
QUERY PROCESSING
AND OPTIMISATION

CT230
Database
Systems I

RECALL:
Definition of Query Processing

Transforms SQL (high level language) in to a correct and
efficient low level language representation of relational
algebra

Each relational algebra operator has code associated
with it which, when run, performs the operation on the
data specified, allowing the specified data to be output
as the result

Representing the relational algebra
solutions with a query tree

What is a tree?

A tree is a collection of data arranged as a
finite set of elements - called nodes - such
that:

The tree is empty or the tree contains a
distinguished node, called the root node, and
all other nodes are arranged in subtrees such
that each node has a parent node. Nodes
typically contain data and some pointers to
other nodes

TREES
Nodes may be:

root: no node points to it

inner: has parent and child nodes

leaves: has no child nodes

Tree data structures (a grouping of data) are used
frequently in computing allowing data to be stored in a
non-linear (non-list) way.

They are often (but not always) binary trees where each
node can have at most two child nodes

QUERY TREE

A query tree is a binary tree that corresponds to a relational
algebra expression where:

•(input): tables are at the leaf nodes

• relational algebra operators are at internal nodes

•(output/result): the root of the tree returns the result (often
with one final relational algebra operator)

The sequence of operations is directed from leaves to root
and from left to right – e.g. the bottom-most, left-most side of
tree is executed first

EXAMPLES: all dependent names

EXAMPLES:
employees from department 5 and their dependents

How to Translate SQL to Relational
Algebra?

•SELECT attributes corresponds to π

•Joins correspond to relational algebra joins with any join
conditions specified as part of the join

•Any conditions in a WHERE clause correspond to a sigma
relational algebra operator with associated conditions

•In addition, have rules for aggregate functions (sum, avg,
count, etc.) and GROUP BY, HAVING and subqueries but we
won’t consider these

Executing query represented by query tree: one
approach:
Materialization Evaluation

Traverse tree from bottom to top, left to right. At each
stage:

• Execute internal node operation whenever data for its
child nodes are available

• Replace the internal node operation (and all child nodes)
by the table resulting from executing the operation

Note: Results of operations are saved as temporary tables
and are used as inputs to other operators

HOW TO DRAW A QUERY TREE?
Must remember the order of execution – from bottom to top,
completing each level and then left to right of tree – therefore:

• the first operations – fetching tables – should be at the leaves
of trees.

• the last operator – often π or aggregate functions - should
be at the root of the table.

• joins must be applied to tables (2 at a time) and should be at
internal nodes.

• any other operators should be at one or more internal nodes.

IMPORTANT

When Joining or multiplying more than two tables … operators
can only be applied to 2 operands at a time

ANNOTATING TREE

Each relation algebra operation can be evaluated using
one of several different algorithms and each relational
algebra expression can be evaluated in many ways.

** An evaluation plan is an annotated
expression/query tree specifying the execution
strategy for a query.

EXAMPLE 1
Consider the following SQL solution and
relational algebra translation

SELECT fname, lname

FROM employee

WHERE dno = 5;

πfname, lname(σdno = 5 employee)

root

internal node

leaf node

Query tree
representation

SELECT fname, lname

FROM employee

WHERE dno = 5;

π fname, lname
(σ dno = 5 employee)

for each tuple in t1 retrieve fname, lname

linear search on condition. -write to t1

file scan: employee

Query tree representation with
evaluation plan

root
t1

How materialization evaluation works …

Example 2
UBIK database
https://dbis-uibk.github.io/relax/calc/local/uibk/local/0

Consider the following SQL query:

SELECT R.a, R.b

FROM R, S

WHERE d > 200 AND S.b=R.b

And the relational algebra translation:

π R.a, R.b σ d > 200 and S.b = R.b R ⨯ S

Example 3 UBIK database

Consider the following SQL query:

SELECT R.a, R.b

FROM R, S, T

WHERE S.d > 200 AND

S.b=R.b AND

S.d = T.d

And the relational algebra translation:

EXAMPLE 4:
Translating SELECT FROM WHERE
(with no subqueries) to Relational Algebra

Given a general SELECT statement of the form:

SELECT attributeList

FROM R1 INNER JOIN R2 ON joinCondition

WHERE condition

translates to:

πattributeList (σcondition(R1 JOINjoinCondition R2))

NOTE: An SQL statement may have many equivalent
relational algebra expressions.

