
AGILE METHODS – EXTREME PROGRAMMING

Dr. Enda Barrett

Overview
2

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Scrum Summary
3

 Scrum is a project management methodology

Characteristics of Scrum
4

 Self-organizing teams
 No need for project manager (in-theory)

 Product progresses in a series of month-long
“sprints”…could be biweekly also

 Assumes that the software cannot be well defined and
requirements will change frequently

 Requirements are captured as items in a list of “product
backlog”

 No specific engineering practices prescribed
 XP, TDD, FDD…

 Best approach is to start with Scrum and then invent your
own version using XP, TDD, FDD

Daily Scrum/Standup
5

 Parameters

 Daily

 15-minutes

 Stand-up

 Not for problem solving

 Only team members, ScrumMaster, Product Owners

should talk

 Should help to avoid additional unnecessary meetings

 Commitment in front of peers to complete tasks

Answer three questions
6

What did you do yesterday?
1

What will you do today?
2

Is anything in your way?
3

Daily SCRUM/Standup
7

 Is NOT a problem solving session

 Is NOT a way to collect information about WHO is
behind the schedule

 Is a meeting in which team members make commitments
to each other and to the Scrum Master

 Is a good way for a Scrum Master to track the progress
of the team

•Product owner
•ScrumMaster
•Team

Roles

•Sprints
•Sprint planning
•Sprint review
•Sprint retrospective
•Daily scrum meeting

Ceremonies

Scrum Framework

We need an Agile Development

method
9

 eXtreme Programming (XP)

 One of the most popular agile software development

methods

eXtreme Programming
10

 Pair
programming

 Refactoring

 Test Driven
Development

 Continuous
Integration

 Metaphor

 Small releases

 Simple Design

 Customer tests

Complete Agile Process
11

Scrum XP+

Overview
12

How Scrum and XP can work together

Overview
13

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Principles of XP
14

 Communication

 Software development is inherently a team sport that relies on communication to transfer knowledge from one team
member to everyone else on the team. XP stresses the importance of the appropriate kind of communication – face to
face discussion with the aid of a white board or other drawing mechanism.

 Simplicity

 Simplicity means “what is the simplest thing that will work?” The purpose of this is to avoid waste and do only absolutely
necessary things such as keep the design of the system as simple as possible so that it is easier to maintain, support, and
revise. Simplicity also means address only the requirements that you know about; don’t try to predict the future.

 Feedback

 Through constant feedback about their previous efforts, teams can identify areas for improvement and revise their
practices. Feedback also supports simple design. Your team builds something, gathers feedback on your design and
implementation, and then adjust your product going forward.

 Courage

 Kent Beck defined courage as “effective action in the face of fear” (Extreme Programming Explained P. 20). This
definition shows a preference for action based on other principles so that the results aren’t harmful to the team. You need
courage to raise organizational issues that reduce your team’s effectiveness. You need courage to stop doing something
that doesn’t work and try something else. You need courage to accept and act on feedback, even when it’s difficult to
accept.

 Respect

 The members of your team need to respect each other in order to communicate with each other, provide and accept
feedback that honors your relationship, and to work together to identify simple designs and solutions.

Source:https://www.agilealliance.org/glossary/xp

Kent Beck

post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'xp))~searchTerm~'~sort~false~sortDirection~

Practices of XP
15

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Whole Team
16

 All the contributors to an XP project sit together,

members of one team. This team must include a

business representative (Product Owner) – the

“Customer” – who provides the requirements, sets

the priorities, and steers the project.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Planning Game
17

 XP planning addresses two key questions in

software development: predicting what will be

accomplished by the due date, and determining

what to do next.

 Release Planning is a practice where the Customer

presents the desired features to the programmers,

and the programmers estimate their difficulty.

 Iteration Planning is the practice whereby the team

is given direction every couple of weeks. (Sprints)

https://ronjeffries.com/xprog/what-is-extreme-programming

Customer Tests
18

 As part of presenting each desired feature, the XP

Customer defines one or more automated

acceptance tests to show that the feature is working.

The team builds these tests and uses them to prove

to themselves, and to the customer, that the feature

is implemented correctly.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Small Releases
19

 XP teams practice small releases in two important

ways:

 First, the team releases running, tested software,

delivering business value chosen by the Customer, every

iteration.

 Second, XP teams release to their end users frequently

as well.

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

https://ronjeffries.com/xprog/what-is-extreme-programming/#whole

Practices of XP
20

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Coding standards
21

 XP teams follow a common coding standard, so that

all the code in the system looks as if it was written

by a single – very competent – individual. The

specifics of the standard are not important: what is

important is that all the code looks familiar, in

support of collective ownership.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Collective Ownership
22

 On an Extreme Programming project, any pair of

programmers can improve any code at any time.

