Data Science

- Turning data into something meaningful
- Science of uncertainty
- Quintessential interdisciplinary science

Data Science Skillset

• Statistics, mathematics and IT skills (e.g. programming)

Data Science Skillset

• Statistics, mathematics and IT skills (e.g. programming)

Data Science Skillset

- <u>Statistics</u>, mathematics and IT skills (e.g. programming)
- Logical thinker
- Problem solver
- Good communicator

What is / are Statistics?

What does the term,

"statistics ",

mean to you ?

What is / are Statistics?

A statistic:

Science of statistics:

What is / are Statistics?

A statistic:: any quantity computed from sample data

Science of statistics:

collecting, classifying, summarizing, organizing, analyzing, estimation and interpretation of information

* Terminology also used for function to calculate the summary quantity

Role of Statistics

Field of statistics deals with the collection, presentation, analysis, and use of data to:

- make decisions
- solve problems
- design products and processes

It is the science of uncertainty

Role of Probability

• Probability provides the **framework** for the study and application of statistics

10

Statistical Methods

https://www.nuigalway.ie/adult-learning/about-us/didyouknow/ https://visual.ly/community/infographic/animals/shark-attack **Descriptive Statistics:** Science of summarizing data, numerically and graphically...

Analysis methods applicable depends on the variable being measured and the research questions which you are trying to answer ...

Thinking Challenge

Inferential Statistics: science of using the information in your sample to say (i.e. to "infer") something about the population of interest Suppose the student newspaper is interested in what proportion of NUI Galway students pay rent and the average amount of rent paid

How would you find out?

Breakdown the question...

What is the individual / experimental unit? What is the population of interest? What are the variables of interest? What types are these variables? What are the parameters of interest?

How would you collect the data?

What are the observations for the variables?

How would you summarise these observations?

Some important terms:

An *experimental unit / individual* is a single object upon which we collect data, e.g. person, thing, transaction, event.

Some important terms:

A *population* is a collection of experimental units/individuals that we are interested in studying. e.g. people, things, transactions, events

Some important terms:

Some important terms:

A sample is a subset of experimental units / individuals from the population. e.g. people, things, transactions, events

Some important terms:

A **variable** is a characteristic or property of an individual experimental unit.

examples:

height grade score account balance gender (m/f/non-binary), letter grade (A, B, C, etc.), Likert scale (agree, neutral, disagree, etc.)

Types of variable:

A **variable** is a characteristic or property of an individual experimental unit

May be measured, or more generally "observed", on each individual

Qualitative Data:

Classified into categories, can be **ordered**:

• Grade achieved in ST2001

or unordered:

- Gender of each employee at a company
- Method of payment (cash, cheque, credit card)

Types of variable:

A **variable** is a characteristic or property of an individual experimental unit.

Types of variable:

A **variable** is a characteristic or property of an individual experimental unit.

Gapminder Data: <u>https://www.gapminder.org/</u>

The Gapminder Foundation is a Swedish NGO which promotes sustainable global development by increased use and understanding of statistics about social, economic and environmental development

Gapminder Data

• What is the *typical observation*?

- What is the *typical observation*?
- Is there much *variation/spread* between individuals in the dataset?

- What is the *typical observation*?
- Is there much *variation/spread* between individuals in the dataset?
- How are the observations distributed over all individuals in the group -i.e. what is the shape or distribution?

- What is the *typical observation*?
- Is there much *variation/spread* between individuals in the dataset?
- How are the observations distributed over all individuals in the group -i.e. what is the shape or distribution?
- Are there any values lying outside of the range where the majority of the dataset values lie - *outliers*?

- What is the *typical observation*?
- Is there much *variation/spread* between individuals in the dataset?
- How are the observations distributed over all individuals in the group -i.e. what is the shape or distribution?
- Are there any values lying outside of the range where the majority of the dataset values lie – *outliers*?

Summarising data (variables) can be done **numerically**, with appropriate summaries, or graphically, with appropriate plots

Summarising Categorical Data

• Numerical Summary: frequency count and percentage

	Continent		Frequency		Proportion	*		
		Africa		624		0.36619718	\mathbf{i}	
		Americas		300		0.17605634		
		Asia		396		0.23239437		
		Europe		360		0.21126761		\mathbf{i}
		Oceania		24		0.01408451		
		/						
gapmin	nder %	>% select(con	tinent) <mark>%>%</mark> tab	ole()	gapminder %>%	select(conti	nent) <mark>%>%</mark> tabl	e() %>% prop.table()
## .					## .			
## / ##	Africa 624	Americas 300	Asia Europe 396 360	Oceania 24	## Africa ## 0.36619718	Americas 3 0.17605634 0	Asia .23239437 0.21	Europe Oceania 126761 0.01408451

