
Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213 Computing Systems
& Organisation

Lecture 3: System Software &
Operating Systems

Contents
• System Software & OS

• OS Organisation

• OS Design and Implementation

• Implementation considerations
• Processor modes

• Kernel

• Requesting services from OS

2Photo by Vitaly Vlasov from PexelsDr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie> 3

System Software & OS

Application Software
• A computer program designed to

perform a group of coordinated
functions for the benefit of the user

• Application software is designed to
solve a specific problem

• Examples of an application include a
word processor, a spreadsheet, an
accounting application, a web
browser, photo editor etc.

4Photo by Pixabay from PexelsDr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

System Software
• Programs dedicated to managing the computer
• System software is a software that provides a platform to

other software.

• System software provides a general programming
environment
• There are two main types of system software

1. Operating System
2. Utility Software

5Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Operating System (OS)
• Provides functions used by the application software

• Provides the mechanisms for application software to share the hardware in an orderly
fashion to:
• increase the overall performance by allowing different application software to use different

parts of the computer at the same time
• decrease the time to execute a collection of programs and increase overall system

performance

• Interacts directly with the hardware to provide an interface to other system software
and with application software whenever it wants to use system’s resources
• It is application-domain independent
• Provides resource abstraction
• Provides resources sharing (through strict resource management policies)

6Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Utility Software

• Utility software is system software
designed to help analyse, configure,
optimize or maintain a computer.

• Examples of this include:
• data compression
• disk cleaners
• disk defragmentation
• registry cleaners
• system monitors

7Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Resource Abstraction
• It is done by providing an abstract model of the operation of the hardware

components

• Different hardware components that a program may access are referred to as
resources.

• Any particular resource, such as a hard-disk has a generic interface that defines how
the programmer can make the resource perform a desired operation.

• Abstraction generalises the hardware behaviour but restricting the flexibility
• With abstraction, certain operations become easy to perform, other may become

impossible (such as specific hardware control)

• An abstraction can be made to be much simpler than the actual resource
interface
• Similar resources can be abstracted to a common abstract resource interface
• E.g., system software may abstract hard-disks and CD-ROMs into a single abstract disk

interface

8Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Resource Sharing

• Abstract and physical resources may be shared among a set of
concurrently executing programs:

• Space Multiplex Sharing

• Time Multiplex Sharing

9

Resource can be divided in two or more distinct units of
the resource that can be used independently.
E.g.: Memory, HDD

A process is allocated exclusive control of the entire
resource for a short period of time (not spatially divisible)
E.g.: Processor Resource

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

System
Software
and the OS

10

Application Software

Application Programming Interface

Other System Software

Operating System Interface

Operating System

Software - Hardware Interface

Hardware

R
es

ou
rc

e
Ab

st
ra

ct
io

n

R
es

ou
rc

e
Sh

ar
in

g

Re
so

ur
ce

 A
bs

tr
ac

tio
n

Re
so

ur
ce

Sh

ar
in

g

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

OS Organisation

11

Process and resource manager
� It uses the abstractions provided by the other managers
� Handles resource allocation

Memory manager
� It is classically a separate part of the operating system
� Beside other functions, it is in charge with the

implementation of the virtual memory

File manager
� abstracts device I/O operations into a relatively simple

operation

Device manager
� handles the details of reading and writing the physical

devices
� implemented within device driver

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Process & resource
manager

OS Design – Functional Requirements

12

Processes:
• Creation, termination, control,

exception handling
• Protection
• Synchronisation and communication
• Resources allocation/de-allocation

Memory management:
• Allocation/de-allocation
• Protection and sharing

I/O devices:
• Allocation/de-allocation
• Protection and sharing
• Physical resource abstraction

File System Management:
• Space allocation/de-allocation
• Protection, sharing, security
• Physical resource abstraction

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

13

Operating Systems Evolution

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Operating Systems Evolution

• Computers with no operating system
• Programming in machine language
• Lack of I/O devices

• Rudimentary OS
• Programming done in assembly
• Some basic I/O devices
• Some I/O control modules, assembler, debugger, loader, linker

• Batch processing systems – service a collection of jobs, called a batch, from a queue
• Job – predefined sequence of commands, programs and data combined into a single unit
• Job Control Language and monitor batch (interpreter for JCL)
• The user doesn’t interact with programs while they operate

14Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Batch Systems
• Processor scheduling : FIFO

• Memory management:
• Memory is divided in two parts: system memory and

program memory (for programs)

• I/O management – no special problems, since a job has
exclusive access to the I/O devices

