
FILE
ORGANISATIONS

CT230
Database
Systems I

RECOMMENDED TEXT:

See:

Chapter 5

Elmasri & Navathe

(3rd Edition)

MOTIVATIONS

o Generally can assume for non-trivial relational
databases, that the entire database will not fit in main
memory (RAM)

o One of the DBMS’s tasks is to manage the physical
organisation (storage and retrieval) of the tuples (rows) in
each table in the database
oThis is called File Organisation

NOTE:

Newer database system architectures, in-memory
databases (such as SAP Hanna), manage their data
through virtual memory, relying on the Operating System
to manage the movement of data to and from main
memory through the OS paging mechanism.

DEFINITION: FILE ORGANISATIONS

A database file organisation is the way tuples (records)
from a table are physically arranged in secondary
storage to facilitate storage of the data and read/write
requests by users (via queries).

A number of factors to consider, including:

• Support of fast access of data – moving to/from secondary
storage

• Cost

• Efficient use of secondary storage space

• Provision for table growth (when new tuples added)

o Options?

o All stored together?

o Separated in some way based on some logical
grouping?

Concerning the physical storage of
tuples

More definitions:

File = collection of data stored in bulk

In DBMS we have referred to these files as tables or relations

In DBMS we know that such tables contain a sequence of
tuples, where each tuple contains a sequence of bytes and is
subdivided into attributes or fields. Each attribute contains a
specific piece of information. Associated with each attribute is
a data type

In File Systems, we refer to these tuples as records containing
fields

Size of records/tuples:

Fixed length: all records (tuples) in file (table) have exactly
same size

Variable length: different records (tuples) in file (table)
have different size

RECORDS

Each record often begins with a header, a fixed-length
region which stores information about the record such as:

o Pointer to the database schema

o Length of the record

o Timestamp indicating the time the record was last
modified or read

o Pointers to the fields of the record

File organisation issues:

How can these records be organised to:

• store in a compact manner on devices of limited
capacity?

• provide convenient and quick access by programs

BLOCKS

o Different terminology used but generally,

Block = Frame = Page

where records from a file are assigned to
Blocks/Pages/Frames

oIn relational DBMS use the terminology of a block

oTherefore, a table can also be defined as a collection of
blocks where each block contains a collection of records.

DEFINITION: Blocks

o A block is the unit of data transfer between secondary
storage and memory

o The block size B is fixed

o Records of a file must be allocated to blocks. Typically,
the block size is larger than the record size, so each block
will contain a number of records

o Some files may have very large records that cannot fit in
one block so span records over a number of blocks

oA number of blocks is typically associated with a table

BLOCKS

Blocks also have header information holding information
about the block such as:

o Links to one or more blocks associated with the table

o Which table (in the schema) the blocks belong to

o Timestamp of last access to block (read or write)

Example: Records assigned to blocks for the table
with block header shown:
dept_locations(dnumber, dlocation)

header record 1 record 2 record 3

header record 4 record 5

Block 1

Block 2

Example: Records assigned to blocks for the table
with block and record header shown:
dept_locations(dnumber, dlocation)

Header info 1, ‘Houston’ 4, ‘Stafford’ 5, ‘Bellaire’

Block 1

Header info 1, ‘Houston’ 4, ‘Stafford’ 5, ‘Bellaire’

Block 1

Header info

Block 2

5, ‘Sugarland’ 5, ‘Houston’

DEFINITION: Blocking factor

o Blocking factor is the average number of records that fit
per block

o Given block size B (in bytes), and record size R (in bytes),
then with B >= R, can fit floor(B/R) records per block.

o Must ensure that the header information is also
accounted for

Spanned vs Unspanned organisations:

Spanned organisation - records can span more than one
block

Un-spanned - records are not allowed to cross block
boundaries

So can only use when B >= R

(i.e., block size is greater than record size)

NOTE:

Block size and record size measured in bytes.

e.g., with unspanned memory organisation and

B = 1024 Bytes (once header information stored)

R = 100 Bytes and of fixed length

The blocking factor is:
floor(10.24) = 10

Why use blocking?