Summarising Categorical Data

• Graphical summary: bar chart, pie chart

Summarising Categorical Data

• Graphical summary: bar chart, pie chart

Advice: don't use pie charts People find determining angles very difficult Easier to understand lengths/heights

Summarising Continuous Data

Numerical summary of typical value:

Definition

Suppose that the observations in a sample are x_1, x_2, \ldots, x_n . The sample mean , denoted by \bar{x} , is	
$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{x_1 + x_2 + \dots + x_n}{n}.$	Sensitive to extreme values
Given that the observations in a sample are x_1, x_2, \ldots, x_n , arranged in increasing order of magnitude, the sample median is	
$\tilde{x} = \begin{cases} x_{(n+1)/2}, & \text{if } n \text{ is odd,} \\ \frac{1}{2}(x_{n/2} + x_{n/2+1}), & \text{if } n \text{ is even.} \end{cases}$	NOT Sensitive to extreme values
Mode is the most frequent observation in a dataset.	

Example

Data: breaking strength of wire in kilograms 220 214 222 218 223 210 223 210 227 225 212
Find the median:

Order the data from lowest to highest
210 210 212 214 218 220 222 223 223 225 227 Median

Find the Mean:

220 + 214 + ... + 222

= 218.5455

Mode is 210 and 223, as both have been repeated twice

Summarising Continuous Data

Numerical Summary of Spread

• Range = *maximum - minimum*

Examples:

• 1, 2, 5, 8, 10 gives range of 10 − 1 = 9

Mean = -

- 1, 5, 5, 5, 10 also gives range of 9
- Clearly the range is poor measure of spread
- Also badly affected by outliers

Numerical Summary of Spread

- Interquartile range $(IQR = Q_3 Q_1)$
- Middle 50% range of data, so is robust to outliers Split ordered data into 4 quarters

Tukey's Method for IQR (lots of others)

Data: breaking strength of wire in kilograms 220 214 222 218 223 210 223 210 227 225 212

Put data in ascending order:

210 210 212 214 218 220 222 223 223 225 227 $Q_1 = 213$ Median $Q_3 = 223$

Lower (Upper) quartile is median of lower (upper) 50% of data including the median

Numerical Summary of Spread

- Common measure of spread is the standard deviation, which takes into account how far *each* data value is from the mean
- A deviation is the distance of a datapoint from the mean
- Since the sum of all the deviations would be zero, we square each deviation and find an average (of sorts) of them (called the **variance**)
- We the square-root this average squared deviation... Why?

The sample variance, denoted by s^2 , is given by

Definition

The sample standard deviation, denoted by s, is the positive square root of s^2 , that is,

 $s = \sqrt{s^2}.$

Sample Standard Deviation

- In same units as original variable
 - So preferable to sample variance, which is in squared units
- But... it is sensitive to outliers

Example

Data: breaking strength of wire in kilograms

220 214 222 218 223 210 223 210 227 225 212

- Find the sample variance
- Find the sample standard deviation

 $\bar{x} = 218.5455$

Sample Standard deviation = $s = \sqrt{Sample Variance} = \sqrt{37.67273} = 6.1378$

Numerical Summary in R: Vector

wire.strength <- c(220,214, 222, 218, 223, 210, 223, 210, 227, 225, 212)

> mean(wire.strength)
[1] 218.5455
<pre>> median(wire.strength) [1] 220</pre>
var(wire strength)
[1] 37.67273
<pre>> sd(wire.strength)</pre>
[1] 6.137811

summary() function uses a different formula for quartiles > summary(wire.strength) Min. 1st Qu. Median Mean 3rd Qu. Max. 210.0 213.0 220.0 218.5 223.0 227.0

fivenum() function uses Tukey's method for $\rm Q_1$ and $\rm Q_3$, called the five number summary

> fi	venu	um(wi	ire.s	stre	ngth)
[1]	210	213	220	223	227

Numerical Summary in R:

Calculate the **mean** of life expectancy for gapminder data:

library(tidyverse)

gapminder %>% summarise(mean(lifeExp))

Calculate the mean of life expectancy for different continents:

gapminder %>% group_by(contine summarise(mean(l	nt) %>% ifeExp))		gapminder %>% group_by(continent) %>% summarise(mean.life = mean(lifeExp)) %>% arrange(mean.life)				
<pre># A tibble: 5 x 2 continent `mean(li <fct> 1 Africa 2 Americas 3 Asia 4 Europe 5 Oceania</fct></pre>	feExp)` <db1> 48.9 64.7 60.1 71.9 74.3</db1>	arrange	<pre># A tibble: 5 x 2 continent mean.life <fct> <db7> 1 Africa 48.9 2 Asia 60.1 3 Americas 64.7 4 Europe 71.9 5 Oceania 74.3</db7></fct></pre>				