This means that all code gets the benefit of many

people’s attention, which increases code quality and

reduces defects.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Metaphor
23

 Extreme Programming teams develop a common

vision of how the program works, which we call the

“metaphor”. At its best, the metaphor is a simple

evocative description of how the program works,

such as “this program works like a hive of bees,

going out for pollen and bringing it back to the

hive” as a description for an agent-based

information retrieval system.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Practices of XP
24

http://ronjeffries.com/xprog/what-is-extreme-programming/.

Further Reading and

Descriptions

http://ronjeffries.com/xprog/what-is-extreme-programming/

Refactoring
25

 The refactoring process focuses on removal of

duplication (a sure sign of poor design), and on

increasing the “cohesion” of the code, while lowering

the “coupling”. High cohesion and low coupling have

been recognized as the hallmarks of well-designed

code for at least thirty years. The result is that XP

teams start with a good, simple design, and always

have a good, simple design for the software.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Simple Design
26

 XP teams build software to a simple but always

adequate design. They start simple, and

through testing and design improvement, they keep

it that way. An XP team keeps the design exactly

suited for the current functionality of the system.

There is no wasted motion, and the software is

always ready for what’s next.

http://ronjeffries.com/xprog/what-is-extreme-programming/.

http://ronjeffries.com/xprog/what-is-extreme-programming/

Overview
27

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Pair Programming
28

“You’ll never work alone”

Not without precedent
29

Pair programming
30

 Two developers working on the same task as a

team

 One controls the keyboard one sits looking over

their shoulder

 Driver

 This person writes the code

 Navigator

 This person reviews each line as it is typed

Advantages
31

 Higher code quality

 Fewer bugs, code rewrites, integrations problems

 Expert novice pairing can help the novice to learn

about the system and best practices

 Tends to produce more design alternatives and

catches design defects earlier

Disadvantages
32

 There is a high probability of disengagement

 “Watch the master” phenomenon

 Working relationship needs to be good

 Hard sell to management

 Two people working on 1 feature

Remote pair programming
33

 Using communications technology

 Screen sharing

 IM clients, VOIP etc

Overview
34

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Test Driven Development (TDD)
35

TDD Cycle
36

 Create a test

 Each new feature requires a test

 Run all tests

 Make sure the new test fails

 Write the code

 Doesn’t have to be perfect, just pass the test

 Run all tests

 If all tests pass, requirements are met

 Refactor code

 TDD can result in duplication, this should be removed

 Repeat the process

Principles of TDD
37

 Never write new functionality without a failing test

 Continually make small incremental changes

 Keep the system running at all times

 No one can make a change that breaks the system

 Failures must be addressed immediately

Advantages
38

 Discourages “gold plating” of implementation

 Forces the developer to specify an end criteria

 Encourages loose coupling

Disadvantages
39

 Big time investment

 Complexity in writing appropriate test cases

 Design changes

 Mock code to pass tests

 Customer may not wish to get involved in creating
acceptance tests

Interesting - IBM Study
40

 Study carried out by IBM focussed on a team that

had been practising TDD for 5 years and delivered

10 releases of a software product

 Quality was the big winner, much improved, fewer

defects/bugs etc

 Productivity did decrease but not dramatically

Sanchez, J., Laurie Williams, and E. Michael Maximilien. "A Longitudinal Study of the Use of a

Test-Driven Development Practice in Industry." Proc. Agile. 2007.

Learning objectives
41

 XP

 General concepts

 Specific XP concepts

 Pair programming

 Test Driven Development

 Continuous Integration

Continuous Integration
42

Continuous Integration (CI)
43

 CI is a practice where members integrate their

changes frequently.

 Often daily

 Each integration is verified by an automated build

including tests to detect integration errors as early

as possible.

 Often upon commit, builds are run to make sure

everything is okay

Development before CI
44

 Lots of bugs

 Infrequent commits

 Difficult integration

 Infrequent releases

 Testing happens late

Benefits of CI
45

 Fail early/fast

 Detect problems as early as possible

 Facilitates continuous deployments

 Deploying every good build live to production

 Enables automated testing

 Tests are run during the build process

Overview
46

https://insights.sei.cmu.edu/devops/2015/01/continuous-integration-in-devops-1.html

Drawbacks of using CI
47

 Initial setup required

 Can take a couple of weeks to get it running properly

within an organisation

 Excellent tests must be developed

 CI will run all the automated tests but this requires

substantial up front development effort.

Popular CI software
48