Example 5: Consider the following (Company
Schema):

List all salaries greater than 50000

The SQL solution:

SELECT salary

FROM employee

WHERE salary > 50000;

retrieve tuples with salary > 50000

retrieve salary column

retrieve salary column

retrieve tuples with salary > 50000

Option 1:

πsalary (σ(salary> 50000) employee))

Option 2:

σ(salary > 50000)(πsalary employee)

Translating this SQL
to Relational Algebra

SELECT salary

FROM employee

WHERE salary >50000;

DIFFERENCES BETWEEN THESE?

πsalary (σ(salary> 50000) employee))

σ(salary > 50000)(πsalary employee)

EXAMPLE 6:

Given the following problem based on the Company schema
write the associated SQL code (using joins), a correct relational
algebra expression translation and a query tree representing
the relational algebra expression:

List the names of all employees who work on projects located
in Stafford

EXAMPLE 7:

Given the following problem based on the Company schema
write the associated SQL code (using joins), a correct relational
algebra expression translation and a query tree representing
the relational algebra expression:

List the location of all departments managed by manager
Franklin Wong

ISSUES TO CONSIDER WITH QUERY TREES:

•Size of temporary tables

•Algorithms used for execution plan

OPTIMISATION

• Different query trees for a given query can have
different costs

• Different evaluation plans for a given query can have
different costs

• Optimisation techniques attempt to choose the best
among a number of potential query trees

APPROACH 1:
Compare cost estimates across different solutions

• Cost is usually measured as the total elapsed time for
answering a query

• One approach is to calculate cost estimates for each
possible query tree

• The query tree with the lowest cost estimate should then
be chosen

How to calculate cost estimates?

Cost factors include CPU speed, disk access time, network
communication time, etc.

Disk access is typically the predominant cost and can be
measured by number of blocks read/number of blocks
written per query.

MAIN COST ESTIMATE USED:
Number of block transfers where each
block contains a number of records

Number of blocks transferred from disk depends on:

• Size of buffer in main memory - having more memory reduces
need for more disk accesses.

• Indexing structures used (primary, secondary, etc.)

• Whether all blocks of a file must be transferred or not
• e.g., if search can be done on primary key of index file or

on secondary index then only retrieve blocks that satisfy
search condition

•As is typical in Computing, often use worst case estimates,
knowing that any actual cost cannot exceed a worst case
estimate.

DBMS CATALOG

The DBMS catalog stores statistical information about each
table such as table sizes, indexes (and their depths) etc.

The statistical information on the tables and attributes
used in a query, can be found in the DBMS catalog and
these are used to calculate cost estimates also.

In DBMS catalog, for each table R
information is stored on:

o Number of tuples/records in table R

o Number of blocks containing tuples of table R

o Size of a record in bytes

o Blocking factor

o Information on number of distinct values per attribute
and number of values that would satisfy set of equality
operations on attribute (by having averages, min, max,
etc.)

o Information on indices (index types, index field values,
etc.)

Resulting in a set of cost estimates such that the best can be chosen
and the query tree with the lowest cost estimate can then be picked
as the single best query tree and evaluation plan.

2. For each query tree get cost estimates
using DBMS catalog

1. Generate query trees and evaluation
plans (maybe not all)

STEPS FOR APPROACH 1

THEREFORE:

To choose among plans, the optimiser has to estimate cost
of each evaluation plan.

