"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "19989cc4",
+ "metadata": {},
+ "source": [
+ "# CS4423 Assignment 2: Part 2\n",
+ "\n",
+ "This is a template for your solution to the `networkx` questions on Assignment 2 (Part 2). \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4fc2a5c6",
+ "metadata": {},
+ "source": [
+ "### Instructions and Collaboration Policy\n",
+ "\n",
+ "This is a homework assignment. You are welcome to collaborate with\n",
+ "class-mates if you wish. Please note:\n",
+ "* You may collaborate with at most two other people;\n",
+ "* Each of you must submit your own copy of your work;\n",
+ "* In Cell `[1]`, choose your own node colour in `opts`. It should not be the same as given here (`#ABCDEF`), or the same as your collaborators. For more, see https://matplotlib.org/stable/users/explain/colors/colors.html\n",
+ "* If the question asks you to construct an example, then that example should be unique to you (and your collaborators). If copied from anybody else, all involved will score zero.\n",
+ "* The file(s) you submit must contain a statement on the collaboration: who you collaborated with, and on what part of the assignment.\n",
+ "* *The use of any AI tools, such as ChatGPT or DeepSeek is prohibited, and will be subject to disciplinary procedures.* \n",
+ "* Upload your file, in either **PDF or HTML** formats, to https://universityofgalway.instructure.com/courses/31889/assignments To convert your notebook to `pdf` the easiest method maybe to first export as 'html', then open that in a browser, and then print to pdf.\n",
+ "* Your file must include your name and ID number."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc5829ef",
+ "metadata": {},
+ "source": [
+ "## Preliminaries"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eb8aa930",
+ "metadata": {},
+ "source": [
+ "### Task 1.1: Give you name, ID, and list of collaborators\n",
+ "\n",
+ "**Your name goes here:** Andrew Hayes\n",
+ "\n",
+ "**Your ID number goes here:** 21321503\n",
+ "\n",
+ "*Place your collaboration statement here:*"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "50688c85",
+ "metadata": {},
+ "source": [
+ "### Task 1.2: Load any Python modules, and choose your own colour for nodes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "b96b6a50",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import networkx as nx\n",
+ "### Change the next line so nodes appear in your favourite colour.\n",
+ "opts = { \"with_labels\": True, \"node_color\": '#654321' } # show labels; IMPORTANT: Choose your own colour here"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "145b812c",
+ "metadata": {},
+ "source": [
