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8. Sampling distributions 
and confidence intervals
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Learning Outcomes

• Explain sampling variation, sampling distribution, standard error
• Calculate the standard error of the sample mean
• State the Central Limit Theorem (applied to sampling distribution of the 

sample mean)
• Describe the sampling distribution of the sample mean in applications 

using the CLT
• Identify the point estimator of the parameter in applications
• Describe briefly the use of a confidence interval in inferential statistics
• Calculate and interpret 95% confidence interval for the population 

mean
• Use R to calculate the standard error and calculate a 95% confidence 

interval for the population mean
• Use the t distribution to calculate the standard error and confidence 

intervals for the population mean using a small sample
• Confidence intervals for the mean and other statistics via simulation, 

using R
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Fundamental relationship between 
probability and inferential statistics 
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Probability and Statistics

• In probability theory we consider some known 
process which has some randomness or 
uncertainty.  We model the outcomes by random 
variables, and we figure out the probabilities of 
what will happen. There is one correct answer to 
any probability question.

• In statistical inference we observe something that 
has happened, and try to figure out what 
underlying process would explain those 
observations.
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An example …

•Consider an (opaque) jar of red and green jelly 
beans.

•A probabilist starts by knowing the proportion of 
each and asks: What is the probability of drawing a 
red jelly bean from the jar? 

•A statistician infers the proportion of red jelly 
beans by sampling from the jar, and using the 
sample proportion to estimate the jar proportion.
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Probability and Statistics

•The basic aim behind all statistical methods is to 
make inferences about a population by studying a 
relatively small sample chosen from it. 

•Probability is the engine that drives all statistical 
modelling, data analysis and inference.
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Foundations for Inference

• Recall that inference is concerned (primarily) with estimating 
population parameters using sample statistics.

• A classic inferential question is, “How sure are we that the 
sample mean, 𝑥, is near the true population mean, μ?”

• Estimates (i.e. statistics) generally vary from one sample to 
another, and an understanding of sampling variation is key 
when estimating the precision of a sample statistic as an 
estimate of the corresponding parameter.
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Sampling Distributions

•The probability distribution of a statistic is called a 
sampling distribution.

•Sampling distributions arise because samples vary. 

•Each random sample will have a different value of 
the statistic.
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Judgement Sample
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http://www.artofstat.com/webapps.html
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The Central Limit Theorem

• The sampling distribution of any mean becomes 
more nearly Normal as the sample size grows
• observations need to be independent.
• the shape of the population distribution doesn't 

matter.

!𝑋 ~𝑁 𝜇,
𝜎!

𝑛
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The Central Limit Theorem

The CLT depends crucially on the assumption of 
independence. 

You can’t check this with your data.  You have 
to think about how the data were gathered –
can you assume the observations are 
independent?

!𝑋 ~ 𝑁 𝜇,
𝜎"

𝑛

1 - 17
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The Central Limit Theorem

•Sample means follow a Normal distribution centred 
on the population mean with a standard deviation 
equal to population standard deviation divided by 
the square root of the sample size.

•What happens when you take a single sample ?

)𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏
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The Standard Error

•The standard error is a measured of the variability 
in the sampling distribution (i.e. how do sample 
statistics vary about the unknown population 
parameter they are trying to estimate) 

• It describes the typical ‘error’ or ‘uncertainty’ 
associated with the estimate.

S𝐸 =
𝜎
𝑛

)𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

1 - 19
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Use the CLT to provide a range of values that will 
capture 95% of sample means.

Interval Estimation for µ
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95% of sample means

𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏

µ-2s µ+2sµ

21

21

µ

95% of sample means

𝑿 ~ 𝑵 𝝁,
𝝈𝟐

𝒏
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The sample mean 𝑋 has a normal distribution with mean μ
and standard deviation 𝜎" = σ/√n. 
Let’s consider a particular sample with mean 𝑥.
Now suppose 𝑥 lies in the middle 95% of the distribution of 
𝑋 − the 95% confidence interval 𝑥 ± 1.96𝜎" succeeds in 
covering the population mean μ.
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The sample mean 𝑋 has a normal distribution with mean μ
and standard deviation 𝜎" = σ/√n. 
Let’s consider a particular sample with mean 𝑥.
Now suppose 𝑥 lies in the outer 5% of the distribution of 𝑋 −
the 95% confidence interval 𝑥 ± 1.96𝜎" does not include 
the population mean μ.
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In repeated sampling, 95% of intervals calculated in this 
manner

will contain the true mean µ.

