[CT421]: Notes
This commit is contained in:
Binary file not shown.
@ -155,22 +155,22 @@ The problem statement can be formalised as follows:
|
|||||||
|
|
||||||
More formally:
|
More formally:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Set of states $S$.
|
\item There is a set of (possible/legal) states $S$;
|
||||||
\item Start state $s_0 \in S$.
|
\item There is some start state $s_0 \in S$;
|
||||||
\item Set of actions $A$ and action rules $a(s) \rightarrow s'$.
|
\item There is a set of actions $A$ and action rules $a(s) \rightarrow s'$;
|
||||||
\item A goal test $g(s) \rightarrow \{0,1\}$.
|
\item There is some goal test $g(s) \rightarrow \{0,1\}$ that tests if we have satisfied our goal;
|
||||||
\item Cost function $C(s,a,s') \rightarrow \mathbb{R}$.
|
\item There is some cost function $C(s,a,s') \rightarrow \mathbb{R}$ that associates a cost with each action;
|
||||||
\item Search can be defined by the 5-tuple $(S,s,a,g,C)$.
|
\item Search can be defined by the 5-tuple $(S,s,a,g,C)$.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
|
||||||
We can then state the problem as follows:
|
We can then state the problem as follows:
|
||||||
find a sequence of actions $a_1 \dots a_n$ and corresponding states $s_0 \dots sn$ such that:
|
find a sequence of actions $a_1 \dots a_n$ and corresponding states $s_0 \dots s_n$ such that:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $s_0 = s$
|
\item $s_0 = s$
|
||||||
\item $s_i = a_i(S_{i-1})$
|
\item $s_i = a_i(S_{i-1})$
|
||||||
\item $g(s_n) = 1$
|
\item $g(s_n) = 1$
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
while minimising $\sum^n_{i=1} c(a_i)$.
|
while minimising the overall cost $\sum^n_{i=1} c(a_i)$.
|
||||||
\\\\
|
\\\\
|
||||||
The problem of solving a sudoku puzzle can be re-stated as:
|
The problem of solving a sudoku puzzle can be re-stated as:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
|
Reference in New Issue
Block a user