+ "Other ones that Niall used when preparing solutions. Add any you need:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "d548d182",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import random\n",
+ "import pandas as pd\n",
+ "import math\n",
+ "import statistics"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "488bfec3",
+ "metadata": {},
+ "source": [
+ "## Centrality Measures\n",
+ "\n",
+ "Before you do this set of tasks, it may be helpful to review the example at the end of [Week 7 Part 2](https://www.niallmadden.ie/2425-CS4423/W07/CS4423-W07-Part-2.html)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6d7af8b8",
+ "metadata": {},
+ "source": [
+ "**Adjacency Lists**.\\\n",
+ "One way of representing a graph is an as adjacency list. It has one row per node. That row starts with the node label, followed by a colon, followed by a list of its neighbours. For an undirected graph, one does not list an edge twice. \n",
+ "\n",
+ "Consider the following list, for a graph, $G_1$, on the nodes $\\{1, 2, 3, \\dots, 10\\}$:\n",
+ "\n",
+ "1: 2 3 4 6 7\n",
+ "2: 3\n",
+ "3: 4\n",
+ "4: 5 8\n",
+ "5: 6\n",
+ "6: 7\n",
+ "7: \n",
+ "8: 9 10\n",
+ "9:\n",
+ "10:\n",
+ "\n",
+ "\n",
+ "So, in the adjacency list for $G_1$, no neighbours of Node 7 are listed, because the associated edges are already accounted for in the neighbour lists on Nodes 1 and 7.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5920d2d6",
+ "metadata": {},
+ "source": [
+ "### TASK 2.1: Define $G_1$ in `networkx` and draw it.\n",
+ "\n",
+ "Let $G_1$ be the network prescribed by the adjacency list above. Define it as a `networkx` network, and draw it."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "0cddf432",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAHzCAYAAACe1o1DAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAaZtJREFUeJzt3XdUVOfWBvBnZhikKaggRRELFlQULNh7EhVQuDdFTaLGrrG3mMSoaGIsscWYRGMsV6NRUxQFWzT2hlFUFFBsSCgC0usMM+f7w8AnkT4DZ2Z4fmu51r3MmTObrAQf3vO+e0sEQRBARERERFRBUrELICIiIiL9xkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCMMlERERESkEQZKIiIiItIIAyURERERaYSBkoiIiIg0wkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCMMlERERESkEQZKIiIiItIIAyURERERaYSBkoiIiIg0wkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCMMlERERESkEQZKIiIiItIIAyURERERaYSBkoiIiIg0wkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCMMlERERESkEQZKIiIiItIIAyURERERaYSBkoiIiIg0wkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCNGYhdARETVW052JhKiI6FUKiCXG8OmvhNMTM3FLouIyoGBkoiIqlxMZATOHd6DkKDTSIiJAiC89KoENg6OcPXoi16D34WDUzOxyiSiMpIIgiCUfhkREZHmEmOjsGv9AoRdvwCpVAa1WlXstfmvu3TogREzl8Ha3rEKKyWi8mCgJCKiKnH+yD7s3egHlSoPalXxQfLfpDIZZDIjDJvqh56eQyuxQiKqKAZK4v4lIqp0gbu/hf/2NRrfx2f0HHi9N0ULFRGRNnEPZTXF/UtEVFXOH9mnlTAJAP7b18CyjjV6DOJKJZEu4