Two aspects to this:

For each node of tree:

•estimate cost of performing associated operation

•estimate size of result and if it is sorted

APPROACH 1: SUMMARY

o Cost-based optimisation, while good, is expensive:

As query complexity increases so does the different
number of query trees and plans possible and each query
tree requires its own cost estimates

N.B. It is important that the amount of time an optimiser
spends on calculating the best solution (optimising) is not
longer than the amount of time which would elapse if
executing a solution picked at random

APPROACH 2:
Heuristic Optimisation

o Optimiser often uses heuristics to reduce the number of
choices that must be made in a cost-based fashion.

o Heuristic optimisation transforms the query-tree by using
a set of rules that typically (but not always) improve
execution performance.

o Some cost based estimation is also performed – as part
of the heuristic optimisation and to choose between a
reduced set of trees and/or evaluation plans.

STEPS FOR APPROACH 2:

1. Create a canonical query tree.

2. Apply a set of heuristics to the tree to create a more
efficient query tree.

3. Create cost estimates of this query tree, if appropriate,
to ensure best evaluation plan.

DEFINITION:
Canonical query tree

A canonical query tree is an inefficient query tree
representing relational algebra expressions which can be
created directly from the SQL solution following a
sequence of quick and easy steps:

Uses CARTESIAN product instead of JOINS

Keeps all conditions (σ) together in one internal node

π becomes root node

Steps to create a canonical query tree
with SELECT/FROM/WHERE clauses and no
sub-queries:

1. All relations in FROM clause become leafs of the tree.
They should be combined with a Cartesian product (x) of
the relations.

* Remember: Only 2 relations can be involved in a Cartesian
product at a time (binary tree)

2. All conditions in the WHERE clause and any JOIN conditions
in WHERE or FROM clause become a sequence of relational
algebra expressions in one inner node of the tree (with inputs
from previous step)

3. All conditions from the SELECT clause become a relational
algebra expression in the root node

EXAMPLE 8 with implicit join
List the names of employees in research department

SELECT fname, lname

FROM employee, department

WHERE dno = dnumber AND

dname = ‘Research’;

Creating the canonical query tree …

EXAMPLE 8 with explicit join
List the names of employees in research department

SELECT fname, lname

FROM employee INNER JOIN department ON

dno = dnumber

WHERE dname = ‘Research’;

Creating the canonical query tree …

CANONICAL TREE REPRESENTATION:

SELECT fname, lname

FROM employee INNER JOIN department

ON dno = dnumber

WHERE dname = ‘Research’;

NOTE:

This would be very inefficient if executed directly because
of the Cartesian product operations.

Recall Cartesian product:

R x S

Returns tuples comprising the concatenation of every tuple
in R with every tuple in S

CONSIDER EXAMPLE 7 AGAIN

Draw the canonical query tree for the SQL query in
Example 7:

List the location of all departments managed by manager
Franklin Wong

HEURISTIC OPTIMISATION

Heuristic Optimisation MUST transform this canonical
query tree into a final query tree that is efficient to
execute:

o In general, heuristic optimisation tries to apply the most
restrictive operators as early as possible in the tree
(furthest down the tree) and to reduce the size of the
temporary tables/results created that move “up” the
tree.

o Heuristic Optimisation must include rules for equivalence
among relational algebra expressions that can be
applied to the initial tree.

HEURISTIC OPTIMISATION ALGORITHM:
Input: A canonical query tree

Process:

1. Decompose any σ with AND conditions into individual σ

2. Move each σ operator as far down the query tree as possible.

3. Rearrange the leaf nodes so that most restrictive σ can be
applied first (using information from DBMS catalog) and so that
future JOINS are possible.

Note: “most restrictive” means those operators that result in
relations with the fewest tuples or with the smallest absolute size -
these operations should happen first – that is – at the lowest level
of the tree and on the left hand side of the tree.

4. Combine CARTESIAN PRODUCT operators with σ (sigma) to form
JOIN operators where appropriate (replacing all x)

5. Decompose π and move each π as far down the tree as possible,
possibly creating new π operators in the process.

(6. Identify subtrees that represent groups of operations that can be
executed by a single algorithm.)

