
TOPIC: NORMALISATION
PART 1

C230
Database
Systems

FUNDAMENTALS OF
DATABASE SYSTEMS
ELMASRI AND NAVATHE BOOK

See Chapter 14

(in 3rd Edition)

MOTIVATIONS

oWe can see from ER examples and mappings why we
get a particular grouping of tables.

However:

o What if different assumptions were made in the ER
model that leads to different – maybe larger (more
attributes/columns) tables?

oWhat happens over time as we need to add more
attributes to our tables to capture information that was
not part of the original requirements when creating the
ER model?

For example, what if:

The employee entity had extra attributes to
represent the department information?

For example, what if:

The employee entity had the dependent
information stored as attributes?

NORMALISATION

Normalisation rules gives us a formal measure of
why one grouping of attributes in a relation
schema may be better than another.

Normalised and un-normalised
databases

We can distinguish between normalised and un-normalised
databases

Both normalised and un-normalised databases have
advantages and disadvantages

If database is normalised:

No (or very little) redundancy.

No anomalies when inserting, deleting or modifying data.

If database is normalised:

More tables.

More foreign and primary keys to link tables

=> more complex queries (joins etc.)

DEFINITION: Redundancy

Unnecessary duplication of data in the database

e.g. if we included department details in Employee?

CONSEQUENCES OF
REDUNDANCY:

Space is wasted (due to duplication)

Data can become inconsistent due to potential problems
with update, insert and delete operations

DEFINITION: Duplication

Duplicated data can naturally be present in a database
and is not necessarily redundant.

For example, an attribute can have two identical values.

e.g., In company schema, ESSN in works_on may be
duplicated across many projects.

** Data is duplicated rather than redundant if when
deleting data, information is lost.

EXAMPLE 1:

For the company schema, consider the following alternative
schema for department which was initially created when
each department had only one location:

department(dnumber, dname, mgrssn, dlocation)

However, over time as the company grew, departments
were located in multiple locations:

2. What happens if a new manager is appointed to the
department with dnumber = 5?

Cannot be added unless we know where the
department will be located.

dnumber and dlocation

3 tuples will need to be modified in this case

3. What happens if we add a new department, say
“Development” with dnumber = 7?

Problems:

1. What can be used as
the primary key?

FIXING THESE PROBLEMS?

This does not seem a good grouping of
attributes …

We have seen, and worked with, a
better one which stores location in a
new table and uses dnumber as a
foreign key to link to the other
department information

EXAMPLE 2:

For the company schema, consider the following alternative schema
to store information on employees and the projects they work on:

employee(ssn, fname, lname, address, bdate, salary,
pno, pname, plocation)

And the following (partial) instance:

Problems?

1. What can be used as the key?

2. What happens if we want to update the database when a
new employee, Maria Browne, of 24 Cherry Drive, Voss, Houston,
joins the company (with ssn = 343434343)

ssn and pno

cannot be added unless she is given a project to work on

3. Update the database when ProductX and ProductY are
completed and details on the projects should be removed

4. Update the database with a new address for Franklin Wong

If we delete the relevant tuples, then all details on John
Smith will be lost

In this case, 4 tuples must be updated with the new address

FIXING THESE PROBLEMS?

This does not seem a good
grouping of attributes …

We have seen, and worked
with, a better one involving 3
tables

Note however the repetition of
ssn (as essn) and
pnumber/pno

NORMALISATION

Developed by Codd, 1972

• Takes each table through a series of tests to “verify”
whether or not it belongs to a certain normal form

• Normal forms to check:

• 1st, 2nd and 3rd normal forms (NF)

• Boyce-Codd normal form – strong 3NF

• 4th and 5th Normal Forms

• We will consider 1NF, 2NF and 3NF only in detail

NORMALISATION PROVIDES:

1. Formal framework for analysing relation schemas
based on keys and functional dependencies among
attributes.

2. Series of tests so that a database can be normalised to
any degree (e.g., from 1NF to 5NF).

3. But does not necessarily provide a good design if
considered in isolation to everything else.

WHY NORMALISE?

•Redundancy will be reduced or eliminated.

•Storage space will be reduced as a result.

•Task of maintaining data integrity is made easier.

However with normalisation, tables are usually added to
the schema and linked with foreign keys. Thus queries
become more complex as they often require data from
multiple tables (requiring joins or subqueries).

ALTERNATIVES?

Retain redundant data and maintain data integrity by
means of code consistency checks

In some applications the number of insertions may be very
small or non-existent (e.g. analysing past logs, transaction
data, weather data etc.) and in such cases the overhead
of normalised tables is generally not required.

DE-NORMALISATION

A process of making compromises to the normalised tables
by introducing intentional redundancy for performance
reasons (querying performance).

Typically, de-normalisation will improve query times at the
expense of data updates (insert, delete, update).

DEFINITION:
Functional Dependency

Functional dependency is one of the main concepts
associated with normalisation and describes the
relationship between attributes.

If A and B are attributes of a relation R, then B is
functionally dependent (FD) on A if each value of A is
associated with exactly one value of B.

i.e., values in B are uniquely determined by values of A

A → B :

FD from A to B

B is FD on A

A B

TERMINOLOGY:
FUNCTIONAL DEPENDENCY (FD)

NOTES ON NOTATION:

A → B does not necessarily imply B → A

A ↔ B denotes A → B and B → A

A → {B, C} denotes A → B and A → C

{A, B} → C denotes that it is the combination of A and B
that uniquely determines C.

TERMINOLOGY:
CANDIDATE KEY (CK)

Every relation has one or more candidate keys. A
candidate key (CK) is one or more attribute(s) in a relation
with which you can determine all the attributes in the
relation.