Say we need to retrieve a file with 1000 records …

o If not blocked then would need 1000 data transfers

o If blocked with a blocking factor of 10, and records
are stored one after another in blocks, then the same
operation requires 100 data transfers

EXAMPLE 1: A table has 20000 fixed-length STUDENT
records

Schema:

student(name, studentID, address, mobphone,
birthdate, gender, degreeCode, currentYear)

Each field is the following size:
name (30 bytes),
studentID (9 bytes),
address (40 bytes),
mobphone (10 bytes),
birthdate (10 bytes),
gender (1 byte),
degreeCode (8 bytes),
currentYear (4 bytes)

The file is stored on disk, in blocks, with 20 bytes required
for header information per record.

EXAMPLE 1 QUESTIONS:

What is the record size? (adding in the header information
also)

Given a block size of 512 Bytes what is the blocking factor?
(unspanned memory organisation)

How many blocks are required to store all 20000 records if
each block is filled before another block is used (remember
records are fixed-length)

132 bytes

512/132 = 3.87 blocking factor = 3

20000/3 = 6666.67 6667 blocks needed

30+9+40+10+10+1+8+4+20 =

Operations performed on a file

All the operations we have been performing with SQL
code:
o Scan or fetch all records

o Search records that satisfy an equality condition (i.e.,
find specific records)

o Search records where a value in the record is between a
certain range

o Insert records

o Delete records

Steps to search for a record
on a disk:

1. Locate relevant blocks

2. Move these blocks to main memory buffers

3. Search through block(s) looking for required record

4. At worst (the worst case), may have to retrieve and check
through all blocks for the record

Generally, when accessing records:

To support record level operations, must:
 keep track of the blocks associated with a file
 keep track of free space on the blocks
 keep track of the records on a block

Recall example again: Records assigned to
blocks for the table:
dept_locations(dnumber, dlocation)

Header info 1, ‘Houston’ 4, ‘Stafford’ 5, ‘Bellaire’

Block 1

Header info 1, ‘Houston’ 4, ‘Stafford’ 5, ‘Bellaire’

Block 1

Header info

Block 2

5, ‘Sugarland’ 5, ‘Houston’

Options for organising records?

• Heap file organisation (unordered)

• Sequential file organisation (ordered)

• Hashing/hashed file organisation

• Indexed file organisation (Primary, Clustered, B-Trees, B+
Trees)

HEAP FILE ORGANISATION

Approach: Any record can be placed in any block where
there is space for the record (no ordering of records)

Insertion: last disk block associated with file (table) copied
into buffer and record is added; block copied back to
disk

Searching: must search all blocks (linear search)

Deletion: find block with record (linear search); delete link
to record

EXAMPLE 2: Given a blocking factor of 2, and the
student schema from example 1, sketch the
placement of the following student records, in the
order given, using heaped file organization

('Jane Casey', 111, '34 hazel park, newcastle, galway',
'087123456', '17-05-2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 college road, galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

('Jane Casey', 111, '34 hazel park, newcastle,
galway', '087123456', '17-05-2001', 'F', 'GY101', 1)

Header info

Block 1

Header info

Block 2

('Jack Walsh ', 91, '13 college road, galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

‘Jane
Casey’,
111, …

‘Jack Walsh’,
91, …

‘Sue
Smyth’, 90,
…

Gerard
Kelly’, 112,
…

How are the following supported in heaped
file organisation (using example 2)?

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill,
Galway', '087222333', '24-10-2002', 'M', 'GY101', 3)

2. Deleting an existing tuple:
('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill, Galway',
'087222333', '24-10-2002', 'M', 'GY101', 3)

Header info ‘Sue Smith’,
90, …..

‘Gerard Kelly’,
112, ….

Block 2

Header info ‘Sean Carty’,
100, …..

Block 3

Header info

Block 1
‘Jane
Casey’,
111, …

‘Jack
Walsh’, 91,
…

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

Header info ‘Jane Casey’,
111, ….. ‘Jack

Walsh’, 91,

Block 1

Header info
‘Sue Smith’,
90, …..