• File management – present

15

Job Queue /
Batch File

Memory
Allocation

Primary
Memory

Processor
Sheduler

Processor

Submit Job /
Batch File

Job / Batch File
Complete

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Operating Systems Evolution

• Operating systems using multiprogramming: the technique of loading multiple
programs into space multiplexed memory while time-multiplexing the processor
• Timesharing Systems
• Real-time Operating Systems
• Distributed Operating Systems

• Multiprogramming systems common features
• Multitasking: multiple processes sharing machine resources
• Hardware support for memory protection and I/O devices
• Multi-user and multi-access support (through time sharing mechanisms)
• Optional support for real time operations (based on efficient usage of multitasking support)
• Interactive user interface

16Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Time Sharing Systems

• Support for multiprogramming and multi-user

• Processor scheduling
• Time slice (round robin)

• Memory management:
• Protection and inter-process communication support

• I/O management
• Support for protection and sharing between users

• File management
• Protection support and sharing support between users

17

Time sharing OS

VM VM VM

Terminal Multiplexer

...

...

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Real Time Operating Systems

• Used whenever a large number of critical
external events have to be treated in a
short or limited interval of time

• Support for multiprogramming/multi-
tasking

• Main goal
• Minimisation of the response time to service

the external events

18

Application Software

Device I/O Management

Task Synchronisation Memory
Management

Task
Scheduling Task Management

CPU Interrupt
Handling

Time
Management

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Real Time Operating Systems

Processor scheduling:

19

• Priority based preemptive

• Concurrent processes are loaded into the memory
• Support for protection and inter-process communication

• Critical in time
• Processes dealing with I/O are directly connected to the interrupt

vectors (for handling the interrupt requests)

• It may be missing
• If it exists, it should comply with requirements for timesharing

systems and it should satisfy the requirements for real time systems

Memory management:

I/O management:

File management:

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Distributed Operating Systems

• Multiprogramming induces a strong centralisation
tendency

• Distributed OS aims for decentralisation

• Based on computer network technologies, with
different communication and synchronization
protocols

• Client-server application architecture

• Security and protection are the primary concerns

20Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Modern Operating Systems

21

Modern
Operating
Systems

Constant load of the processor, on
low-priority tasksBatch Operating Systems

Interactive processes are treated on
a time share

Timesharing Operating
Systems

Critical processes (i.e. network
drivers) are treatedaccording to real
time constraints

Real Time Operating
Systems

Client-Server model protocolsDistributed Operating
Systems

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

22

OS Implementation Considerations

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

OS Implementations
• Monolithic Operating System

• Try to achieve the functional requirements by executing all the code in the
same address space to increase the performance of the system

• Too complex to manage

• Hierarchical Operating System
• Run most of their services in user space, aiming to improve maintainability

and modularity of the codebase
• Suitable for Object Oriented Programming, the levels are very well defined

23Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Implementation Considerations

• Multi-programming: the illusion that multiple programs are running
simultaneously

• Protection: access to shared system resources

• Processor modes: different privilege levels
• restrictions on operations that can be run

• Kernels: complete control over everything in the system (i.e., supervisor)

24Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

25

Multiprogramming (1)

• Technique that allows the system to present the illusion that multiple programs
are running on the computer simultaneously

• Protection between programs is very important
• Many multiprogrammed computers are multiuser
• Allow multiple persons to be logged on at a time

• Beside protection, data privacy is also important

• Multiprogramming is achieved by switching rapidly between programs.
• Each program is allowed to execute for a fixed amount of time – timeslice

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Multiprogramming (2)
• When a program timeslice ends, the OS stops it, removes it

and gives another program control over the processor – this
is a context switch
• To do a context switch the OS copies the content of current program

register file into memory, restores the contents of the next
program’s register file into the processor and starts executing the
next program.
• From the program point of view, they can’t tell that a context switch

has been performed

26

Program 1 Program 1 Program 2Program 3Program 2 Program 3
Program

executing on
processor

Time
Slice

Time

...

Protection (1)

27

• The result of any program running on a multiprogrammed computer
must be the same as if the program was the only program running on
the computer

• Programs must not be able to access other program’s data and must be
confident that their data will not be modified by other programs.

• Programs must not interfere with other program’s use of I/O devices

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Protection (2)

• Protection is achieved by having the operating system
have full control over the resources of the system
(processor, memory and I/O devices)

• Virtual memory is one of the techniques used to
achieve protection between programs
• Each program operates as if it were the only program on the

computer, occupying a full set of the address space in its
virtual space.
• The OS is translating memory addresses that the program

references into physical addresses used by the memory system.
• As long as two program’s addresses are not translated to

same address space, programs can be written as they were
the only ones running on the machine

28Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Privileged Mode

• To ensure that the OS is the only one that can control the physical resources it
executes in privileged mode

• OS is also responsible for low level UI
• Keys are pressed, the OS is responsible to determine which program should receive the input
• When a program wants to display some output, the user program executes some system call that

displays the data

• User programs execute in user mode
• When user mode programs want to execute something that requires privileged rights, it

sends a request to the OS, known as system call, that asks the OS to do the operation for
them

29Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Processor Modes (1)
• Processor Modes are operating modes for the CPU that place restrictions

on the operations that can be performed by the currently running process

• Hardware supported CPU modes help the operating system to enforce
rules that would prevent viruses, spyware, and/or similar malware to run
• Only very specific and limited “kernel” code would run unrestricted.
• Any other software (including portions of the operating system) would run restricted

and would have to ask the “kernel” for permission to modify anything that could
compromise the system.

• Multiple mode levels could be designed.

30Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Processor Modes (2)
• Mode bit to define execution capability of program on a processor
• Supervisor mode

• The processor can execute any instruction
• Instructions that can be executed only in supervisor mode are called

supervisor, privileged or protected instructions (e.g., I/O instructions)
• Execution process has access on both memory spaces

• User mode
• The processor can execute a subset of the instruction set
• Executing process has access only to the user space

• Some microprocessors do not make a difference between protected
and user mode

• The mode bit may be logically extended to define areas of memory
to be used when the processor is in supervisor mode versus when it
is in user mode

31

User
Space

Supervisor
Space

User
Process

Supervisor
Process

Memory

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Kernel
• The part of the operating system that executes in supervisor mode is called

kernel or nucleus

• Operates as trusted software
• Implements protection mechanisms that could not be changed through the actions of

un-trusted software executing in user mode
• Provides the lowest level abstraction layer for resources (memory, processors and IO

devices)

• Fundamental design decision: should a given function of the OS be
incorporated in the kernel or not?
• Protection issues
• Performance issues

32Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Methods for Requesting System Services

• Through command line interface
• By calling a specific command
• Using a command interpreter known as

a shell

33

• From user processes requesting
services from OS:
• By calling a system function
• By sending a message to a system

process

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Command execution mechanism

• A key pressed by the user generates a hardware interrupt

• A specialised module of the OS reads the keyed character and then stores it in a
special command line buffer
• There are special characters (i.e., to edit the command line, that are not stored in the

command line buffer)

• End of line detected: control taken by the command interpreter (shell):
• Analysis of the command (with error or success)
• If success, then the command interpreter decides if it is about an internal or external

command (for another module)
• If internal command: tries the execution that can end successfully or with error
• If external: looks for the corresponding executable file and executes it with the detected parameters

from previous phase

34Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Command execution example
• Semantics of grep establish that the first string parameter (first) represents the search

target, while the second parameter represents a file name (where to search)

35

>$ grep mouse mouse.txt

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

System Call

• The parameters of the call are passed according to the specific OS
convention and hardware architecture

• Switch to protected (supervisor) mode using a specific
mechanism
• E.g., software interrupt, trap, special instruction of type “call supervisor”
• mechanism that is different from a normal call

• A special module takes over, that will analyse the parameters and
the access rights
• This module can reject the system call

• If accepted: the corresponding routine from the OS is executed
and the result is returned to the user
• upon return, the user mode is restored

36

call(…)

Software interrupt, trap,
“call supervisor”

User mode

Kernel mode

Target
procedure

return

Kernel mode
procedure

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

Messages
• User process constructs a message that describes

a desired service (A)
• Uses the send function to pass the message to a

trusted operating system process
• The send function checks the message
• switches the processor to protected mode
• and then delivers the message to the process that

implements the target function

• Meanwhile, the user waits for result with a
message receive operation.
• When the kernel finishes processing the request,

it sends a message (B) back to the user process

37

send (…, A, …)
receive (.., B, …)

send / receive

receive (…,A, …);

send (…, B, …);

User mode

Kernel mode

Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

References

• “Operating Systems – A modern perspective”, Garry Nutt, ISBN 0-
8053-1295-1

• Funny video: https://youtu.be/aJFwVOW0Nww

38Dr Takfarinas Saber <takfarinas.saber@universityofgalway.ie>

