
AGILE METHODS – EXTREME PROGRAMMING

Dr. Enda Barrett

Overview
2

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Scrum Summary
3

 Scrum is a project management methodology

Characteristics of Scrum
4

 Self-organizing teams
 No need for project manager (in-theory)

 Product progresses in a series of month-long
“sprints”…could be biweekly also

 Assumes that the software cannot be well defined and
requirements will change frequently

 Requirements are captured as items in a list of “product
backlog”

 No specific engineering practices prescribed
 XP, TDD, FDD…

 Best approach is to start with Scrum and then invent your
own version using XP, TDD, FDD

Daily Scrum/Standup
5

 Parameters

 Daily

 15-minutes

 Stand-up

 Not for problem solving

 Only team members, ScrumMaster, Product Owners

should talk

 Should help to avoid additional unnecessary meetings

 Commitment in front of peers to complete tasks

Answer three questions
6

What did you do yesterday?
1

What will you do today?
2

Is anything in your way?
3

Daily SCRUM/Standup
7

 Is NOT a problem solving session

 Is NOT a way to collect information about WHO is
behind the schedule

 Is a meeting in which team members make commitments
to each other and to the Scrum Master

 Is a good way for a Scrum Master to track the progress
of the team

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Scrum Framework

We need an Agile Development

method
9

 eXtreme Programming (XP)

 One of the most popular agile software development

methods

eXtreme Programming
10

 Pair
programming

 Refactoring

 Test Driven
Development

 Continuous
Integration

 Metaphor

 Small releases

 Simple Design

 Customer tests

Complete Agile Process
11

Scrum XP+

Overview
12

How Scrum and XP can work together

Overview
13

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Principles of XP
14

 Communication

 Software development is inherently a team sport that relies on communication to transfer knowledge from one team
member to everyone else on the team. XP stresses the importance of the appropriate kind of communication – face to
face discussion with the aid of a white board or other drawing mechanism.

 Simplicity

 Simplicity means “what is the simplest thing that will work?” The purpose of this is to avoid waste and do only absolutely
necessary things such as keep the design of the system as simple as possible so that it is easier to maintain, support, and
revise. Simplicity also means address only the requirements that you know about; don’t try to predict the future.

 Feedback

 Through constant feedback about their previous efforts, teams can identify areas for improvement and revise their
practices. Feedback also supports simple design. Your team builds something, gathers feedback on your design and
implementation, and then adjust your product going forward.

 Courage

 Kent Beck defined courage as “effective action in the face of fear” (Extreme Programming Explained P. 20). This
definition shows a preference for action based on other principles so that the results aren’t harmful to the team. You need
courage to raise organizational issues that reduce your team’s effectiveness. You need courage to stop doing something
that doesn’t work and try something else. You need courage to accept and act on feedback, even when it’s difficult to
accept.

 Respect

 The members of your team need to respect each other in order to communicate with each other, provide and accept
feedback that honors your relationship, and to work together to identify simple designs and solutions.

Source:https://www.agilealliance.org/glossary/xp

Kent Beck

post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'xp))~searchTerm~'~sort~false~sortDirection~

Practices of XP
15

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Whole Team
16

 All the contributors to an XP project sit together,

members of one team. This team must include a

business representative (Product Owner) – the

“Customer” – who provides the requirements, sets

the priorities, and steers the project.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Planning Game
17

 XP planning addresses two key questions in

software development: predicting what will be

accomplished by the due date, and determining

what to do next.

 Release Planning is a practice where the Customer

presents the desired features to the programmers,

and the programmers estimate their difficulty.

 Iteration Planning is the practice whereby the team

is given direction every couple of weeks. (Sprints)

https://ronjeffries.com/xprog/what-is-extreme-programming

Customer Tests
18

 As part of presenting each desired feature, the XP

Customer defines one or more automated

acceptance tests to show that the feature is working.

The team builds these tests and uses them to prove

to themselves, and to the customer, that the feature

is implemented correctly.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Small Releases
19

 XP teams practice small releases in two important

ways:

 First, the team releases running, tested software,

delivering business value chosen by the Customer, every

iteration.