‘Gerard
Kelly’, 112,
….

Block 2

Header info ‘Sean Carty’,
100, …..

Block 3

HEAP FILE ORGANISATION

Advantages: Insertion efficient and easy - last disk block
copied into buffer and record is added; block copied
back to disk

Disadvantages:

1. Searching inefficient - must search all blocks (linear
search)

2. Deleting inefficient - search first; delete and then leave
unused space in block if using 'easy' insert approach

SEQUENTIAL FILE ORGANISATION

Approach: Records are stored in sequential order, based
on the value of some key of each record – often primary
key

Usually use an index with sequential file organisation

Allows records to be read in sorted order

EXAMPLE 3: Using a blocking factor of 2,
and the schema from example 1, sketch the
placement of the following student records
using a sequential file organisation ordered
on the studentID:

('Jane Casey', 111, '34 hazel park, Newcastle,
Galway', '087123456', '17-05-2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

Header info

Block 1

Header info

Block 2
‘Jane
Casey’, 111,
…

‘Jack
Walsh’, 91,
…

‘Sue
Smyth’, 90,
…

‘Gerard
Kelly’, 112,
…

('Jane Casey', 111, '34 hazel park, newcastle, Galway',
'087123456', '17-05-2001', 'F', 'GY101', 1)
('Jack Walsh ', 91, '13 college road, Galway', '086654321',
'01-09-2000', 'M', 'GY350', 3)
('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)
('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

How are the following supported in
SEQUENTIAL file organisation (using results
from example 3)?

1. Inserting a new tuple:
('Sean Carty', 100, '23 Ocean view,
Salthill, Galway', '087222333', '24-10-2002',
'M', 'GY101', 3)

2. Deleting an existing tuple:
('Jack Walsh ', 91, '13 College road,
Galway', '086654321', '01-09-2000', 'M',
'GY350', 3)

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill, Galway',
'087222333', '24-10-2002', 'M', 'GY101', 3)

Header info ‘Sean Carty’,
100, …..

‘Jane Casey’,
111, …..

Block 2

Header info ‘Gerard Kelly’,
112, ….

Block 3

Header info

Block 1
‘Jack
Walsh’, 91,
…

‘Sue
Smyth’, 90,
…

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill, Galway',
'087222333', '24-10-2002', 'M', 'GY101', 3)

Header info ‘Sean Carty’,
100, …..

Header info ‘Jack Walsh’,
91, ….

Block 1

‘Sue Smith’,
90, …..

Header info ‘Gerard
Kelly’, 112,
….

Block 2

‘Jane Casey’,
111, …..

Use of
“overflow”
blocks

Block n

2. Deleting an existing tuple (Option 1):

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

Header info ‘Sue Smith’,
90, …..

‘Jack
Walsh’, 91,
….

Block 1

Header info ‘Sean Carty’,
100, …..

‘Jane Casey’,
111, …..

Block 2

Header info ‘Gerard Kelly’,
112, ….

Block 3

Result:

2. Deleting an existing tuple (Option 2):

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

Header info ‘Sean Carty’,
100, …..

Header info ‘Jack
Walsh’, 91,
….

Block 1

‘Sue Smith’,
90, …..

Header info
‘Gerard
Kelly’, 112,
….

Block 2
‘Jane Casey’,
111, …..

Result:

SEQUENTIAL FILE ORGANISATION

Advantages:

• Reading records in order is efficient

• Searching is efficient on key field (binary search)

• Easy to find 'next record'

But …

• Insertion and deletion expensive as records must remain
physically ordered. Pointer chains used (part of header
information)

• What if searching on non-key field?

key value of
record hash

function
storage
location/block for
record

HASHING/HASHED FILE ORGANISATION

A hash function is computed on some attributes of each
record (e.g., often key value)

The output of the hash function is the block address where
the record should be placed

HASH FUNCTIONS

A common hash function is the MOD function where:
a MOD b or a % b

returns the remainder on dividing a by b, i.e. integer division.

