
Returning to
SQL DML SELECT STATEMENT

Join and Union Queries

CT230
Database 
Systems



RECALL EXAMPLE 18:
Version 1: List the details (name and birth date) of the 
children of the employee with SSN 333445555

Version 2: List the details (name and birth date) of the 
children of Franklin T Wong?

Now consider a 3rd version:

Version 3: List the details (name, birth date and 
address) of the children of Franklin T Wong (assuming 
the dependent’s address is Franklin Wong’s address)



RECALL sub-query solution to version 2:
List the details (name and birth date) of 
the children of Franklin T Wong?



CAN WE MODIFY THIS TO GET THE SOLUTION TO 
VERSION 3?
List the details (name, birth date and address) of the 
children of Franklin T Wong (assuming the 
dependent’s address is Franklin Wong’s address)

No – because we 
need information from 
two tables –we need 
to use a join to join or 
combine the two 
tables so that the 
information from both 
is accessible and can 
be displayed as the 
output



JOINS

Joins combine multiple tables in to one table. This new 
(temporary) table is then queried to return results so we can 
return values from any of the tables which were joined.

Tables are joined by specifying links (or joins) across 
attributes in the tables.

Joins are carried out on 2 tables at a time but many tables 
can be joined, i.e., a third table can be joined to the table 
that results from joining two tables.



SPECIFYING JOINS

1. In SQL must specify all the tables which are part of join in the 
FROM clause

2. There are many different types of joins – all may not be 
supported in the DBMS you are using – we will mostly use an 
inner join which will always be supported.

3. Must then specify the join condition: for an inner join the condition 
is foreign_key =  primary_key/candidate_key.

4. The join condition can be specified in the FROM or WHERE
clause.



INNER JOINING TABLES:

The result of an inner join operation between two tables:

R(A1, A2, …, An) and 

S (B1, B2, …, Bm) 

is a table Q(A1, A2, …, An, B1, B2, …, Bm) where: 

Q has one tuple for each combination of tuples 
(one from R and S) whenever the combination 
satisfies the join condition – the join will retrieve 
ALL attributes in each table



CONSIDER:
INNER JOIN CONDITION FOR employee AND 
dependent TABLES

Join condition: ssn = essn
Full query retrieving all employees and their dependents 
(when they have dependents):

SELECT *

FROM employee INNER JOIN dependent

ON ssn = essn;



Result from joining employee and 
dependent:



EXAMPLE 18 VERSION 3 JOIN SOLUTION
List the details (name, birth date and 
address) of the children of Franklin T Wong 

SELECT  dependent_name, dependent.bdate, address

FROM  employee INNER JOIN dependent ON

ssn = essn

WHERE   relationship != ‘spouse’ 

AND fname = 'Franklin’

AND minit = 'T’ 

AND lname = 'Wong’; 



NOTE:
When attributes with the same name, but from different tables, 
are used in a join query, you need to specify the table name to 
avoid ambiguity with respect to the attribute names.

Example: bdate in employee and dependent relations.

Can refer to both of these unambiguously as: 

employee.bdate

dependent.bdate

If you do not do this, the DBMS does not know which one you 
are referring to and gives an error:



EXAMPLE 39: Using an inner join, retrieve 
the names and addresses of all employees 
who work for the administration department

SELECT fname, lname, address 

FROM ???

WHERE dname = 'administration’; 



CONSIDER THE INNER JOIN CONDITION FOR 
employee AND department USING 
DEPARTMENT NUMBER

Join condition is: dno = dnumber

Full query retrieving all employees and their departments:
SELECT *

FROM   employee INNER JOIN department 

ON dno = dnumber;



EXAMPLE 39: Using a join, retrieve the names and 
addresses of all employees who work for the 
administration department

SELECT fname, lname, address 

FROM employee INNER JOIN department 

ON  employee.dno = department.dnumber

WHERE dname = 'administration’; 

Class Question: Can this be done with a sub-query? 