(7. Add evaluation plan)

Output: An efficient query tree

Back to EXAMPLE 8:
List the names of employees in research
department

SELECT fname, lname

FROM employee INNER JOIN department

ON dno = dnumber

WHERE dname = ‘Research’;

OPTIMISATION HEURISTIC 1 & 2:
Decompose conditions and apply sigma (σ)
operators as early as possible

o “Move σ down tree” thus eliminating unwanted tuples.

o Heuristic 1 tries to reduce the size of the tables to be
combined as much as possible:

o Therefore, if a selection operator (σ) occurs after a
Cartesian product or a join, check to see if it can occur
before these operations

Example 8:
Move (σ) sigma

OPTIMISATION HEURISTIC 3:
Rearrange the leaf nodes so that most
restrictive sigma opeartors can be
applied first

If we don’t have any information from DBMS catalog

owe might leave nodes as they are

oUse database schema (number of columns) to make a
good estimate

oUse sample data (number of rows) and database schema
(number of columns) to make a good estimate

EXAMPLE 8:
REARRANGE LEAF NODES

OPTIMISATION HEURISTIC 4:
Replace Cartesian product (x) and
appropriate selects (σ) with JOIN
* First must ensure the leaf nodes are ordered such that
this can happen – if not re-order leaf nodes and ensure to
keep any select operators with the appropriate leaf node

σcondition(r1 X r2)

Is equivalent to:

R1 JOINcondition R1

EXAMPLE 8:
REPLACE X

OPTIMISATION HEURISTIC 5:
Apply Pi (π) operators as early as possible

o Motivation: “Move π down the tree” (project) to eliminate
unwanted columns

oThe heuristic ensures that the size of the tables to be joined are as
small as possible (reduces number of attributes/columns)

Therefore:

ofor each π check if that π can be carried out before the join

ofor each table check if additional π can be introduced (these may
not be stated explicitly in the query)

N.B. MUST ensure that all needed columns further up in the tree are
retained (even if they are not immediately necessary)

EXAMPLE 8:
Move Pi

EXAMPLE 9

Using the COMPANY relational schema and interpretation
as defined in lectures develop an SQL query to satisfy the
following information need:

“List the names of employees with salaries greater than
30000, who work on projects for greater than 25 hours
where the projects are located in Houston or Bellaire”

Using query optimisation heuristics develop a query tree
which represents an efficient evaluation strategy for the
developed query.

SELECT fname, minit, lname

FROM project, employee, works_on

WHERE pno = pnumber AND essn = ssn AND

hours > 25 AND salary > 30000 AND

(plocation = ‘Houston’ OR

plocation = ‘Bellaire’);

SQL SOLUTION:

CANONICAL QUERY TREE SOLUTION

π fname, minit, lname

(σ pno = pnumber AND essn = ssn AND

hours > 25 AND salary > 30000 AND

plocation = 'Houston' OR plocation = 'Bellaire'

(project x employee x works_on)

)

OPTIMISATION HEURISTIC 1 & 2:
Decompose conditions and apply sigma (σ) operators
as early as possible

OPTIMISATION HEURISTIC 3:
Rearrange the leaf nodes so that most
restrictive sigma opeartors can be applied
first and that future joins can be performed

OPTIMISATION HEURISTIC 4:
Replace Cartesian product (x) and appropriate selects
(σ) with JOIN

OPTIMISATION HEURISTIC 5:
Apply Pi (π) operators as early as possible

EXAMPLE 10: (Winter 2017)
(Given the movie schema from the exam paper)

(c) Using joins, create a SQL query to answer the following information
need. Using this SQL query, create a canonical query tree, explaining
the steps you take in creating the tree and highlighting what parts of
the SQL query are represented by the root, leaves and inner nodes of
the tree.

For movies of genre ‘Sci-Fi’, released in 2016 or 2017, with an average
rating greater than 7, list the movie title, movie category and the names
of the actors who star in the movie.

(d) Using the canonical query tree from part (c), and with respect to
heuristic-based optimisation, develop a query tree that represents an
efficient evaluation strategy for the SQL query. Explain the steps taken,
describing each heuristic used.