Summarising Continuous Data

Summarising Continuous Data: Shape

• Graphical summary: boxplot, histogram

Boxplot

- A boxplot is a graphical display showing center, spread, shape, and outliers.
- It displays the 5-number summary:

min, Q_1 , median, Q_3 , and max

Boxplot of Breaking Length

Data: breaking strength of wire in kilograms 220 214 222 218 223 210 223 210 227 225 212

Variable	Minimum	Q1	Median	Q3	Maximum
Breaking Length	210.00	213.00	220.00	223.00	227.00

Upper fence: $Q_3 + 1.5 IQR = 223 + 1.5 \times 10 = 238$ $Q_1 - 1.5 IQR = 213 - 1.5 \times 10 = 198$ Lower fence:

Graphical Summary in R: boxplot()

Usually these differences are minor so can be ignored ٠

Histograms

49

✓ Useful to show general shape, location and spread of data values – representation by area

Construction

- Determine range of data *minimum, maximum*
- Split into convenient intervals (or bins)
- Usually use 5 to 15 intervals
- Count number of observations in each interval frequency

[•] Note: boxplot () function in R gives exactly same result

Other functions / software may use different method to calculate the quartiles (and/or fences)

Histogram of Breaking Length

Data: breaking strength of wire in kilograms

220 214 222 218 223 210 223 210 227 225 212

- Find the minimum and maximum
- Make classes of width 5 starting from minimum
- Count the frequency
- Plot the histogram!

Shape of the data

When talking about the shape of the data, make sure to address the following three questions:

- 1. Does the histogram have a single, central hump or several well separated bumps?
- 2. Is the histogram or boxplot symmetric? Or more spread out in one direction, i.e. skewed
- 3. Any unusual features? e.g. outliers, spikes

Features to look for

Remember the mean, median and mode ?

The mean is the average data value,

The value of the mean is strongly affected by skewness and outliers, - more so than the median.

Shape & Box Plot

These shapes can also be seen in the boxplots

Left skewed - Longer tail on left than right, median may not be central in the box.

Graphical Summary in R: Vector

Graphical Summary in R: Dataframe

Plot the **boxplot** of life expectancy for gapminder data:

Plot the **boxplot** of life expectancy for different continents:

Explanatory and response variables

TIP: Explanatory an	d response va	riables
To identify the explanat	ory variable in a	a pair of variables, identify which of the two
is suspected of affecting	the other and p	olan an appropriate analysis.
explanatory	might affect	response
		> variable

Explanatory and response variables

Graphical summaries of data

- Depends on the variable of interest
- Categorical response variable: barchart (n or %) or pie chart
- Categorical response variable with an explanatory variable: grouped barchart
- Continuous response variable: histogram, boxplot, density plot
- Continuous response variable with an explanatory variable: grouped boxplot

- R statistical computing and visualisation software
- Free open source package,
- Commonly used software for statistics
- •18,000+ contributed packages / libraries
- Lots of tutorials online
- Lots of sources of online help

DURSES	
traduction to Python	
troduction to R	
troduction to SQL	
ata Science for Everyone	
troduction to Data Engineering	
troduction to Deep Learning in Python	
e all courses (338)	
R 💠 Python 🏾 🛢 SQL	

A Gentle Start in 📿

= Content / ST2001_2021_Lab1_IntroR Let's add a little colour, better axis labels and a title to make it more suitable Introduction to R R code & Start Over Solution 1 Library(tidyverse) R as a Calculator 3 mtcars %>% ggplot(aes(cyl, fill = factor(cyl))) + geom_bar() + 4 lebs(x = "Number of cylinders", y = "Count", title = "Count Cars with No. of Cylinders") Storing Things in R Count Cars with No. of Cylinders Vectors to Store Data Selecting Data from Objects What Have I Created? How to Delete Things? factor(cvl) 4 Something Fun Number of cylinders Previous Topic

cran.r-project.org

2.1 What are R and RStudio?

moderndive.com

For much of this book, we will assume that you are using R via RStudio. First time users often confuse the two. At its simplest:

R is like a car's engine
RStudio is like a car's dashboard

RStudio: Dashboard

More precisely, R is a programming language that runs computations while RStudio is an *integrated development environment (IDE)* that provides an interface by adding many convenient features and tools. So the way of having access to a speedometer, rearview mirrors, and a navigation system makes driving much easier, using RStudio's Interface makes using R much easier, using RStudio's Interface makes using R much easier as well.

65

Installing R and RStudio

Tutorial in installing R and RStudio on your computer (and key packages):

https://jjallaire.shinyapps.io/learnr-tutorial-00-setup/

More instructions videos on Blackboard, but do also google!