Example:
20 MOD 7 = 6

100 MOD 5 = 0

where b should be a prime number – that is a number only
evenly divisible by itself and 1
http://www.onlineconversion.com/prime.htm

EXAMPLE 4

Given the following records which should be stored in
blocks based on user IDs and a hashed file organisation

The available blocks have IDs in the range 0-100 and
have a blocking factor of 3

Assign the following records to blocks using user IDs:

1234

167

100

458

Example 4 steps:
1. Get prime number in the range 0-100 as close to 100

as possible - e.g., 97

2. For each key value of each record find the block
number of where to place record by getting
keyvalue mod primenumber, e.g., keyvalue mod 97

1234 MOD 97

167 MOD 97

100 MOD 97

458 MOD 97

= 70 (97 divides in to 1234 12 times with remainder 70)

= 70 (once)

= 3 (once)

= 70 (4 times)

1234 …..block 70 167 ….. 458 …..

100 …..block 3

……

block 71

……

Placing of the records:

EXAMPLE 5: Using the student schema from
example 1, and given a blocking factor of 2,
with mod function of 97, sketch the placement
of the following student records using hashed
file organisation:

('Jane Casey', 111, '34 hazel park, Newcastle, Galway',
'087123456', '17-05-2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

('Jane Casey', 111, '34 hazel park, Newcastle, Galway', '087123456', '17-05-
2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 College road, Galway', '086654321', '01-09-2000', 'M',
'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway', '087111222', '25-07-1999', 'F',
'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co. Galway', '087121212', '30-12-
2002', F, GY414, 1)

111 mod 97 =

‘Sue Smyth’,
90, … block 90

‘Jane Casey’,
111 …..block 14

……

block 91

……

‘Gerard Kelly’,
112 …block 15

‘Jack Walsh’,
91, …..

91 mod 97 = 91

111 mod 97 = 14

90 mod 97 = 90

112 mod 97 = 15

How are the following supported in HASHED
file organisation (using results from
example 5)?
1. Inserting a new tuple:
('Sean Carty', 100, '23 Ocean view, Salthill,
Galway', '087222333', '24-10-2002', 'M',
'GY101', 3)

2. Deleting an existing tuple:
('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

1. Inserting a new tuple:

('Sean Carty', 100, '23 Ocean view, Salthill,
Galway', '087222333', '24-10-2002', 'M',
'GY101', 3)

‘Sue Smyth’,
90, …

block 90

‘Jane Casey’,
111, …..

block 14

……

block 91

……

‘Gerard Kelly’,
112 …

block 15

‘Jack Walsh’,
91 …..

100 mod 97 = 3‘Sean Carty’,
100, …..

block 3

2. Deleting an existing tuple:

('Jack Walsh ', 91, '13 College road, Galway', '086654321',
'01-09-2000', 'M', 'GY350', 3)

‘Sue Smyth’,
90

block 90

‘Jane Casey’,
111 …..

block 14

……

block 91

……

‘Gerard Kelly’,
112 …

block 15

‘Jack Walsh’,
91 …..

91 mod 97 = 91‘Sean Carty’,
100 …..

block 3

QUESTION: Is 97 a good choice for this
problem … with 20000 records?

No! Will use blocks from 0 to 96 (97 blocks)

With a blocking factor of 2, at most can fit 97x2 = 194
records

Need a much larger prime number and more blocks

Prime number close to 10000, e.g., 10009, but not much
room for growth

Prime number close to 20000, e.g., 19751, would be
much better
(http://www.onlineconversion.com/prime.htm)

http://www.onlineconversion.com/prime.htm

Criteria for choosing hash function

o Easy and quick to compute (as mod function is)

o Should uniformly distribute hash addresses across the
available space … Picking a prime number for the mod
function helps with this … but cannot guarantee it

o Anticipate file growth (insertions and deletions) so only a
fraction of each block is initially filled, thus leaving room
to insert new records

COLLISIONS
o However, at any stage, two or more key field values can hash
to the same location … if there is no room to place record this
is called a collision

o If a collision occurs, and there is no space in block for new
record, then must find a new location … this is called collision
resolution

oOne approach to collision resolution is Linear Probing

o Hash function returns block location i for record

o If there is no room in block i check block i+1, i+2 etc. until a block
with room is found

o Can degrade to a linear scan if load factor is high

EXAMPLE 6:

Given the following key field values of five records, show
how the associated records are assigned to blocks using a
hashed file organisation with the mod function (mod 7)
where a blocking factor of 3 is being used and with linear
probing collision resolution.