SCHEMA:
movie(id, title, relYear, category, runTime, director, studioName,
description, rating)

actor(aID, fName, surname, gender)

stars(movieID, actorID)

movGenre(movieID, genre)

For movies of genre ‘Sci-Fi’, released in 2016 or 2017, with
an average rating greater than 7, list the movie title, movie
category and the names of the actors who star in the movie.

SQL SOLUTION:
(Note: can use implicit or explicit joins)

SELECT title, category, fname, surname

FROM movie INNER JOIN movGenre ON id = movieGenre.movieID

INNER JOIN stars ON id = stars.movieID

INNER JOIN actor ON aid = actorID

WHERE genre = 'Sci Fi' AND

rating > 7 AND

(relYear = 2016 OR relYear = 2017);

SUMMARY: IMPORTANT TO KNOW

•Basic relational algebra operators.

•Mapping between relational algebra operators and SQL.

•Mapping between relational algebra expression and
query tree.

•Mapping from SQL to Canonical Query tree.

•Heuristic optimisation steps to map Canonical Query tree
to efficient query tree.

•N.B. Do not mix up SQL code and Relational Algebra
expressions

	��Query Processing and optimisation��
	Recall: �Definition of Query Processing
	Representing the relational algebra solutions with a query tree
	Trees
	Query Tree
	Examples: all dependent names
	Examples: �employees from department 5 and their dependents
	How to Translate SQL to Relational Algebra?
	Executing query represented by query tree: one approach: �Materialization Evaluation
	How to Draw a query tree?
	Important
	Annotating Tree
	Example 1�Consider the following SQL solution and relational algebra translation
	Query tree representation
	Query tree representation with evaluation plan
	How materialization evaluation works …
	Example 2 �UBIK database�https://dbis-uibk.github.io/relax/calc/local/uibk/local/0
	Example 3 UBIK database
	Example 4:�Translating SELECT FROM WHERE�(with no subqueries) to Relational Algebra
	Note: An SQL statement may have many equivalent relational algebra expressions.
	Translating this SQL �to Relational Algebra
	Differences between these?
	Example 6:
	Example 7:
	Issues to Consider with Query trees:
	Optimisation
	Approach 1: �Compare cost estimates across different solutions
	How to calculate cost estimates?
	Main Cost Estimate Used: �Number of block transfers where each block contains a number of records
	DBMS Catalog
	In DBMS catalog, for each table R information is stored on:
	Steps for Approach 1
	Therefore:
	APPROACH 1: SUMMARY
	Approach 2:�Heuristic Optimisation
	Steps for Approach 2:
	Definition: �Canonical query tree
	Steps to create a canonical query tree with SELECT/FROM/WHERE clauses and no sub-queries:
	Example 8 with implicit join
	Example 8 with explicit join
	Canonical Tree Representation:
	Note:
	Consider example 7 again
	Heuristic Optimisation
	Heuristic Optimisation Algorithm:
	Slide Number 46
	Back to Example 8:�List the names of employees in research department
	Optimisation Heuristic 1 & 2: �Decompose conditions and apply sigma (s) operators as early as possible
	Slide Number 49
	Optimisation Heuristic 3: �Rearrange the leaf nodes so that most restrictive sigma opeartors can be applied first
	Example 8:�Rearrange leaf nodes
	Optimisation Heuristic 4: �Replace Cartesian product (x) and appropriate selects (s) with JOIN
	Example 8:�Replace x
	Optimisation Heuristic 5: �Apply Pi (p) operators as early as possible
	Example 8:�Move Pi
	Example 9
	SQL SOLUTION:
	Canonical Query Tree SOLUTION
	Optimisation Heuristic 1 & 2: �Decompose conditions and apply sigma (s) operators as early as possible
	Optimisation Heuristic 3: �Rearrange the leaf nodes so that most restrictive sigma opeartors can be applied first and that future joins can be performed
	Optimisation Heuristic 4: �Replace Cartesian product (x) and appropriate selects (s) with JOIN
	Optimisation Heuristic 5: �Apply Pi (p) operators as early as possible
	Example 10: (Winter 2017)
	Schema:
	SQL Solution:�(Note: can use implicit or explicit joins)
	Summary: Important to Know

