
FIREBASE FUNCTIONS, CALLBACKS, CREATING AND 

TESTING OUR FIRST FUNCTIONS



Summary
2

 Firebase functions

 Callback functions

 HTTP Verbs GET and POST

 Creating a dumb function which receives data and returns it back 

 Testing with POSTMAN

 JSON

 Summary



Firebase Functions
3

 It is a compute service that lets you run code 
without provisioning or managing servers.

 Similar to AWS Lambda, Azure Functions… It runs 
your code only when needed and scales 
automatically, from a few requests per day to 
thousands per second. 

 You pay only for the compute time you consume -
there is no charge when your code is not running.



Containers vs VMs
4



Deploy a function what happens
5

HelloWorld



Callback functions
6

Too busy to take a call, 

please leave your name 

and number (function) and 

I’ll call you back when I’m 

finished my work (invoke 

your function).



Function callbacks
7

 Examining our first REST API (cloud function)

const functions = require('firebase-functions');

// // Create and Deploy Your First Cloud Functions

// // https://firebase.google.com/docs/functions/write-firebase-functions

exports.helloWorld = functions.https.onRequest((request, response) => {

functions.logger.info("Hello logs!", {structuredData: true});

response.send("Hello from Firebase!");

});

// Callback function -- please run this code for me Firebase when a request is made

myCoolApp/functions/index.js



Exercise: Deploying a function
8

 Deploy a function onto Firebase and return a string 

when it is invoked which says “Welcome to my cool 

new backend function”

 Add a second function below the first one and this 

time return a message saying “Not logged In!”



Passing Data - URL Query String
9

 We can encode parameters in the URL, we 

generally refer to this as the query string

 E.g. If you run a google search query, look at the 

URL after you search…

 http://www.mywebsite.com?data=hello

http://www.mywebsite.com/?data=


Simple function to mirror data
10

 Assume you want to create a function which parses 

out data submitted per request and mirrors it back 

to the requester

const functions = require('firebase-functions');

// Accept comment and return the same comment to the user

exports.echofunction = functions.https.onRequest((request, response) => {

response.send(request.query.data);

});

myCoolApp/functions/index.js



Exercise: Parsing params from QS
11

 Write a function that assumes the data passed in 

the via the Query String is a number, take the value 

that is submitted per request, double it and then 

return it via the response.

 If the user submits a value that isn’t a number then 

return a response that says “Please Enter a 

Number”



HTTP Verbs (GET and POST)
12

 GET and POST are HTTP request methods to 

transfer data from client to server.

 So far we have been making GET requests, GET is 

designed to request data from a specified resource

 POST is designed to submit data to the specified 

resource

 Both can be used to send requests and receive 

responses



Request Structure
13

 All HTTP requests have a three main parts

 Request line
◼ HTTP Method (GET, POST, etc.)

◼ URL – address of the resource that is being requested

◼ HTTP version

 Headers
◼ Additional information passed between the browser and the 

server, i.e. cookies, browser version, OS version, auth tokens, 
content-type

 Message body
◼ Client and server use the message body to transmit data back 

and forth between each other. POST request method will usually 
have data in the body. GET requests leave the message data 
empty



GET Method
14

 GET requests can be cached

 GET requests remain in the browser history (you can go 
back!)

 GET can’t be used to send binary data, like images or 
word documents to the server

 GET requests can be bookmarked

 GET requests have length restrictions

 GET requests should only be used to retrieve data

 Using GET data can be sent to the server by adding 
name=value pairs at end of the URL, i.e. Querystring

 mysite.app.web…/page?id=101&name=John



POST Method
15

 POST requests are never cached

 POST requests do not remain in the browser history

 POST requests cannot be bookmarked

 POST requests have no restrictions on data length

 The POST method can be used to send ASCII as well as 
binary data



POST Request Form Data
16

 Form data is often sent to the server via a POST 

request
Alternative option is to 

send username and 

password to the server 

via the QueryString –

uid=email@address.c

om

pwd=password

But is this a good idea?

mailto:uid=email@address.com


GET vs POST
17

 Use GET if you are requesting a resource

 You may need to send some data to get the correct 
response back, but in general the idea is to GET a 
resource

 Use POST if you want to send data to the server

 Other methods

 PUT //Update/Replace

 DELETE //Delete

 PATCH //Partial update/modify



POST data to server
18

 Assume you are building a form which posts 

comments from your blog page to the server

 First step is to write a function to accept the 

comment

const functions = require('firebase-functions');

// Accept comment and return the same comment to the user

exports.postcomment = functions.https.onRequest((request, response) => {

response.send(request.body);

});

myCoolApp/functions/index.js



How to test a POST request?
19

 We can create a form on a web page, then write 

JavaScript to send the data via POST to the server. 

 However it would be nice if there was a way to test 

it first without having to go back to the frontend



Postman client
20

 When writing backend APIs such as the one we 

have just completed, it’s often necessary to test it 

quickly. 

 You don’t want to have to write a client side request 

to test each API. Sometimes you may even want to 

pass in values which would take even longer to code 

up. 

 Postman can help!

 https://www.postman.com/downloads/



POSTMAN
21

 It’s brilliant for letting us test our APIs without having 

to write client side code to make the requests.

 It will work for all request methods, i.e. GET, POST, 

PUT etc.

 You can code the backend independent of the 

frontend!

 How else could we test to see if postcomments is 

working!



Sending data, what format?
22

 Now that we have an API available to receive data, 

and we have a client (postman) willing to send the 

data, we need to decide on a data format…

 Enter JavaScript Object Notation or JSON



JSON
23

 JavaScript Object Notation (JSON)

 It is an open, human and machine-readable 
standard that facilitates data interchange

 Along with XML it is the main data interchange 
format on the web

 Data types

 Numbers, Strings, Booleans, Arrays, Objects

 ISODate() returns a date object

 Firestore uses JSON documents to store records of 
information



JSON cont.
24

 Arrays 

 [“a”, “b”, “c”, “d”, “e”, “f”]

 [“apple”, 3, null, true]

 Objects

 {“Enda” : 45, “John” : 33, “Sam” : “Smith”}

 Array of Objects

 [{}]

 Use double quotes, no comma last value



POST JSON to Server
25

Pass JSON data 

in the request 

body

Request to our API

Response

Set POST



Exercise 3
26

 Create a function which accepts comment 

information (JSON formatted) in the body of the 

request i.e. {“Comment”: “This is my comment”}

 Make a request via Postman to send the data via a 

POST request

 Respond with a message saying “I received your 

comment, thank you”.



Summary
27

 Firebase functions

 Callback functions

 HTTP Verbs GET and POST

 Creating a dumb function which receives data and returns it back 

 Testing with POSTMAN

 JSON

 Summary