Class Question: Can this be done with a sub-query? 
(EXAMPLE 39: Retrieve the names and addresses of 
all employees who work for the administration 
department)



EXAMPLE 40: Retrieve the names and addresses of 
all employees who work for the administration 
department and the ssn of the manager of the 
administration department

SELECT fname, lname, address, mgrssn

FROM employee INNER JOIN department 

ON employee.dno = department.dnumber

WHERE dname = 'administration'; 



IMPLICIT AND EXPLICIT JOINS

The join condition can be specified implicitly or 
explicitly as follows:

•An explicit join is specified in the FROM clause where 
the tables to be joined are listed. The keyword INNER 
JOIN is used for inner joins and the join condition is 
listed also using keyword ON

•An implicit join is specified in the WHERE clause 
without using the keyword ON. It is referred to as a 
join condition. The tables must be listed in the FROM
clause, separated by commas. Other conditions can 
also be specified in the WHERE clause as well as the 
join condition.



IMPLICIT JOIN CONDITION IN 
WHERE CLAUSE: 

•No additional syntax to learn. 

•All tables involved MUST be listed in FROM 
clause.

•Condition to join tables is contained in the WHERE 
clause. If there are other conditions, the join 
condition is appended on with AND

• This is an INNER JOIN: all rows from both tables 
will be returned whenever there is a match 
between the attributes in the join condition



EXPLICIT JOIN CONDITION IN FROM
CLAUSE
Syntax for joining 2 tables:

SELECT [DISTINCT] <attribute list>

FROM <table> 

[INNER/LEFT/RIGHT] JOIN <table> 

ON <join condition>

WHERE <condition>

* Will mostly use INNER JOIN



EXAMPLE 18 AGAIN …  USING AN IMPLICT JOIN
List the details (name, birth date and address) of the 
children of Franklin T Wong 



EXAMPLE 39 again: Retrieve the names and 
addresses of all employees who work for the 
administration department (using an implicit join)
SELECT fname, lname, address 

FROM ??

WHERE dname = 'administration’; 



Syntax of explicit join 
with 3 tables

SELECT [DISTINCT] <attribute list>

FROM (<table> 

[INNER/LEFT/RIGHT] JOIN <table> 

ON <join condition>)

[INNER/LEFT/RIGHT] JOIN <table> 

ON <join condition>

WHERE <condition>



Syntax of implicit join 
with 3 tables

SELECT [DISTINCT] <attribute list>

FROM <table>,<table>,<table> 

WHERE <join condition> AND

<join condition> AND

<condition>



Syntax of explicit join 
with 4 tables

SELECT [DISTINCT] <attribute list>

FROM ((<table> 

[INNER/LEFT/RIGHT] JOIN <table> 

ON <join condition>)

[INNER/LEFT/RIGHT] JOIN <table> 

ON <join condition>)

[INNER/LEFT/RIGHT] JOIN <table> 

ON <join condition>

WHERE <condition>



Syntax of implicit join 
with 4 tables

SELECT [DISTINCT] <attribute list>

FROM <table>,<table>,<table>,<table> 

WHERE <join condition> AND

<join condition> AND

<join condition> AND

<condition>



EXAMPLE 41

For every project located in Stafford, list the 
project number, the controlling department name, 
and the department manager’s surname, address 
and birth date.



SELECT pnumber, dname, lname, address, bdate

FROM  project INNER JOIN department 

ON project.dnum = department.dnumber

INNER JOIN employee

ON department.mgrssn = employee.ssn

WHERE plocation = ‘stafford’;

EXAMPLE 41



CLASS QUESTION:
> Re-write solution to example 41 using implicit joins?
> Can we re-write this using sub-queries?



DIFFERENT TYPES OF JOINS:
•Inner Join is the default when using Implicit Join

•An INNER JOIN includes the tuples from the first (left) of 
the two tables only when they satisfy the join condition 
and tuples from the second (right) table are only included 
when they also satisfy the join condition

•For explicit joins, should explicitly state the join used:

For example joining employee and department on ssn
and mgrssn:
SELECT *

FROM employee INNER JOIN department ON

employee.ssn = department.mgrssn;



LEFT JOINS
Left (outer) joins include all of the tuples from the first (left) of two 
tables – when they satisfy the join condition and even when they 
don’t. Tuples from the second (right) table are only included when 
they satisfy the join condition. Example:

SELECT *

FROM employee LEFT JOIN department ON

employee.ssn = department.mgrssn;



RIGHT JOINS

Right outer joins include all of the tuples from the second (right) 
of two tables, even if there are no matching values for records 
in the first (left) table. Tuples from the first (left) table are 
included only if they satisfy the join condition. Example:

SELECT *

FROM employee RIGHT JOIN department ON

employee.ssn = department.mgrssn;



Graphical representation of  
different types of  joins (C.L. Moffat, 
2008)

In MySQL only 
INNER, LEFT and 
RIGHT joins are 
supported



EXAMPLE 42: What is the difference in the 
output produced using INNER, LEFT and RIGHT joins 
in the following?