Key values of records: 24, 73, 20, 9, 10, 31

block

……

……

Placing of the records 24, 73, 20, 9, 10, 31
using mod 7 and a blocking factor of 3 and linear
probing collision resolution

block

block

block

block

Calculating
blocks IDs:

24 mod 7 =

73 mod 7 =

20 mod 7 =

9 mod 7 =

10 mod 7 =

31 mod 7 =

block2

……

……

Placing of the records 24, 73, 20, 9, 10, 31
using mod 7 and a blocking factor of 3 and linear
probing collision resolution

block3

block4

block6

block

20

31

24

9
Calculating
blocks IDs:

24 mod 7 = 3
1073

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

20 mod 7 = 6

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

20 mod 7 = 6

9 mod 7 = 2

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

20 mod 7 = 6

9 mod 7 = 2

10 mod 7 = 3

Calculating
blocks IDs:

24 mod 7 = 3

73 mod 7 = 3

20 mod 7 = 6

9 mod 7 = 2

10 mod 7 = 3

31 mod 7 = 3

DATABASE INDEXES

Indexing speeds-up operations that are not efficiently supported
by the basic file organisation.

Consists of index entries

Each index entry consists of:

o index key

o record or block pointer

The index entries are placed on disk, either in sequential sorted
order (ordered indexes) or hashed order.

A complete index may be able to reside in main memory

Example of index file organisation of staff
schema on name

To access a record using indexing key:

1. Retrieve index file

2. Search through it for required
field (based on index key value)

3. Answer query or return to
secondary storage for the block
which contains the required
record.

Dense vs sparse indexes

An index is dense if it contains an entry for every record in
the file

A dense index may be created for any index key
A sparse/non-dense index contains an entry for each
block rather than an entry for every record in the file and
can only be used if the records are assigned to blocks in
sorted (sequential) order based on the index key

A sparse index is called a primary index

More on primary indexes
 The total number of entries in the index is the same as the
number of blocks in the ordered file

 The first record in each block is called the anchor record of
the block

Advantages:

o Fewer index entries than records so index file is smaller

Disadvantages:

o Insertions and deletions a problem - may have to change
anchor record

o Searching may take longer

EXAMPLE 7: Indexed file Organisation
Given the student schema from Example 1, with primary key
studentID. With the aid of a diagram, illustrate how a dense
indexing file organisation might operate (with blocking factor of 2
and sequential file organisation)
e.g. for the examples:
('Jane Casey', 111, '34 hazel park, Newcastle, Galway',
'087123456', '17-05-2001', 'F', 'GY101', 1)

('Jack Walsh ', 91, '13 College road, Galway',
'086654321', '01-09-2000', 'M', 'GY350', 3)

('Sue Smyth ', 90, 'Maree, Oranmore, Co. Galway',
'087111222', '25-07-1999', 'F', 'GY406', 3)

('Gerard Kelly', 112, 'Main Street, Oughterard, Co.
Galway', '087121212', '30-12-2002', F, GY414, 1)

90 Block 1

91 Block 1

111 Block 2

112 Block 2

Index file

DENSE …. Index entry for each record

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Gerard Kelly’,
112, ….

Block 2

‘Jane Casey’,
111, …..

How are the following supported in dense
indexed sequential file organisation (using
example 7)?