Introducing R Markdown

- R Markdown is a file format for making dynamic documents with R
- Written in markdown (an easy-to-write plain text format) and contains:
 - chunks of embedded R code (data management, summaries, graphics, tables, analysis and interpretation)
 - all in the one document
- Document can be knitted to html, pdf, word and many other formats! 71

https://rmarkdown.rstudio.com/lesson-1.html

Key Benefits of R Markdown

- R Markdown makes it easy to produce statistical reports with code, analysis, outputs and write-up all in one place
- Perfect for reproducible research!
- Easy to convert to different document types

https://github.com/rstudio/cheatsheets/raw/master/rma rkdown.pdf

73

Creating R Markdown Document

RStudio		r New R Markdown	
Recent Project Cluit - O Open File Cluit - O Recent Files Cluit - O Open Frie Cluit - O Depen File Cluit - O Open Project Open Project Open Project Cluit - O Save As Save As Save As Cluit - S Save With Encoding Save As Save With Encoding Save As Save Mith Encoding Save As Save As Save As Save As Save As Save As Save As Save As Ctrl + Alt + S Save As Ctrl + Alt + S	Debug Porfile Iools Holp B Script Chr/Shift-N Chr/Shift-N R Markdown Phun Phun Shiny Web App Ioot File Ioot File C++ File R Swaree R HTML R Presentation R Documentation	t ■ Document	Title: Example R-Markdown Author: Carl Scarrott Default Output Format: . Ør HTML Recommended format for authoring (you can switch to PDF or Word output requires. Ø PDF PDF output requires TeX (MiCTeX on Windows, MacTeX 2012+ en Ore X, TeX Live 2012+ en Unice). Ø Word Pomenents Y word documents requires an installation of MS Word (or Libre/Open Office on Linux).
Print Close Ctrl+W Close All Ctrl+Shift+W Close All Egcept Current Ctrl+Alt+Shift+ Close Project	R: 	Create Empty Document	OK Cancel
Quit Session Ctrl+Q			75

Drawback of terminal and R script?

74

Basic R Markdown Document

Cutitled1 ×	-
🕼 🗇 🕼 🖓 🔍 🖋 Knit 🔹 💮 🗸	🦓 Insert 🔹 🔐 🕘 📑 Run 🔹 🧐 🖛 🗐
12 2 title: "Example R-Markdown" 3 author: "Carl Scarrott" 4 date: "9/5/2021" 5 output: word_document 6	
<pre>8 * ``{r setup, include=FALSE} 9 knitr::opts_chunk\$set(echo = TRUE) 10 * ```{</pre>	0
11 2+ ## R Markdown 13 14 This is an R Markdown document. Markdown is a simple formatting syntax for autho more details on using R Markdown see <u>http://markdown.rstudio.com</u> . 15 16 When you click the <u>**Knit**</u> button a document will be generated that includes bo 17 17	ring HTML, PDF, and MS Word documents. For th content as well as the output of any his:
18.'''[r cars] 19 summary(cars) 20.'''	0 🗹 🕨
22 ### Including Plots 23 24 You can also embed plots, for example: 25	
2:1 🔟 Example R-Markdown 🗅	R Markdown
	70

Edit and "knit" Document

R Markdown knitted to Word

le	Home	Insert	Design	Leyout	References	Mailings	Review	View	Q Te	lme	
× 100	Calibri B I	(Headir * 1 <u>U</u> ~ abc	8 • A /	Aa -	* ====	• %≣• ⊞ ≣ = ‡≣•	== <u>\$</u> 1 • <u>∆</u> • ⊞ •	91 Aal	BbCcDd Abstract	AaBbCcI 1 Author	AaBbCcI 1 Bibliogr
oard 🕏			Font		6	Paragraph		15		Styles	
					Exar	nple R-f	Varkdo	wn			
	9/5/2021										
	I have created a simple example dataset and calculated the sample mean. somedata - c(10, 23, 14, 12, 34, 26, 28) mean(somedata)										
		##	[1] 21								
		Her	e is a boxp	lot of the	data				-		
			8 -								
			0 25				-				
			15 2								
			ę -				_				

Structure

R Markdown documents contain three types of content

Code Chunks

Write and execute code in a **chunk**. Insert with

Code Chunks

Write and execute code in a **chunk**.

Code Chunks

Write and execute code in a **chunk**.

Headers

Header 1
Header 2
Header 3
Header 4
Header 5
Header 6
Header 4
Header 4
Header 5
Header 6

Text

81

82

Lists

Equations

85

Code chunks

86

echo = FALSE

Displays code results, but **not code**

89

eval = FALSE

Displays code, but not results (code is not run)

90

include = FALSE

Displays **neither code not results** (but code is run)