x 1.96
n
s

± *

95% Confidence Interval for µ
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Confidence intervals

•The population mean µ is fixed
•The intervals from different samples are random
•From our single sample, we only observe one of the 

intervals
•Our interval may or may not contain the true mean
• If we had taken many samples and calculated the 

95% CI for each, 95% of them would include the 
true mean

•We say we are “95% confident” that the interval 
contains the true mean.

1 - 27
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• A point estimate (i.e. a statistic) is a single 
plausible value for a parameter.

• A point estimate is rarely perfect; usually there is 
some error in the estimate. 

• Instead of supplying just a point estimate of a 
parameter, a next logical step would be to provide 
a plausible range of values for the parameter.

• To do this an estimate of the precision of the 
sample statistic (i.e. the estimate) is needed.

Confidence Intervals

28

28



8

n = 150, x = 69.5, s = 6.2

Is µ > 75 ?
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𝟔𝟗. 𝟓 ± 𝟏. 𝟗𝟔
𝟔. 𝟐
𝟏𝟓𝟎

A 95% CI for the population mean is 
[68.51, 70.49]

Interpret this !

Is µ > 75 ?
30

30

95% confident that the population mean is 
between 68.48 and 70.51 based on the data 
provided.

No evidence to support the claim that the 
population mean (µ) greater than 75.
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Application: mean weekly rent in 
ST2001

What is the population mean rent ?
What is a student likely to pay ?
What will they actually pay ?
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Population Mean Rent in ST2001 ?

33
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Using s for s ?

•Knowing s must mean that you knew µ   ….

• The sample standard deviation s is used to 
estimate s.

• What are the consequences ?

1 - 34

x 1.96
n
s

± *
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What if s is unknown and n is 
small ?

1 - 35

35

Population normal

𝒏 < 𝟑𝟎
%𝒙 ± 𝒕(𝟏#𝜶𝟐,𝒏#𝟏)

𝒔
𝒏

1- confidence level Degrees of freedom

1 - 36
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1 - 37

𝒕𝝂 distribution

Mean = 0

Variance = 𝝂
𝝂"𝟐

for 𝝂 > 𝟐
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T- distribution

• As the degrees of freedom increase, the t-models look more and 
more like the Normal. 

• In fact, the t-distribution with infinite degrees of freedom is the 
Normal distribution.

38
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T- tables

41

41

T- tables
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• When the conditions are met, we are ready to find the 
confidence interval for the population mean, μ. 

• The confidence interval is

• The critical value 𝒕($%𝜶
𝟐
,𝒏%𝟏)depends on the particular 

confidence level, 1- 𝜶, that you specify and on the number of 
degrees of freedom, n – 1, which we get from the sample size. 

• Let R do the work ….

One-sample t-interval for a population mean

$𝒙 ± 𝒕(𝟏"𝜶𝟐,𝒏"𝟏)
𝒔
𝒏
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Example: Celtic study
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Celtic Study

•A sample of 18 full-time youth soccer players from a 
Youth Academy performed high intensity aerobic 
interval training over a 10-week in-season period in 
addition to usual regime of soccer training and 
matches. 

•Did this extra training improve fitness (VO2 max) ?
• Paired design: each player measured before and 

after (i.e. start and after 10 weeks)
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121086420-2
VO2 max Improvement (ml.kg-1.min-1)

0

Box plot of Improvement in VO2 max

ImprovementWorsening

Variable                      N     Mean    StDev
VO2 Improvement              18  5.11111  2.25829
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Estimate the population mean improvement

•90% CI for µ 

•95% CI for µ

•99% CI for µ

$𝒙 ± 𝒕(𝟏"𝜶𝟐,𝒏"𝟏)
𝒔
𝒏
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Estimate the population mean improvement

•90% CI for µ 
(a = 0.10 split over the tails)

•95% CI for µ
(a = 0.05 split over the tails)

•99% CI for µ (a = 0.10)
a = 0.01  split over the tails
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Using R to calculate the quantile needed 
corresponding to a particular tail area 

•Find the percentile of the Student t distribution 
needed for a 95% CI from a sample of size 18.  