1. Inserting a new tuple:
('Sean Carty', 100, '23 Ocean view,
Salthill, Galway', '087222333', '24-10-
2002', 'M', 'GY101', 3)

2. Deleting an existing tuple:
('Jack Walsh ', 91, '13 College road,
Galway', '086654321', '01-09-2000', 'M',
'GY350', 3)

Index file

Inserting a tuple …
two updates needed

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Sean Carty’,
100, …..

Header info
‘Gerard
Kelly’, 112,
….

‘Jane Casey’,
111, …..

Block 2

Block n

90 Block1

91 Block 1

100 Block n

111 Block 2

112 Block 2

Index file

Index file

Deleting a tuple …
two deletions needed

Header info ‘Jack
Walsh’, 91,
….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Sean Carty’,
100, …..

Header info ‘Gerard
Kelly’, 112,
….

‘Jane Casey’,
111, …..

Block 2

Block n

90 Block1

100 Block n

111 Block 2

112 Block 2

Index file

Example 8: Using the illustrated example from
example 7, show how the organization of data looks
for non-dense indexing (sequential organization)

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Gerard Kelly’,
112, ….

Block 2
‘Jane Casey’,
111, …..

90 Block 1

111 Block 2

Index file

Sparse/Non-dense ….
Index entry for each block

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Gerard Kelly’,
112, ….

Block 2
‘Jane Casey’,
111, …..

Index file

Inserting a tuple
with sparse
indexing

Header info ‘Jack Walsh’,
91, ….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Sean Carty’,
100, …..

Header info ‘Gerard
Kelly’, 112,
….

‘Jane Casey’,
111, …..

Block 2

Block n

90 Block1

100 Block n

111 Block 2

Index file

Index file

Deleting a tuple …
with sparse indexing

Header info ‘Jack
Walsh’, 91,
….

Block 1
‘Sue Smith’,
90, …..

Header info ‘Sean Carty’,
100, …..

Header info
‘Gerard
Kelly’, 112,
….

‘Jane Casey’,
111, …..

Block 2

Block n

90 Block1

100 Block n

111 Block 2

Index file

No change
in index

CLUSTERED AND SECONDARY INDEXES
Records that are logically related are physically stored
close together on the disk (i.e., in the same blocks or
consecutive blocks)

Records are physically ordered on a non-key field that
does not have a distinct value for each record

Clustering index consists of:

o clustering field value

o block pointer to first block that has a record with that
value for clustering field

Advantages/disadvantages of clustering:

Quick access on clustering field but have to search all
blocks in querying on non-clustering fields

Consider a file holding the employee information from the
Company schema where each record contains a positive
integer indicating the department where an employee works.
Show how a clustering index on department number (DNO)
might operate on such data – with blocking factor of 3

Example 9:

James E Borg, …. , 888665555, ….. …, 1

Alicia Z Zelaya, …. 999887777, …… …, 4

Jennifer S Wallace, …. 987654321, …. …, 4

Ahmad V Jabbar, ……, 987987987, ….. …., 4

John B Smith, ……… , 123456789, …. ….., 5

Franklin T Wong, ……., 333445555, …. ……, 5

b1

b2

bN

1 b1

4 b1

5 b2

Index file

Option 1:
Fill all blocks

Ramesh K Narayan, …. 666884444, …. ……., 5

Joyce A English, …….., 453453453, …… ..…, 5

b3

Index
value
(dno)

block
value

James E Borg, …. , 888665555, ….. …, 1

Alicia Z Zelaya, …. 999887777, …… …, 4

Jennifer S Wallace, …. 987654321, …. …, 4

Ahmad V Jabbar, ……, 987987987, ….. …., 4

Joyce A English, …….., 453453453, …… ..…, 5

b1

b2

b4

1 b1

4 b2

5 b3

Index file

Option 2:
Leave 'space’
for other
records with
that clustering
field value

John B Smith, ……… , 123456789, …. ….., 5

Franklin T Wong, ……., 333445555, …. ……, 5

Ramesh K Narayan, …. 666884444, …. …., 5

b3
Index
value
(dno)

block
value

John B Smith,… ,123456789, …. .…, 5

Franklin T Wong, ., 333445555, … .…, 5

Joyce A English, ., 453453453, . .…, 5

Ramesh K Narayan, ….666884444, …., 5

James E Borg, …. , 888665555, …, 1

Jennifer S Wallace, …. 987654321, ..…, 4

Ahmad V Jabbar, ……, 987987987, …., 4

Alicia Z Zelaya, …. 999887777, …… …, 4

b1

b2

b3

Option 3:
Use a Secondary Index
and sequential file
organisation

A secondary index is an index
whose index (clustering) value
specifies an order different to the
underlying sequential order of the
file.

