, the timer is initialized

• It is not well suited for long jobs, since the scheduler will be called multiple times until the job is done

• It is very sensitive to the size of the time slice
• Too big – large delays in response time for interactive processes
• Too small – too much time spent running the scheduler
• Very big – turns into FCFS

• The time slice size is determined by analyzing the number of the instructions that the processor can
execute in the given time slice.

17

Time Slice (Round Robin) Example

• Average turn around time:
• TTRnd = (1100 + 550 + 1275 + 950 + 475)/5 = 870

• Average wait time:
• W = (750+425+800+700+400)/5 = 615

• The wait time shows the benefit of RR algorithm in the terms of how quickly a process receives service

18

Pi τ(Pi)
0 350

1 125

2 475

3 250

4 75

P3P1 P2P0

0 100 200 300

P4 P0 P1 P2 P3 P4 P0

400 475

P1 P2

550

P3

650

P0

650

P2 P3 P0 P2 P3

750 850

P0 P2

950

P0 P2

1050

P2 P2 P2

1150 1250 1275

Time slice size is 50, negligible amount of time for context switching

RR scheduling with overhead example

• Average turn around time:
• TTRnd = (1320 + 660 + 1535 + 1140 + 565)/5 = 1044

• Average wait time:
• W = (620 + 535 + 1060 + 890 + 490)/5 = 719

19

i τ(pi)
0 350

1 125

2 475

3 250

4 75 Time slice size is 50, 10 units of time for context switching

P3P1 P2P0

0 120 240 360

P4 P0 P1 P2 P3 P4 P0

480 540

P1 P2

790

P3

P0

790

P2 P3 P0 P2 P3

1030 1150

P0 P2

1270

P0 P2

1390

P2P2 P2

1510 1535

575 635 670

910

Priority based scheduling (Event Driven)

• Both preemptive and non-preemptive variants

• Each process has an externally assigned priority

• Every time an event occurs that generates a process switch, the process with the highest
priority is chosen from the ready process list

• There is the possibility that processes with low priority will never gain CPU time

• There are variants with static and dynamic priorities; the dynamic priority computation
solves the problem with processes that may never gain CPU time (the longer the process
waits, the higher its priority becomes)

• It is used for real time systems.

20

Priority based schedule example

• Average turn around time:
• TTRnd = (350 + 425 + 900 + 1025 + 1275)/5 = 795

• Average wait time:
• W = (0 + 350 + 425 + 900 + 1025)/5 = 540

21

Pi τ(Pi) Priority
0 350 5

1 125 2

2 475 3

3 250 1

4 75 4

P0 P1P2 P3P4
0 425350 900 12751025

Highest priority corresponds to highest value

Multiple Level Queue scheduling

• Complex systems have requirements for real time, interactive users and
batch jobs

• Therefore, a combined scheduling mechanism should be used

• The processes are divided in classes

• Each class has a process queue, and it has assigned a specific scheduling
algorithm

• Each process queue is treated according to a queue scheduling algorithm:
• Each queue has assigned a priority
• As long as there are processes in a higher priority queue, those will be serviced

22

MLQ Example
• 2 queues

• Foreground processes (highest priority)
• Background processes (lowest priority)

• 3 queues
• OS processes and interrupts (highest priority, serviced ED)
• Interactive processes (medium priority, serviced RR)
• Batch jobs (lowest priority, serviced FCFS)

23

ED Queue

RR Queue

FCFS Queue

CPU

pr
io

rit
y

System processes queue
and interrupts

Interactive processes

Batch processes

Multiple Level Queue with feedback

• Same with MLQ, but the processes could migrate from class to class in a dynamic
fashion

• Different strategies to modify the priority:
• Increase the priority for a given process (the user needs larger share of the CPU to sustain

acceptable service)
• Decrease the priority for a given process (the user process is trying to get more CPU share,

which may impact on the other users)
• If a process is giving up the CPU before its time slice expires, then the process is assigned

to a higher priority queue

• During the evolution to completion, a process may go through a number of
different classes

• Any of the previous algorithms may be used for treating a specific process class.

24

Exercise

25

• Draw a Gantt Chart that illustrate the execution of
these processes using the following scheduling
algorithm:

Ø FCFS (First Come First Served)

Ø SJF (Shortest Job First) – nonpreemptive

Ø SRTN (Shortest Remaining Time Next)

Ø Time slice (Round Robin, assume a time slice of 1
second)

Ø Priority based preemptive scheduling

• Calculate the average waiting time using each
scheduling algorithm.

Process Length
(s)

Arrival time
(s) Priority

5:00 0:00 1

P2 2:00 2:00 2

P3 1:00 3:00 3

Larger Number =
Higher Priority

References

• “Operating Systems – A modern perspective”, Garry Nutt, ISBN 0-
8053-1295-1

• Process Scheduling:
https://www.youtube.com/watch?v=THqcAa1bbFU

31