SELECT *

FROM employee [INNER/LEFT/RIGHT] JOIN dependent 

ON employee.ssn = dependent.essn;



SELF-JOINS AND ALIASES

A self-join is a normal SQL join that joins a table 
to itself.

This is accomplished by using aliases to give each 
“instance” of the table a separate name – the 
keyword AS is used.



EXAMPLE 43: For each employee, retrieve the 
employee’s name and the name of  the employee’s 
supervisor

Consider: 

1. How to write the query if asked for the employee’s 
name and supervisor’s SSN?

2. What should output look like? e.g., for John Smith:



First consider joining employee to itself …

Need two “copies” or instances of table employee…

Call them E (for employee) and S (for supervisor)

SELECT *

FROM employee AS e, employee AS s

WHERE e.superssn = s.ssn;

SELECT *

FROM  employee AS e INNER JOIN employee AS s

ON e.superssn = s.ssn;



Why is this version better?
“For each employee, retrieve the employee’s name and the 
name of  the employee’s supervisor”

SELECT *

FROM  employee AS e LEFT JOIN employee AS s

ON e.superssn = s.ssn;



EXAMPLE 43: For each employee, retrieve the 
employee’s name and the name of  the employee’s 
supervisor

SELECT  CONCAT(e.fname, ' ' , e.lname) AS employee, 

CONCAT(s.fname, ' ' , s.lname) AS supervisor

FROM   employee AS e LEFT JOIN employee AS s

ON e.superssn = s.ssn;



EXAMPLE 44: For each department, list the 
department name, and the names, addresses and 
the start date of all managers, ordered by 
department name

SELECT

FROM 

WHERE

ORDER BY  ;



CAN SUB-QUERIES AND JOINS BE USED 
INTERCHANGEABLY? 

In some cases, yes, can replace a join of tables (where 
appropriate) with a sub-query
But recall … 

• Joins are needed when values across multiple tables must 
be displayed.

•Sub-queries are needed when an existing value from a 
table needs to be retrieved and used as part of the query 
solution.

•Sub-queries are needed when an aggregate function 
needs to be performed and used as part of a query 
solution.



EXAMPLE 45: JOINS AND GROUP BY
List the employee name, and number of  dependents of  each 
employee who has dependents

SELECT     essn, fname, lname,  

COUNT(*) AS numDeps

FROM employee INNER JOIN dependent 

ON ssn = essn

GROUP BY essn, fname, lname;



SELECT essn, fname, lname,  COUNT(*) AS numDeps

FROM employee INNER JOIN dependent 

ON ssn = essn

GROUP BY essn;

Why won’t this work?



EXAMPLE 46: List the project name and the number of  
employees who work on the project for projects that have 2 
or more  employees

SELECT pname, 

COUNT(*) AS numEmps

FROM

GROUP BY

HAVING



UNION QUERIES

The keyword UNION is used to combine the results of two or 
more queries or tables

MySQL does not support minus or intersection (intersect) 
operators but the same functionality can be built using joins

For union queries, tables must be union compatible



UNION COMPATIBLE

Two relations are union compatible if the schemas of the 
two relations match, i.e., 

same number of attributes in each relation and each pair 
of corresponding attributes have the same domain



Example 47: Using both subqueries and union 
queries (no joins) list all project numbers for projects 
that involve a worker whose last name is ‘Wallace’ or a 
manager, of  the department that controls the project, with 
last name ‘Wallace’

Steps:

First, consider two queries on their own and these can 
be combined with a Union query:

Query 1. Finding the employees ‘Wallace’ working on 
projects … 

Query 2. Finding the manger ‘Wallace’ of a 
department that controls project



-- employee 

SELECT pno

FROM works_on

WHERE essn IN

(SELECT ssn

FROM employee

WHERE lname = 
‘Wallace');

-- manager

SELECT pnumber

FROM project

WHERE dnum IN

(SELECT dnumber

FROM department

WHERE mgrssn IN 

(SELECT ssn

FROM employee

WHERE lname = 
‘Wallace'));

Example 47: Using both subqueries and union queries (no 
joins) list all project numbers for projects that involve a worker 
whose last name is ‘Wallace’ or a manager, of  the department that 
controls the project, with last name ‘Wallace’



EXAMPLE 47 Full solution

(SELECT pno

FROM works_on

WHERE essn IN

(SELECT ssn FROM employee 

WHERE lname = ‘Wallace'))

UNION

(SELECT pnumber

FROM project

WHERE dnum IN (SELECT dnumber FROM department

WHERE mgrssn IN (SELECT ssn FROM employee

WHERE lname = ‘Wallace')));



MORE EXAMPLES

Example 48

Using a join, list all the locations of the research department

Example 49

For all projects located in ‘Houston’ list the name of the project and the 
department which controls the project

Example 50

List the names of employees, and the number of hours they work, for 
employees who work greater than the average number of hours



SUMMARY: JOINS AND UNION QUERIES

Important to know:

• How joins work in general

• How implicit and explicit inner joins work

• How left and right joins work

• When to use sub-queries and joins

• How Union queries work 


	Returning to�SQL DML SELECT statement�Join and Union Queries
	Recall Example 18:
	Recall sub-query solution to version 2:�List the details (name and birth date) of the children of Franklin T Wong?
	Can we modify this to get the solution to version 3?�List the details (name, birth date and address) of the children of Franklin T Wong (assuming the dependent’s address is Franklin Wong’s address)�
	Joins
	Specifying Joins
	Inner Joining Tables:
	Consider:�Inner Join condition for employee and dependent Tables
	Result from joining employee and dependent:
	Example 18 Version 3 Join Solution�List the details (name, birth date and address) of the children of Franklin T Wong 
	Note: 
	Example 39: Using an inner join, retrieve the names and addresses of all employees who work for the administration department
	Consider the Inner Join condition for employee and department using department number
	Example 39: Using a join, retrieve the names and addresses of all employees who work for the administration department
	Class Question: Can this be done with a sub-query? �(Example 39: Retrieve the names and addresses of all employees who work for the administration department)
	Example 40: Retrieve the names and addresses of all employees who work for the administration department and the ssn of the manager of the administration department
	Implicit and explicit Joins
	Implicit Join condition in WHERE clause: 
	Explicit Join condition in FROM clause
	Example 18 Again …  Using an IMPLICT Join�List the details (name, birth date and address) of the children of Franklin T Wong 
	Example 39 again: Retrieve the names and addresses of all employees who work for the administration department (using an implicit join)
	Syntax of explicit join �with 3 tables
	Syntax of implicit join �with 3 tables
	Syntax of explicit join �with 4 tables
	Syntax of implicit join �with 4 tables
	Example 41
	Example 41
	Class Question: �> Re-write solution to example 41 using implicit joins?�> Can we re-write this using sub-queries?
	Different types of joins:
	Left Joins
	Right Joins
	Graphical representation of different types of joins (C.L. Moffat, 2008)
	EXAMPLE 42: What is the difference in the output produced using INNER, LEFT and RIGHT joins in the following?
	Self-joins and aliases
	Example 43: For each employee, retrieve the employee’s name and the name of the employee’s supervisor
	Slide Number 36
	Why is this version better?�“For each employee, retrieve the employee’s name and the name of the employee’s supervisor”
	Example 43: For each employee, retrieve the employee’s name and the name of the employee’s supervisor
	Example 44: For each department, list the department name, and the names, addresses and the start date of all managers, ordered by department name
	Can sub-queries and Joins be used interchangeably? 
	Example 45: Joins and Group By�List the employee name, and number of dependents of each employee who has dependents
	Why won’t this work?
	Example 46: List the project name and the number of employees who work on the project for projects that have 2 or more  employees
	Union Queries
	Union Compatible
	Example 47: Using both subqueries and union queries (no joins) list all project numbers for projects that involve a worker whose last name is ‘Wallace’ or a manager, of the department that controls the project, with last name ‘Wallace’�
	Slide Number 47
	Example 47 Full solution
	More examples
	Summary: Joins and Union Queries