Any attribute can be chosen as
the clustering index value.

Any number of secondary indexes
can be built with different
clustering index values.

John B Smith,… ,123456789, …. .…, 5

Franklin T Wong, ., 333445555, … .…, 5

Joyce A English, ., 453453453, . .…, 5

Ramesh K Narayan, ….666884444, …., 5

James E Borg, …. , 888665555, …, 1

Jennifer S Wallace, …. 987654321, ..…, 4

Ahmad V Jabbar, ……, 987987987, …., 4

Alicia Z Zelaya, …. 999887777, …… …, 4

b1

b2

b3

1 A

4 B

5 C

Clustering
Index file

Option 3:
Secondary
Index

b2

Secondary
Indexes

b2 b3

b1 b2

A

B

C

Index
value
(dno)

block
value

SECONDARY INDEXES

•Does not impact the actual storage of records (which
blocks they reside in – which can be sequential)

•Can define multiple secondary indexes as well as a
primary index

John B Smith,… ,123456789, …. .…, 5

Franklin T Wong, ., 333445555, … .…, 5

Joyce A English, ., 453453453, . .…, 5

Ramesh K Narayan, ….666884444, …., 5

James E Borg, …. , 888665555, …, 1

Jennifer S Wallace, …. 987654321, ..…, 4

Ahmad V Jabbar, ……, 987987987, …., 4

Alicia Z Zelaya, …. 999887777, …… …, 4

b1

b2

b3

1 A

4 B

5 C

Clustering
Index

For example:

b2

Secondary Indexes

b2 b3

b1 b2

A

B

C

123456789 b1

666884444 b2

987987987 b3

Primary index

B-TREES

Most commercial systems use an indexing structure called
B-trees, and specifically B+ trees.

B-trees allow as many levels of indexes as is appropriate
for the file being indexed

B-trees manage the space in blocks so that every block is
between half-used and completely full

B-trees consist of sequences of pointers arranged in a tree
data structure

CLASS WORK ….
WINTER 2017 QUESTION ON FILE ORGANISATIONS
(b) Given an unspanned memory organisation, fixed record length, a blocking

factor of 3, and five records with the following primary keys:

25, 34, 48, 69, 76

(i) With the aid of examples, outline the main advantages and disadvantages of
placing the given records in blocks under a sequential file organisation. (5)

(ii) With the aid of a diagram, and using sequential file organisation, differentiate
between a dense and non-dense indexing of the given five records. (5)

(iii) With the aid of an example, describe what is meant by secondary indexing. (5)

(iv) (i) With the aid of a diagram, show where the given five records would be
placed in blocks under a hashed file organisation. The mod function (mod 7)
should be used in addition to linear probing. (5)

block1

Given an unspanned memory organisation, fixed record length, a
blocking factor of 3, and five records with the following primary
keys:
25, 34, 48, 69, 76

block2

Advantages … reading on key field value (in order)
Disadvantages … maintaining sorted order when adding records

4825 34

69 76

25 block1

34 block1

48 block1

69 block2

76 block2

Dense

25 block1

69 block2

Non Dense (Primary Index)

block1

block2

25 34 48

69 76

With dense indexing we should have an entry for
every record; 5 records implies 5 index entries
With non-dense indexing we should have an entry
for every block associated with the file; 2 blocks
implies 2 index entries. The key value of the first
record in each block is used as the index value.