Recall we pick one such candidate key as the primary key
of a relation.

EXAMPLE 3: FINDING THE FUNCTIONAL
DEPENDENCIES – GIVEN THE PRIMARY KEY

For the company schema, consider the following alternative
schema to hold information on employees and projects:

emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

What are the functional dependencies?

oThink of this question as … “which attribute can be
uniquely determined from another attribute”

oBegin with any known PK or CK

Can represent these FDs graphically:

emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

ssn → ename

pnumber → {pname, plocation}

{ssn, pnumber} → hours

IMPORTANT TO NOTE:

A functional dependency is a property of a relation
schema R and cannot be inferred automatically but
instead must be defined explicitly by someone who knows
the semantics of R

i.e.

You will either be:

• explicitly given all FDs.

• given enough information about the attributes and the
domain to reasonably infer the FDs (perhaps having to
make certain assumptions).

2. Partial Functional Dependency:
A functional dependency {X,Y} → Z is a partial functional
dependency if some attribute (either X or Y) can be removed
from the LHS and the dependency still holds.

Note: There may be any number of attributes on LHS

1. Full Functional Dependency:
A functional dependency {X,Y} → Z is a full functional
dependency if when some attribute (either X or Y) is removed
from the LHS the dependency does not hold.

Note: There may be any number of attributes on LHS

TYPES OF FUNCTIONAL DEPENDENCIES

CONSIDER EXAMPLE 3 AGAIN:
emp_proj(ssn, pnumber, hours, ename,
pname, plocation)

Are the following Full or Partial Functional Dependencies?

{ssn, pnumber} → hours

{ssn, pnumber} → ename

TYPES OF FUNCTIONAL DEPENDENCIES

3. Transitive Dependency:
A functional dependency X → Y is a transitive dependency
in the table/relation R if there is a set of attributes Z that
is neither a candidate key nor a subset of any key of R
and both:

X → Z and

Z → Y

hold.

EXAMPLE 4:
Consider information on employees and
departments

emp_dept(ename, ssn, bdate, address, dnumber,
dname, dmgrssn)

The functional dependencies are:

ssn → {ename, bdate, address, dnumber}

dnumber → {dname, dmgrssn)

EXAMPLE 4:
An example of a transitive dependency

The dependency:

ssn → dmgrssn

is transitive through dnumber because both the following
hold:

ssn → dnumber

dnumber → dmgrssn

But dnumber is neither a key or a subset of the key.

EXAMPLE 5:

Given the following table to hold student data:

student(id, name, course, assocCollege, courseCoordinator)

and the following Functional Dependencies:

id → name

id → course

course → assocCollege

course → courseCoordinator

EXAMPLE 5:
What is the candidate key?
What are the full dependencies?
What are the transitive dependencies?

Given the following table to hold student data:

student(id, name, course, assocCollege,
courseCoordinator)

and the following Functional Dependencies:

id → name

id → course

course → assocCollege

course → courseCoordinator

EXAMPLE 6:
Draw the functional dependency diagram
and find the candidate key

Consider the table R with 5 attributes

R(A, B, C, D, E)

and the following functional dependencies:

A → B

B → A

B → C

D → A

R(A, B, C, D, E)

and the following functional dependencies:

A → B

B → A

B → C

D → A

Inference rules for Functional
Dependencies

Typically the main obvious functional dependencies are
specified for a schema

– call these F.

However many others can be inferred from F

– call these closure of F: F+

FOR EXAMPLE:

F = { A → {B, C, D, E}

E → {F, G} }

Some other FDs which can be inferred:

A → A

A → {F, G}

E → F

etc.

Inference Rules for FDs:

1. Reflexive: Trivially, an attribute, or set of attributes, always
determines itself.

2. Augmentation: if X → Y can infer XZ → YZ

3. Transitive: if X → Y and Y → Z can infer X → Z

4. Decomposition: if X → YZ can infer X → Y

5. Union (additive): if X → Y and X → Z can infer if X → YZ

6. Pseudotransitive: if X → Y and WY → Z can infer WX → Z

*Note: Rules 1, 2 and 3 are together called Armstrongs’s Axioms

	Topic: 	Normalisation Part 1
	Fundamentals of �Database Systems�Elmasri and Navathe Book
	MotivationS
	Slide Number 4
	Slide Number 5
	Normalisation
	Normalised and un-normalised databases
	If database is normalised:
	If database is normalised:
	Definition: Redundancy
	Consequences of Redundancy:
	Definition: Duplication
	Example 1:
	Slide Number 14
	Fixing these problems?
	Example 2:
	Slide Number 17
	Slide Number 18
	Fixing these problems?
	Normalisation
	Normalisation Provides:
	Why normalise?
	Alternatives?
	De-normalisation
	Definition: �Functional Dependency
	Terminology: �Functional Dependency (FD)
	Notes on Notation:
	Terminology:�Candidate Key (CK)
	Example 3: Finding the functional Dependencies – given the Primary Key
	�Can represent these FDs graphically:�
	Important to Note:
	Types of Functional Dependencies
	Consider Example 3 again:�emp_proj(ssn, pnumber, hours, ename, pname, plocation)�
	Types of Functional Dependencies
	Example 4: �Consider information on employees and departments
	Example 4: �An example of a transitive dependency
	Example 5:
	Example 5: �What is the candidate key?�What are the full dependencies?�What are the transitive dependencies?
	Example 6:�Draw the functional dependency diagram and find the candidate key
	Slide Number 40
	Inference rules for Functional Dependencies
	For example:
	Inference Rules for FDs:

