
Dr Takfarinas Saber
takfarinas.saber@universityofgalway.ie

CT213
Computing System
& Organisation

Lecture 8: Device Management

Content
• Device management
• Device Communication Approaches
• Buffering

2

Device Management

• Device management is the process of managing the implementation,
operation and maintenance of physical and/or virtual devices.

• It is a broad term that includes various administrative tools and processes
for the maintenance and upkeep of a computing, network, mobile and/or
virtual device.

• The status of any computing device (internal or external), may be either free
or busy.
• If a device requested by a process is free at a specific instant of time, the operating

system allocates it to the process.

3

Device Management

• The Operating System manages the devices with
the help of:
• Device controllers: hardware components that contain

some buffer registers to store the data temporarily.
• E.g., disk controller, printer controller and a terminal

controller
• Device drivers: software programs that are used by an

operating system to control the functioning of various
devices in a uniform manner.

4

Operating System

Device Management
• The device controller used in a device management operation

includes three different registers: command, status, and data.

• The other major responsibility of the device management
function is to implement Application Programming Interfaces
(APIs).

• Each device controller is specific to a particular device
Ø the device driver implementation will be device specific

• Why?
• To provide correct commands to the controller
• To interpret the Controller Status Register (CSR) correctly
• To transfer data to and from device controller data registers as

required for correct device operation

5

• A computer must have a way of detecting the arrival of any type of input

• There are various ways to enable I/O devices to communicate with the
processor:
• Polling

• Interrupts

• Direct I/O

• Memory Mapped I/O

Device Communication Approaches

6

Polling

• Implementation
• Periodically checking status of the device to see if it is time for the next I/O operation
• I/O device simply puts the information in a Status register, and the processor must

come and get the information.

• Efficiency
• Simplest way for an I/O device to communicate with the processor.
• Inefficient method: most of the time, devices will not require attention and when one

does it will have to wait until it is next interrogated by the polling program.
ØMuch of the processor’s time is wasted on unnecessary polls.

7

Interrupts

• Implementation
• A device controller puts out an interrupt signal when it needs CPU’s attention
• When CPU receives an interrupt, it saves its current state and invokes the appropriate interrupt

handler using the interrupt vector (addresses of OS routines to handle various events).
• When the interrupting device has been dealt with, the CPU continues with its original task as if it

had never been interrupted.

• Efficiency
• Interrupts allow the processor to deal with events that can happen at any time.
• Interrupts remove the need for the CPU to constantly check the Controller Status register.

8

Direct I/O

• Implementation
• Uses software which explicitly transfers data to/from the controller’s data registers

• Separate I/O and memory address spaces.
• The control indicates whether address information is for memory or I/O.

• Efficiency
• Reduced CPU utilisation (no caches or buffers)

99

CPU I/O
DeviceMemory

Memory Mapped I/O
Implementation
• Direct connection between I/O device and certain main

memory locations so that I/O device can transfer block of
data to/from memory without going through CPU.

• OS allocates buffer in memory to the I/O device to send data
to the CPU.

• I/O device operates asynchronously with CPU

• Interrupts CPU when finished.

Efficiency
• Memory mapped IO is ideal for most high-speed I/O devices

like disks, communication interfaces.

10

CPU
I/O

Device

Memory

I/O Commands

DataData

Design Objectives

• Efficiency
• Most I/O devices are extremely slow compared with the processor and

main memory
• Buffering is one way to deal with this issue

• Generality
• It is desirable to handle all devices in a uniform and consistent manner

• In the way user processes see the devices
• In the way the Operating System manages the I/O devices and operations

1111

12

Buffering

Buffering is the technique by which the device manager can keep slower
I/O devices busy during times when a process is not requiring I/O
operations.

• Input buffering: having the input device read information into the
primary memory before the process requests it.

• Output buffering: saving information in memory and then writing it to
the device while the process continues execution

13

Hardware Level Buffering

Normal operation:
1. Read occurs
2. The driver passes a read command to the

controller
3. The controller instructs the device to put the next

character into one-byte data controller’s register
4. The process calling for the byte waits for the

operation to complete
• then retrieves the character from the data register

Process

Data Register

Device

Controller

Process

Data Registers

Device

B

Controller

A

Process

Data Registers

Device

B

Controller

A

Un-buffered I/O Reading into buffer A Reading into buffer B

Buffered operation:
• The next character to be read by the process has already been placed into the data register, even

though the process has not yet called for the read operation
• Adding a hardware buffer to the controller decreases the amount of time the process has to wait

Consider a simple character device controller that reads a single byte from a router for
each input operation.

Driver Level Buffering

• This is generally called double buffering
• One buffer is for the driver to store the data while

waiting for the higher layers to read it

• The other buffer is to store data from the lower-
level module

Process

Data Registers

Device

B

Controller

A

Reading into driver buffer A

buffers

BA

Driver

Process

Data Registers

Device

B

Controller

A

Reading into driver buffer B

buffers

BA

Driver

14

Using Multiple Buffers
• The number of buffers is extended from two to n

• The data producer is writing into buffer i while
the data consumer is reading form buffer j

• In this configuration:

• If i<j: buffers [j+1, n-1] and [0, i-1] are full
• If j<i: buffers [j+1, i-1] are full

0 21 ... i ... j n-1...

Device driver

From data producer

To data consumer

15

• This is known as circular buffering

References

• “Operating Systems”, William Stallings, ISBN 0-13-032986-X
• “Operating Systems – A modern perspective”, Garry Nutt, ISBN 0-8053-1295-1

16