Example: Assuming the primary keys are student IDs (e.g., 25, 34, 48) and
we also store the course code for each student (e.g., 2BA, 3BP, etc.) as well
as other student information (not shown). Records are assigned to blocks
based on the primary key, with a blocking factor of 3.
Course code can be used as a clustering index and the actual references
to the blocks holding the student records are stored in a secondary index.

2BCT1 A

3BP1 B

3BLE1 C

2BA1 D

2BDS1 E

Clustered Index

b1 b2

Secondary Indexes

b1

b1 b2

A

B

D

b1

b2

25 …. 2BCT1 34 … 3BP1 48 … 2BA1

69 .. 2BA1 76 … 2BCT1

block4
……

Calculating
blocks IDs:

25 mod 7 = 4

block6

block7

25, 34, 48, 69, 76

Calculating
blocks IDs:

25 mod 7 = 4

34 mod 7 = 6

Calculating
blocks IDs:

25 mod 7 = 4

34 mod 7 = 6

48 mod 7 = 6

Calculating
blocks IDs:

25 mod 7 = 4

34 mod 7 = 6

48 mod 7 = 6

69 mod 7 = 6

25

34 48 69

76

Calculating
blocks IDs:

25 mod 7 = 4

34 mod 7 = 6

48 mod 7 = 6

69 mod 7 = 6

76 mod 7 = 6

767634 48 69

SUMMARY: IMPORTANT TO KNOW

•Blocking factor

•Basic 3 organisations: Heaped, Sequential and Hashed
(with collision resolution)

•Indexed – Dense and non-dense

•Clustered Index and secondary indexes (not B+ trees)

	File Organisations
	Recommended Text:
	Motivations
	Note:
	Definition: File Organisations
	Concerning the physical storage of tuples
	More definitions:
	Size of records/tuples:
	records
	File organisation issues:
	Blocks
	Definition: Blocks
	BLOCKS
	Slide Number 14
	Slide Number 15
	Definition: Blocking factor
	Spanned vs Unspanned organisations:
	Note:
	Why use blocking?
	Example 1: A table has 20000 fixed-length STUDENT records
	Slide Number 21
	Example 1 Questions:
	Operations performed on a file
	Steps to search for a record on a disk:
	Generally, when accessing records:
	Slide Number 26
	Options for organising records?
	Heap File Organisation
	Example 2: Given a blocking factor of 2, and the student schema from example 1, sketch the placement of the following student records, in the order given, using heaped file organization
	Slide Number 30
	How are the following supported in heaped file organisation (using example 2)?
	Slide Number 32
	Slide Number 33
	Heap File Organisation
	Sequential File Organisation
	Example 3: Using a blocking factor of 2, and the schema from example 1, sketch the placement of the following student records using a sequential file organisation ordered on the studentID:�
	Slide Number 37
	How are the following supported in SEQUENTIAL file organisation (using results from example 3)?
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Sequential File Organisation
	Hashing/Hashed file organisation
	Hash Functions
	Example 4
	Example 4 steps:
	Slide Number 48
	EXAMPLE 5: Using the student schema from example 1, and given a blocking factor of 2, with mod function of 97, sketch the placement of the following student records using hashed file organisation:�
	Slide Number 50
	How are the following supported in HASHED file organisation (using results from example 5)?
	Slide Number 52
	Slide Number 53
	Question: Is 97 a good choice for this problem … with 20000 records?
	Criteria for choosing hash function
	Collisions
	Example 6:
	Slide Number 58
	Slide Number 59
	Database Indexes
	Example of index file organisation of staff schema on name
	To access a record using indexing key:
	Dense vs sparse indexes
	More on primary indexes
	Example 7: Indexed file Organisation
	Slide Number 66
	How are the following supported in dense indexed sequential file organisation (using example 7)?
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Clustered and Secondary Indexes
	Advantages/disadvantages of clustering:
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Secondary Indexes
	Slide Number 82
	B-Trees
	Class work …. �Winter 2017 Question on file organisations
	Slide Number 85
	Slide Number 86
	Slide Number 87
	�
	Summary: Important to know