 Second, XP teams release to their end users frequently

as well.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Practices of XP
20

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Coding standards
21

 XP teams follow a common coding standard, so that

all the code in the system looks as if it was written

by a single – very competent – individual. The

specifics of the standard are not important: what is

important is that all the code looks familiar, in

support of collective ownership.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Collective Ownership
22

 On an Extreme Programming project, any pair of

programmers can improve any code at any time.

This means that all code gets the benefit of many

people’s attention, which increases code quality and

reduces defects.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Metaphor
23

 Extreme Programming teams develop a common

vision of how the program works, which we call the

“metaphor”. At its best, the metaphor is a simple

evocative description of how the program works,

such as “this program works like a hive of bees,

going out for pollen and bringing it back to the

hive” as a description for an agent-based

information retrieval system.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Practices of XP
24

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Refactoring
25

 The refactoring process focuses on removal of

duplication (a sure sign of poor design), and on

increasing the “cohesion” of the code, while lowering

the “coupling”. High cohesion and low coupling have

been recognized as the hallmarks of well-designed

code for at least thirty years. The result is that XP

teams start with a good, simple design, and always

have a good, simple design for the software.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Simple Design
26

 XP teams build software to a simple but always

adequate design. They start simple, and

through testing and design improvement, they keep

it that way. An XP team keeps the design exactly

suited for the current functionality of the system.

There is no wasted motion, and the software is

always ready for what’s next.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Overview
27

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Pair Programming
28

“You’ll never work alone”

Not without precedent
29

Pair programming
30

 Two developers working on the same task as a

team

 One controls the keyboard one sits looking over

their shoulder

 Driver

 This person writes the code

 Navigator

 This person reviews each line as it is typed

Advantages
31

 Higher code quality

 Fewer bugs, code rewrites, integrations problems

 Expert novice pairing can help the novice to learn

about the system and best practices

 Tends to produce more design alternatives and

catches design defects earlier

Disadvantages
32

 There is a high probability of disengagement

 “Watch the master” phenomenon

 Working relationship needs to be good

 Hard sell to management

 Two people working on 1 feature

Remote pair programming
33

 Using communications technology

 Screen sharing

 IM clients, VOIP etc

Overview
34

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Test Driven Development (TDD)
35

TDD Cycle
36

 Create a test

 Each new feature requires a test

 Run all tests

 Make sure the new test fails

 Write the code

 Doesn’t have to be perfect, just pass the test

 Run all tests

 If all tests pass, requirements are met

 Refactor code

 TDD can result in duplication, this should be removed

 Repeat the process

Principles of TDD
37

 Never write new functionality without a failing test

 Continually make small incremental changes

 Keep the system running at all times

 No one can make a change that breaks the system

 Failures must be addressed immediately

Advantages
38

 Discourages “gold plating” of implementation

 Forces the developer to specify an end criteria

 Encourages loose coupling

Disadvantages
39

 Big time investment

 Complexity in writing appropriate test cases

 Design changes

 Mock code to pass tests

 Customer may not wish to get involved in creating
acceptance tests

Interesting - IBM Study
40

 Study carried out by IBM focussed on a team that

had been practising TDD for 5 years and delivered

10 releases of a software product

 Quality was the big winner, much improved, fewer

defects/bugs etc

 Productivity did decrease but not dramatically

Sanchez, J., Laurie Williams, and E. Michael Maximilien. "A Longitudinal Study of the Use of a

Test-Driven Development Practice in Industry." Proc. Agile. 2007.

Learning objectives
41

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Continuous Integration
42

Continuous Integration (CI)
43

 CI is a practice where members integrate their

changes frequently.

 Often daily

 Each integration is verified by an automated build

including tests to detect integration errors as early

as possible.

 Often upon commit, builds are run to make sure

everything is okay

Development before CI
44

 Lots of bugs

 Infrequent commits

 Difficult integration

 Infrequent releases

 Testing happens late

Benefits of CI
45

 Fail early/fast

 Detect problems as early as possible

 Facilitates continuous deployments

 Deploying every good build live to production

 Enables automated testing

 Tests are run during the build process

Overview
46

https://insights.sei.cmu.edu/devops/2015/01/continuous-integration-in-devops-1.html

Drawbacks of using CI
47

 Initial setup required

 Can take a couple of weeks to get it running properly

within an organisation

 Excellent tests must be developed

 CI will run all the automated tests but this requires

substantial up front development effort.

Popular CI software
48