The qt(p=? , df= ?, lower.tail=TRUE ) 
function calculates the t-value 
corresponding to a given lower-tailed
area.

50
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• For a 95% CI need the percentiles 
corresponding to tail areas such that 
95% of the distribution is between 
these percentiles (i.e. 5% of the area 
split across the two tails).

• To calculate the 2.5th and 97.5th

percentiles of the Student t 
distribution with 17 degrees of 
freedom:  

•Find the percentile of the Student t distribution 
needed for a 95% CI from a sample of size 18.  
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Check the tables …
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Estimate the population mean improvement

•95% CI for µ

Variable                      N     Mean    StDev
VO2 Improvement              18  5.11111  2.25829

$𝒙 ± 𝒕(𝟏"𝜶𝟐,𝒏"𝟏)
𝒔
𝒏
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Conclusion ?

•On average ?

•What does 95% Confidence mean ?

•Terms and conditions ?

•Random sample ?

•Small n, normality ??
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If Normality is questionable

a) Try to transform the data to approximate 
Normality
• e.g. logarithms or square root

b) Non-Parametric technique
• Bootstrap 
• CI for the population MEDIAN
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Transforming to Normality

•Example: A study of Bilirubin levels in patients with 
Liver Disease
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Logarithm of Bilirubin Data

1. Produce an interval estimate for the Population 
MEAN  
log bilirubin level 

2.  take anti-logs/exponentials of the resulting interval
59
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If Normality is questionable

a) Try to transform the data to approximate 
Normality
• e.g. logarithms or square root

b) Non-Parametric technique
• Bootstrap 
• CI for the population MEDIAN

60
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The Bootstrap

a) Try to transform the data to approximate 
Normality
• e.g. logarithms or square root

b) Non-Parametric technique
• Bootstrap 
• CI for the population MEDIAN
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Estimation via bootstrapping

•We can quantify the variability of 
sample statistics using theory eg
the Central Limit Theorem, or by 
simulation via bootstrapping.

•The term bootstrapping comes from 
the phrase "pulling oneself up by one’s 
bootstraps”.
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Bootstrapping scheme

•Take a bootstrap sample - a random sample taken 
with replacement from the original sample, of the 
same size as the original sample.

•Calculate the bootstrap statistic - a statistic such as 
mean, median, proportion, etc. computed on the 
bootstrap samples.

•Repeat steps (1) and (2) many times to create a 
bootstrap distribution - a distribution of bootstrap 
statistics.

•Calculate the bounds of the XX% confidence interval 
as the middle XX% of the bootstrap distribution.
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Bootstrapping in R
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Generate bootstrap means

65

65

Plot the (empirical) sampling distribution
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121086420-2
VO2 max Improvement (ml.kg-1.min-1)

0

Box plot of Improvement in VO2 max

ImprovementWorsening

Variable                      N     Mean    StDev
VO2 Improvement              18  5.11111  2.25829
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Compare the two 95% Confidence Intervals
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Generate bootstrap medians

69
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Generate bootstrap medians
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Celtic Study

•Based on the data provided the sample mean 
improvement was 5.11 mL/kg/min.  We are 95% 
confident that the typical improvement in VO2 max 
is likely to be between 4 and 6 mL/kg/min. 

•Given that the typical VO2 max at the start of this 
study was 67.66, the estimated typical 
improvement is approximately 7% (i.e. 5.11/67.66 
expressed as percentage is 0.07*100 ).

•How would you translate this ? 
71
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Celtic Study

•Does this mean that each player will improve 
by 5.11 units ?
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Pick a parameter of interest …. 

1. Estimate it using an (unbiased) estimator
2. Calculate its corresponding standard error;
3. Calculate the corresponding (1-a)100% CI;
4. Check the terms and conditions
5. Report the conclusions of the analysis.
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90% C.I. for ,     1.65 sx
n

µ ±

95% C.I. for ,     1.96 sx
n

µ ±

99% C.I. for ,     2.58 sx
n

µ ±

Effect of increasing the confidence 
level
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Theorem 9.2

Very useful for sample size calculations
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