QplNcP9S0RUlRJjo7B47BvIzMpG8OMUPM/IxfN0BXKUarRvbIUOTWq/+p60XFx9kIT4tFxIJRI41DZB52Z1UMtUDgCQG9fAkq0n+DOJSIewD2U1cv7IPiwe+wbu3bwMACWGyZdfv3fzMhaPfQPnj+yr9BqJyLDsWr8AKlUecpUqhMekQ6UGnGzMir0+JVOBgBuxUAsC+reph14u1kjNUuLw9VhkK178TFKp8rBr/YKq+haIqAz4yLua0GT/klqlglqlwq61nyAtOZH7l4ioTGIiIxB2/QIAwMLECCN7NYREIkGOQoV7MRlFvuevRymQSSUY0M4OxkYv1jysaxpj/+W/cftpKjo714FapULY9QuIjXwAeyfnKvt+iKh4XKGsBrS9f+nCUa5UElHpzh3eA6lUBgCQSCSQSCQlXq9WC3iamIVG9cwLwiQA1DSVw762KZ7EZxZ8TSqT4ezh3ZVTOBGVGwOlgUuMjcLejX5avefP3/ghMTZKq/ckIsMTEnS61K01L0vLVkKlFlDXwviV1+paGCMtOw95KjWAF09OQoLOaKtUItIQH3kbuPz9S8WJT83FX4+SEZ+aAwGATc0a6Ni0NuysTIp9T/7+pVkrd1ZCxURkCHKyMv7pIFF2ucoXYbGG0atrHTXkL76myFPDSPbifyfEPEVOdibbnBHpAK5QGrD8/UvFNRBOSMtFwI1YqNRq9Gltgz6tbKBSCzgSHIdnqTnF3vfl/UtEREVJiHmKwu3IyqHkJ+MvEZAQHVmxzyAirWKgNGAv718qyl8Pk2FsJMUgNzs0sjFH43rmGORuB7lMgqsRSSXem/uXiKgkSqWi3O/JX4XMX6l8Wf7XjP+1elmRzyEi7WOgNGCl7V96lpoDeyuTgsdHwIsf1nZWJniWmous3OIflXP/EhGVRC5/dR9kaWqZyiGTSpCU8WpITMpQoJapUaGfVxX9HCLSPgZKA1WW/UsqtQCZ9NVnS/lfK+qH+svy9y8REf2bTX0nlOPZNQBAKpXAydoMT+Izocj7/1XKjJw8xCRno3G9f++VlPzzOUQkNgZKA1WW/Uu1zY0Rn5aLl4clqdUC4tNyAQA5RTx2Koz7l4ioaCam5rBxKDzJJioxC4+eZSIyMQsAkJypxKNnmXj0LLPg9HaHJlbIUws4fusZohKz8Dg+E8duxsHEWAbXhpaF7mfj0JAHcoh0BAOlgSrLvqLWjrWQmqXExXvPkZmTh4ycPFy4l4iMnBePuktpGVfmzyGi6snVoy8k0v//a+bCvec4dSce58ISAQCP4zNx6k48Tt2JL5iCY2VuDK/29pBKgJMh8TgbmoBaZnIMbm8PU+P/3xMulcng6tGnSr8fIioe2wYZqLLsK2rhUBPZChVuPklBWHQ6AKCeZQ20bWiJW5GpMK9R+r8e3L9EREVJSkrCuZsPIaj//0nH8O5lm71tU6sGvNrbl3iNWqVC78HvaVQjEWkPA6WB+v/9SyU/9nZrZAXXhpZIzVJCLpOgpqkc58MSYSSTwLpmaWGR+5eIqDCVSoUff/wRCxYsgFKpxJhBbshOiilXg/PSSGUytHDryrGLRDqEj7wNVFH7l4ojk0pQx8IYNU3lyMjJw6P4TLR0qPnKacp/4/4lInrZhQsX0LFjR0yaNAmDBw/GvXv3sGDdT5AZaXftQiYzwoiZy7R6TyLSDAOlAXP16FtiH8qkDAWuP0rG08QsRCdl43ZkKg4ERaOWqRE6Nqld4r0lUin3LxERACAmJgbvv/8+evbsCblcjitXrmD79u2ws7ODtb0jhk310+rnDZ/mB2v7sv3CTERVg4HSgPUa/G6Jj5mkUgliknNw5m4Cjt2MQ1h0Glzq14J3B3vIixh99jJBrcahMzdw584dbZdNRHoiNzcXK1euRPPmzXHixAls3boVV65cQefOnQtd19NzKHxGz9HKZ/qOmYMeg4Zq5V5EpD0S4eWeMWRw1s0fiXs3Lxc7frEipFIZLGwc8dulx3jy5AnefPNNLFy4EO3atdPaZxCRbjt69ChmzJiBR48eYdq0aVi8eDGsrKxKfM/5I/uwd6MfVKq8cv1MkspkkMmMMHyaH8MkkY7iCqWBGzFzGWQyLe9fMjLCx6v/h/v372Pr1q0IDg6Gm5sbfH19cf36da1+FhHplgcPHmDw4MHw9PSEo6Mjbt26hXXr1pUaJoEXK5VLtp5AC7euAF4ExZLkv97CrSuWbD3BMEmkw7hCWQ2cP7IPu9Z+orX7jZyzvNAP9ry8POzZswdffPEFIiIi4OXlhUWLFsHDw0Nrn0lE4srMzMSXX36J1atXw87ODmvXrsV///tfSMrSsLYIMZEROHd4D0KCzhQxiEECG4eGcPXog96D3+NpbiI9wEBZTQTu/hb+29dofB/fMXPg+e6UIl9TqVTYt28fPv/8c4SHh2PAgAFYtGgRunXrpvHnEpE4BEHAvn37MHfuXCQmJmL+/PmYP38+zMzMtPYZOdmZSIiOhFKpgFxuDJv6TuwgQaRnGCirkarav6RSqfDbb7/h888/x507d9C/f38sWrQIvXr10qR8Iqpit2/fxrRp03Du3Dn85z//wZo1a9C4cWOxyyIiHcQ9lNVIVe1fkslkeOedd3Dr1i38+uuvSEhIQO/evdGnTx+cPn0a/B2GSLclJSVh6tSpcHd3R3x8PE6cOIHff/+dYZKIisUVymqqKvcvqdVqHD58GEuXLsWNGzfQo0cPLFq0CK+99lqF918Rkfa9POVGoVDAz88P06ZNg1wuF7s0ItJxDJRUZfuXBEHAkSNHsHTpUgQFBaFLly5YtGgRBg4cyGBJJLKLFy9i2rRpCA4OxgcffIDly5fDzs5O7LKISE/wkTfBxNQcjs6t0MTFDY7OrSptM7xEIoGXlxeuXLmCY8eOQSKRwNPTEx4eHjh8+DAfhROJICYmBiNGjECPHj0gk8lw+fLlgik3RERlxUBJVU4ikWDAgAG4ePEiTp48CVNTUwwZMgQdOnTAgQMHoFarxS6RyOApFAqsWrUKLVq0wPHjx/Hjjz/i6tWr6NKli9ilEZEeYqAk0UgkEvTv3x/nzp3D6dOnYWVlhf/+979wd3fHr7/+ymBJVEmOHj0KV1dXfPrppxg7dizu37+PsWPHQirlXwlEVDH86UE6oU+fPvjzzz9x7tw52Nra4u2334arqyv27t0LlRbHRhJVZw8fPsSQIUPg6emJ+vXr4+bNm1i/fn2ZptwQEZWEgZJ0Ss+ePXHixAlcunQJTk5OGD58OFq3bo2ffvoJeXl5YpdHpJcyMzOxYMECtGrVCrdu3cIvv/yCU6dOoU2bNmKXRkQGgoGSdFLXrl1x5MgRBAUFoXnz5hgxYgRcXFywY8cOKJVKscsj0gv5U25atmyJNWvW4OOPP0ZYWBjeeustdlYgIq1ioCSd1qlTJxw6dAjXr1+Hq6srRo8ejZYtW2Lr1q1QKBRil0eks27fvo2+ffti2LBh6NixI8LCwrBkyRKtjkwkIsrHQEl6oX379vj9999x69YtdOjQAePHj0fz5s2xefNm5Obmil0ekc54ecrNs2fPcPz4cRw4cIBTboioUjFQkl5p27Yt9u/fj5CQEHTr1g2TJ0+Gs7Mzvv32W+Tk5IhdHpFoVCoVNm/ejObNm2Pnzp1YtWoVbt26hTfeeEPs0oioGmCgJL3UunVr7NmzB6GhoejTpw+mT5+OJk2a4Ouvv0Z2drbY5RFVqUuXLsHDwwOTJk2Ct7c37t+/jzlz5sDY2Fjs0oiommCgJL3WsmVL7Nq1C+Hh4RgwYADmzJmDxo0bY82aNcjMzBS7PKJKFRsbixEjRqB79+6QSCS4dOkSduzYwSk3RFTlOMubDMqjR4+wfPly7NixA1ZWVpg7dy4+/PBD1KxZU+zSiLRGoVDg66+/xtKlS2FiYoLly5djzJgxbExORKJhoCSDFBkZiRUrVmDr1q2oWbMmZs+ejalTp8LS0lLs0og0cuzYMcyYMQMPHz7ElClT4Ofnh9q1a4tdFhFVcwyUZNCioqKwcuVKbNmyBWZmZpg1axamT5/OySCkdx4+fIjZs2fj0KFD6Nu3LzZs2MDG5ESkMxgoqVqIjo7GV199hc2bN8PY2BgzZszAzJkzUadOHbFLIypRZmYmli9fjtWrV6NevXpYs2YNG5MTkc5hoKRqJS4uDqtXr8b3338PqVSKadOmYfbs2bC2tha7NKJCBEHA/v37MXfuXCQkJOCjjz7Cxx9/zMbkRKSTGCipWoqPj8fatWuxceNGAMCHH36IOXPmwNbWVuTKiF5MuZk+fTrOnj0LX19frFmzBk2aNBG7LCKiYvFIIFVL9erVw4oVK/DkyRPMnDkTmzZtQuPGjTF79mzExsaKXR5VU0lJSZg2bRrc3d0RFxdXMOWGYZKIdB1XKInw4i/yr7/+Gl9//TVycnIwYcIEzJ8/H/Xr1xe7NKoGVCoVtm7dik8//RQKhQKLFy/GtGnT2JiciPQGAyXRS1JSUvDNN99g3bp1yMzMxLhx4zB//nw0bNhQ7NLIQF26dAnTpk3DjRs3MGrUKCxfvhz29vZil0VEVC585E30EisrKyxcuBBPnjyBn58f9u3bB2dnZ0ycOBFPnjwRuzwyILGxsRg5cuQrU24YJolIH3GFkqgEGRkZ+P777/HVV18hOTkZI0eOxKeffoqmTZuKXRrpqaKm3IwePRoymUzs0oiIKoyBkqgMMjMz8cMPP2DVqlVISEjAe++9hwULFqB58+Zil0Z65Pjx45gxYwYePHiADz/8EEuWLOGUGyIyCHzkTVQG5ubmmDVrFh49eoR169bh5MmTcHFxwfvvv4+wsDCxyyMd9+jRI/j4+GDgwIGwt7dHcHAwNmzYwDBJRAaDgZKoHExNTTFt2jQ8fPgQGzduxLlz59C6dWsMGzYMd+7cEbs80jGZmZn47LPP0KpVKwQHB2P//v34888/4erqKnZpRERaxUBJVAEmJiaYPHkyHjx4gE2bNuHKlStwdXXFW2+9hZs3b4pdHolMEATs27cPLVu2xOrVq/HRRx8hLCwMb7/9NkcmEpFBYqAk0oCxsTEmTJiAiIgIbN26FcHBwXB3d4evry+uX78udnkkgpCQEPTr1w/Dhg1Dhw4dEBoaiqVLl8Lc3Fzs0oiIKg0DJZEWyOVyjBkzBvfu3cP//vc/hIaGomPHjvD29kZQUJDY5VEVSE5OxrRp0+Dm5obY2FgcO3YMBw8e5JQbIqoWGCiJtMjIyAgjR45EWFgYdu/ejYcPH6Jz584YOHAgLl26JHZ5VAlUKhW2bNmC5s2bY8eOHVi5ciVu376NAQMGiF0aEVGVYaAkqgQymQzvvvsu7ty5g3379uHvv/9G9+7d8dprr+HcuXNil0dacvnyZXTu3BkTJkyAp6cn7t+/j7lz53JkIhFVOwyURJVIJpPhnXfewe3bt/Hrr78iISEBvXv3Rp8+fXD69GmwDax+io2NxahRo9CtWzcIgoCLFy/if//7H6fcEFG1xUBJVAWkUinefPNNBAcH4+DBg0hPT0e/fv3Qq1cv/PHHHwyWekKhUGD16tVo0aIFjhw5gh9++AFBQUHo1q2b2KUREYmKgZKoCkmlUvj4+OCvv/5CQEAAFAoF3njjDXTr1g1Hjx5lsNRhx48fR9u2bTF//nx88MEHuH//PsaPH8+RiUREYKAkEoVEIoGXlxeuXLmCY8eOQSKRwNPTEx4eHjh8+DCDpQ559OgRfH19MXDgQNjZ2eHmzZucckNE9C8MlEQikkgkGDBgAC5evIiTJ0/C1NQUQ4YMQYcOHXDgwAGo1WqxS6y2MjMzsXDhQrRq1QrXr1/Hvn37cPr0aU65ISIqAgMlkQ6QSCTo378/zp07h9OnT8PKygr//e9/4e7ujl9//ZXBsgoJgoD9+/fDxcUFX331FebNm4fw8HC88847nHJDRFQMBkoiHdOnTx/8+eefOHfuHGxtbfH222/D1dUVe/fuhUqlErs8g5Y/5Wbo0KFo3749QkND8fnnn3PKDRFRKRgoiXRUz549ceLECVy6dAlOTk4YPnw4WrdujZ9++gl5eXlil2dQkpOTMX36dLi7uyMmJgZHjx7llBsionJgoCTScV27dsWRI0cQFBSE5s2bY8SIEXBxccGOHTugVCrFLk+vvTzlZvv27VixYgVCQkIwcOBAsUsjItIrDJREeqJTp044dOgQrl+/DldXV4wePRotWrTAjz/+CIVCIXZ5euflKTeDBg3ilBsiIg0wUBLpmfbt2+P333/HrVu30LFjR0yYMAHNmzfH5s2bkZubK3Z5Oi8uLu6VKTc7d+7klBsiIg0wUBLpqbZt22L//v0ICQlB165dMXnyZDg7O+Pbb79FTk6O2OXpnPwpN82bN0dgYCA2b97MKTdERFoiEdhBmcgghIeHY9myZdizZw9sbW0xf/58jB8/HmZmZmKXJrrjx49jxowZiIiIwIcffoilS5eyMTkRkRZxhZLIQLRs2RK7du1CeHg4BgwYgDlz5qBJkyZYs2YNMjMzxS5PFP+echMcHIxvvvmGYZKISMsYKIkMTLNmzbB9+3bcv38fgwcPxscff4xGjRph5cqVSE9PF7u8KpGVlVVoys3evXtx+vRptG3bVuzSiIgMEh95Exm4yMhILF++HNu2bUPNmjUxe/ZsTJ06FZaWlmKXpnWCIOCXX37B3Llz8ezZM8ybNw+ffPIJG5MTEVUyBkqiaiIqKgorV67Eli1bYGZmhpkzZ2LGjBmwsrISuzStuHPnDqZPn47Tp09jyJAhWLt2LZo2bSp2WURE1QIfeRNVE46Ojti4cSMePXqEUaNGYcWKFXBycsKiRYuQlJQkdnkVlj/lxs3NDdHR0Th69Cj8/f0ZJomIqhBXKImqqbi4OKxevRrff/89pFIppk2bhtmzZ8Pa2lrrn5WTnYmE6EgolQrI5cawqe8EE1PNHkOrVCps374dn3zyCXJycrBo0SLMmDGDjcmJiETAQElUzcXHx2Pt2rXYuHEjAODDDz/EnDlzYGtrq9F9YyIjcO7wHoQEnUZCTBSAl3/USGDj4AhXj77oNfhdODg1K9e9r1y5gqlTp+L69esYMWIEVqxYAQcHB43qJSKiimOgJCIAQGJiItavX48NGzYgLy8PkyZNwrx588o9QSYxNgq71i9A2PULkEplUKtVxV6b/7pLhx4YMXMZrO0dS7x3XFwcPv74Y/zvf/+Du7s7vvnmG3Tv3r1c9RERkfYxUBJRIUlJSfj666/x9ddfIycnBxMmTMD8+fNRv379Ut97/sg+7N3oB5UqD2pV8UHy36QyGWQyIwyb6oeenkNfeV2hUOCbb77BkiVLYGxsjC+//BJjx46FTCYr1/dGRESVg4GSiIqUkpKCb775BuvWrUNmZibGjRuH+fPno2HDhkVeH7j7W/hvX6Px5/qMngOv96YU/P8TJ05g+vTpiIiIwOTJk7F06VLUqVNH488hIiLtYaAkohKlpaXh22+/xZo1a5CWlobRo0fjk08+QaNGjQquOX9kH3at/URrnzlyznI4tOiE2bNnw9/fH7169cI333zDxuRERDqKgZKIyiQjIwPff/89vvrqKyQnJ2PkyJH49NNPYWlmjMVj34BSkau9D5PK8PvVGJjUrI3Vq1dj6NChkEgk2rs/ERFpFQMlEZVLZmYmfvjhB6xatQoJCQn4YEBbyJTpEIo5fJOYnosbj1KQkJaL3Dw1LEyM4GxrjrZOljCSFd0KV60WUMPKHqt2/cEpN0REeoCBkogqJDs7GxvXrkTE6Z3FXpOcocCBazGwNJPDrZElTOQyxKXkIPhJChrWNcMb7UpuTbRk6wnYOzlru3QiItIyTsohogoxNTWFo6UEUmnxJ60fPMuASi3gddd6aGprgfp1TNGhSW20sK+JyMQs5CpLaCkkk+Hs4d2VUToREWkZAyURVVhI0OmS+0z+s+/R2KjwjxpjuRQSAFJp8fsi1SoVQoLOaKNMIiKqZAyURFQhOVkZ/0zAKV5zewsYG0lx4V4i0rKVUOSpEZmYhfDodLRqUAvyYvZQ5kuIeYqc7Extlk1ERJXASOwCiEg/JcQ8ReFxiq+qaSqHT0d7/HE7Hvsu/V3w9dYNaqFr87L0khSQEB0JR+dWmhVLRESVioGSiCpEqVSUek16thLHbz2DqbEMr7nWg4lcivi0XAQ/ToFSpUbvVjZa+RwiIhIXAyURVYhcblzqNUEPkqHMU+O/nesXPN62r20KE7kM58IS0dzeAva1TTX+HCIiEhf3UBJRhdjUdwJQcrPx5xkKWJkbv7JX0qZWDQBAUoaylE+R/PM5RESkyxgoiahCTEzNYePgWOI1ZjVkSM5UQJmnLvT1+NQcAIC5SfEthwDAxqEhTEzZ2JyISNcxUBJRhbl69C2xD6WrYy3kKNU4EhyHh88yEJ2UjeAnKbgSkQQrczkc65oV+16pTAZXjz6VUDUREWkbJ+UQUYXFREbAb+yAkq9JysbNyFQkZSig+Gf0YkNrU7g1soKJvOQVSk7KISLSDzyUQ0QV5uDUDC4deuDezctQq4pucO5QxxQOdUo+ePNvUpkMLdy6MkwSEekJPvImIo2MmLkMMpl2fzeVyYwwYuYyrd6TiIgqDwMlEWnE2t4Rw6b6afWew6f5wdq+5AM/RESkOxgoiUhjPT2Hwmf0HK3cy3fMHPQYNFQr9yIioqrBQzlEpDXnj+zD3o1+UKnyit1TWRSpTAaZzAjDp/kxTBIR6SEGSiLSqsTYKOxavwBh1y9AKpOVGCzzX3fp0AMjZi7jY24iIj3FQElElSImMgLnDu9BSNAZJMQ8BfDyjxoJbBwawtWjD3oPfo+nuYmI9BwDJRFVupzsTCRER+Lo0UB88ulnCH8QCRtbO7HLIiIiLeGhHCKqdCam5nB0boUWbT2QlKFAcmqa2CUREZEWMVASUZWxtbUFAMTFxYlcCRERaRMDJRFVGTu7F4+5nz17JnIlRESkTQyURFRlLC0tUaNGDa5QEhEZGAZKIqoyEokEtra2DJRERAaGgZKIqpSdnR0feRMRGRgGSiKqUnZ2dlyhJCIyMAyURFSl+MibiMjwMFASUZXiI28iIsPDQElEVSo/UKrVarFLISIiLWGgJKIqZWtrC6VSieTkZLFLISIiLWGgJKIqld/cnPsoiYgMBwMlEVUpTsshIjI8DJREVKU4z5uIyPAwUBJRlbKwsIC5uTkDJRGRAWGgJKIqx9ZBRESGhYGSiKocm5sTERkWBkoiqnIcv0hEZFgYKImoyvGRNxGRYWGgJKIqx0feRESGhYGSiKqcnZ0dEhISoFKpxC6FiIi0gIGSiKqcnZ0d1Go1EhMTxS6FiIi0gIGSiKocxy8SERkWBkoiqnKclkNEZFgYKImoyuUHSp70JiIyDAyURFTlTExMYGVlxRVKIiIDwUBJRKJg6yAiIsPBQElEomBzcyIiw8FASUSi4PhFIiLDwUBJRKLgI28iIsPBQElEouAjbyIiw8FASUSisLOzw/Pnz6FQKMQuhYiINMRASUSiyO9FGR8fL3IlRESkKQZKIhJF/vhFPvYmItJ/DJREJArO8yYiMhwMlEQkChsbGwAMlEREhoCBkohEIZfLYW1tzUfeREQGgIGSiETD5uZERIaBgZKIRMPm5kREhoGBkohEw+bmRESGgYGSiETDR95ERIaBgZKIRMNH3kREhoGBkohEY2dnh7S0NGRnZ4tdChERaYCBkohEw2k5RESGgYGSiESTP8+bj72JiPQbAyURiYYrlEREhoGBkohEU7duXchkMq5QEhHpOQZKIhKNTCaDjY0NAyURkZ5joCQiUbG5ORGR/mOgJCJRsbk5EZH+Y6AkIlGxuTkRkf5joCQiUfGRNxGR/mOgJCJR5T/yFgRB7FKIiKiCGCiJSFS2trbIyspCRkaG2KUQEVEFMVASkajY3JyISP8xUBKRqPIDJQ/mEBHpLwZKIhIV53kTEek/BkoiElXt2rUhl8v5yJuISI8xUBKRqCQSCZubExHpOQZKIhIdm5sTEek3BkoiEh2bmxMR6TcGSiISHR95ExHpNwZKIhIdH3kTEek3BkoiEl3+I2+OXyQi0k8MlEQkOjs7OygUCqSkpIhdChERVQADJRGJjs3NiYj0GwMlEYmO87yJiPQbAyURiY7zvImI9BsDJRGJzsLCAqampgyURER6ioGSiESXP36Rj7yJiPQTAyUR6QQ2Nyci0l8MlESkE9jcnIhIfzFQEpFO4CNvIiL9xUBJRDqBj7yJiPQXAyUR6QRbW1vEx8dDrVaLXQoREZUTAyUR6QQ7OzuoVCo8f/5c7FKIiKicGCiJSCewuTkRkf5ioCQincB53kRE+ouBkoh0Qn6g5ElvIiL9w0BJRDrBzMwMtWrV4golEZEeYqAkIp3B5uZERPqJgZKIdAabmxMR6ScGSiLSGWxuTkSknxgoiUhn8JE3EZF+YqAkIp3BR95ERPqJgZKIdIadnR0SExOhVCrFLoWIiMqBgZKIdIatrS0EQUBCQoLYpRARUTkwUBKRzuD4RSIi/cRASUQ6Iz9Qch8lEZF+YaAkIp1Rr149AFyhJCLSNwyURKQzjI2NUadOHQZKIiI9w0BJRDqFrYOIiPQPAyUR6RQ2Nyci0j8MlESkUzh+kYhI/zBQEpFO4SNvIiL9w0BJRDqFj7yJiPQPAyUR6RQ7OzukpKQgJydH7FKIiKiMGCiJSKfkNzePj48XuRIiIiorBkoi0ikcv0hEpH8YKIlIp9ja2gJgoCQi0icMlESkU2xsbCCVSnnSm4hIjzBQEpFOkclksLGx4QolEZEeMRK7ACKif7O3rYfYJ/fxKOwm5HJj2NR3gompudhlERFRMSSCIAhiF0FEFBMZgXOH9yAk6DTiY55CUuhVCWwcHOHq0Re9Br8LB6dmIlVJRERFYaAkIlElxkZh1/oFCLt+AVKpDGq1qthr81936dADI2Yug7W9YxVWSkRExWGgJCLRnD+yD3s3+kGlyoNaVXyQ/DepTAaZzAjDpvqhp+fQSqyQiIjKgoGSiEQRuPtb+G9fo/F9fEbPgdd7U7RQERERVRRPeRNRlTt/ZJ9WwiQA+G9fgwtH92nlXkREVDFcoSSiKpUYG4XFY9+AUpGrtXvKjWtgydYT3FNJRCQSrlASUZXatX4BVKq8Ml8fHp2OLaceY/uZJ8Veo1LlYdf6BVqojoiIKoKBkoiqTExkBMKuXyjzAZzMnDxcfZAEsxqyEq9Tq1QIu34BsZEPtFEmERGVEwMlEVWZc4f3QCotORy+7MK9RNhZmaB+HdNSr5XKZDh7eLcm5RERUQUxUBJRlQkJOl1in8mXRcRmIDY5B91b1C3T9WqVCiFBZzSojoiIKoqBkoiqRE5WBhJiosp0bbZChcsRz+HhXAcWJmWfEJsQ8xQ52ZkVLZGIiCqIgZKIqkRCzFMAZWsqcTE8EVZmcrjUr1nOTxGQEB1Z7tqIiEgzDJREVCWUSkWZrnscn4nIxCz0bGkNiURS+hsq+DlERKQ9ZX+WRESkAbncuNRrlHlqXLz3HK0da8Gshgy5yhf7LdXqFyubuUoVpFIJ5LLifxcuy+cQEZF2MVASUaWKjY3F5cuXcenCeQgCUNKiY45ShWyFCiFP0xDyNO2V13eeewonazO80c62mDtIYFPfSTuFExFRmXFSDhFpjVKpxK1bt3D58uWCP0+ePAEANGjQAG+4WECmLn5CTp5Kjfi0V1+/9SQVsSk5GOhmCxO5DHUsil6FzIMcHm/NgpeXFxwdOTWHiKiqMFASUYU9e/asUHj866+/kJ2dDWNjY7Rv3x5du3Yt+NOgQQPs3bgEZw79VObWQfnOhCbgcXwmRvdpVPxFEgmSVeY4cC4UKpUKrq6u8Pb2hpeXF7p06QKZrOz9L4mIqHwYKImoTPLy8nD79u1CAfLRo0cAAAcHB3Tr1q0gPLq7u8PExOSVe8RERsBv7IByf3aZAiWAJVtPwNTSGidOnEBgYCCOHDmCxMRE1KlTB4MGDYKXlxcGDBiAOnXqlLsGIiIqHgMlERUpISGhUHi8du0asrKyIJfL4e7uXmj10dHRscwnstfNH4l7Ny+XefxiWUhlMrRw64pZK3cW+rpKpcK1a9cQGBiIgIAA3Lx5E1KpFN27d4eXlxe8vLzQunXrCp0mJyKi/8dASUTIy8vDnTt3CgXIBw9ezMW2s7MrtPrYvn17mJqWPgqxOImxUVg89g0oFcXvpSwvuXENLNl6Atb2Je+bjI6OxpEjRxAQEICTJ08iKysLTk5OBeGyb9++Gn1vRETVFQMlUTWUmJiIK1euFITHoKAgZGZmwsjICG5uboVWH52cnLS+gnf+yD7sWvuJ1u43cs5y9Bg0tFzvycnJwdmzZxEQEIDAwEA8fvwYpqam6N+/f0HA5MEeIqKyYaAkMnAqlQp3794ttPp4//59AICtrW2h8NihQweYmZlVSV2Bu7+F//Y1Gt/Hd8wceL47RaN7CIKA8PDwgnB54cIFqFQqtG3btiBc8mAPEVHxGCiJDExSUtIrq4/p6emQyWRo165doQDZuHFjUfcPnj+yD3s3+kGlyivXnkqpTAaZzAjDp/mVe2WyLFJSUnDixAkEBATg6NGjSExMRN26dTFw4EAe7CEiKgIDJZEeU6vVCA0NLbT6GB4eDgCwsbEpFB47duwIc3NzkSt+VWJsFHatX4Cw6xcglclKDJYCAAkAl/bdMWLWl6XumdSG/IM9+auXPNhDRPQqBkoiPZKSklJo9fHq1atIS0uDVCpF27ZtC8Jjt27d0KRJE70KOTGRETh3eA9Cgs4gIeYpXsTHfBLYODSEjVNLLFm7Fdt374evr68odf799984cuQIAgMDebCHiOgfDJREOkqtViM8PLwgPF66dAlhYWEAgLp16xZafezUqRMsLCxErlh7crIzkRAdCaVSAbncGDb1nWBi+mJ1tVevXlCr1bhw4YLIVb442HPmzBkEBgbyYA8RVWsMlEQ6IjU1FVevXi20+piSkgKpVIo2bdoUWn10dnbWq9VHbfL394evry8uX76MLl26iF1OAUEQEBYWVhAuebCHiKoTBkoiEajVaty/f7/Q6mNoaCgEQUCdOnXQpUuXggDp4eGBmjVril2yzlCr1WjZsiXatWuHX375RexyipWcnFwwsYcHe4jI0DFQElWBtLQ0BAUFFQTIK1euIDk5GRKJBK1bty60+ti8efNqu/pYVps2bcKUKVMQERGBJk2aiF1OqVQqFYKCggpWL2/evAmZTIZu3brxYA8RGQQGSiItEwQBERERuHTpUkGAvHPnDgRBgJWV1Surj5aWlmKXrHfyD8IMHz4cGzZsELuccuPBHiIyNAyURBrKyMh4ZfXx+fPnAIBWrVoVWn1s0aIFpFKpyBUbBj8/P3z11VeIiorS60fHLx/sCQgIwJMnT3iwh4j0DgMlUTkIgoCHDx8W7Hu8fPkyQkJCoFarUatWrUKrj507d4aVlZXYJRus+Ph4NGzYEIsWLcKnn34qdjla8fLBnoCAAFy8eLHQwR5vb2907tyZB3uISOcwUBKVIDMzE9euXSvUODwxMREA0LJly4KVx65du8LFxYWrj1Vs4sSJOHToEJ48eYIaNWqIXY7W5R/syZ/Y8/z580IHewYOHIjatWuLXSYREQMlUT5BEPD48eNCex9v374NlUqFmjVronPnzoVWH/X5MauhCA8Ph4uLC7Zt24bRo0eLXU6levlgT0BAAG7dulXoYI+3tzdatWrFgz1EJAoGSqq2srKy8NdffxVafYyPjwcAtGjRolDj8FatWvExo44aMmQIHj16hJCQkGoVpvIP9gQEBODUqVOFDvZ4e3ujT58+PNhDRFWGgZKqBUEQEBkZWWj18datW8jLy4OFhQU8PDwKwmOXLl1Qt25dsUumMjp37hx69+6No0ePYuDAgWKXI4r8gz3588ZfPtjj7e0NLy8vNGjQQOwyiciAMVCSQcrOzsb169cLrT7GxcUBAJo1a1Zo9bFNmzZcfdRjgiAUtF86efKk2OWILv9gT364fPlgT3645MEeItI2BkrSe4Ig4OnTp4XC482bN6FUKmFmZvbK6qONjY3YJZOW7du3D8OGDUNwcDDc3NzELkenJCcn4/jx4wUTe14+2OPt7Y0BAwbwYA8RaYyBkvROTk4Obty4UShAxsTEAACaNm1aaPXR1dUVRkZGIldMlS0vLw/Ozs7o2bMndu3aJXY5Oiv/YE/+6uXLB3vyVy95sIeIKoKBknReVFRUofAYHBwMhUIBU1NTdOrUqVCArFevntjlkkjWr1+PefPm4fHjx9wvWEZRUVGFJvZkZ2fDycmpIFz27dsXJiYmYpdJRHqAgZJ0Sm5uLoKDgwsFyL///hsA0Lhx40LhsW3btpDL5SJXTLoiPT0djo6OmDBhAlatWiV2OXonOzu7YGLPywd7XnvttYKJPQzqRFQcBkoSVXR0dKHweOPGDeTm5sLExAQdO3YsFCDt7OzELpd03Pz587Fp0yZERUWhVq1aYpejtwRBQGhoaEG45MEeIioNAyVVGYVCgZs3bxaEx0uXLiEqKgoA4OTkVCg8tmvXDsbGxiJXTPomOjoajRo1wqpVqzBr1iyxyzEYxR3sGTRoELy8vHiwh4gYKKnyxMbGFlp9vH79OnJyclCjRg106NChUIB0cHAQu1wyEKNGjcKZM2fw8OFDHsiqBCqVClevXi1Yvcw/2NO9e/eCR+M82ENU/TBQklYolUrcunWr0OpjZGQkAMDR0bFQeHRzczPIucukG27dugU3Nzf8/PPPGDZsmNjlGLyiDvY0atSoIFzyYA9R9cBASRXy7NmzQquPf/31F7Kzs2FsbIz27duja9eu6NatG7p27Yr69euLXS5VM2+88QaeP3+Ov/76iytlVYgHe4iqLwZKKlVeXh5u375dsPJ4+fJlPH78GABQv379QquP7du35+ojie748eMYOHAgTp8+jT59+ohdTrVU3MGedu3aFYRLHuwhMhwMlPSKhISEQquP165dQ1ZWFuRyOdzd3QutPjo6OopdLtErBEFA27Zt0ahRIxw+fFjscgiFD/YcOXIESUlJPNhDZEAYKKu5vLw83Llzp9Dq48OHDwEA9vb2hVYfO3TowL1QpDf+97//4YMPPkBoaChcXFzELode8vLBnoCAANy+fZsHe4j0HANlNZOYmIgrV64UrD4GBQUhMzMTRkZGcHNzK1h57Nq1Kxo2bMgf6KS3FApFweGQLVu2iF0OlSD/YE9AQABOnTrFgz1EeoiB0oCpVCrcvXu3YOXx8uXLiIiIAADY2tq+svpoZmYmcsVE2rVixQr4+fkhMjIStra2YpdDZZB/sCd/3nhkZCTMzMzQv39/Huwh0mHVPlDmZGciIToSSqUCcrkxbOo7wcTUXOyyKiQpKemV1cf09HTIZDK0a9eu0Opjo0aNuPpIBi85ORmOjo6YPXs2li5dKnY5VE4vH+wJCAjApUuXCh3s8fb2hoeHBw/2EOmAahkoYyIjcO7wHoQEnUZCTBSAl/8RSGDj4AhXj77oNfhdODg1E6vMEqnVaoSGhhZafbx37x4AwMbGptDqY8eOHWFurp8hmUhTM2bMwO7du/H06VOuwuu5/IM9AQEBOHr0KJKSkmBtbY2BAwfC29sbAwYMgJWVldhlElVL1SpQJsZGYdf6BQi7fgFSqQxqtarYa/Nfd+nQAyNmLoO1vbinmVNSUgqtPl69ehVpaWmQSqVo165doQDZpEkTrj4S/ePx48dwdnbGxo0bMXnyZLHLIS3JP9iT/2j83wd7vL294eLiwp+FRFWk2gTK80f2Ye9GP6hUeVCrig+S/yaVySCTGWHYVD/09BxaiRX+P7VajfDw8EKrj2FhYQCAunXrFgqPnTp1goWFRZXURaSv3nnnHQQHByM8PJyPRw3U06dPCyb2/Ptgj7e3N/r06cODPUSVqFoEysDd38J/+xqN7+Mzeg683puihYoKS01NxdWrVwutPqakpEAqlcLV1bVQgHR2duZv3ETldPXqVXTp0gUHDhyAr6+v2OVQJcvOzsbp06cLmqq/fLDH29sbnp6ePNhDpGUGHyjPH9mHXWs/0dr9Rs5Zjh6DKr5SqVarcf/+/UKrj6GhoRAEAXXq1EGXLl0KwqOHhwdq1qyptdqJqrOePXtCEARcuHBB7FKoCuUf7Ml/NP7ywR5vb294eXnxYA+RFhh0oEyMjcLisW9Aqcgt9PWY5GwE3ogr8j1DOtrD1rL4xyJy4xpYsvVEmfdUpqWlISgoqCA8XrlyBcnJyZBIJGjTpk2h1cfmzZtz9ZGokvj7+8PX1xeXL19Gly5dxC6HRJKUlFQwsYcHe4i0x6AD5br5I3Hv5uVX9kzmB8pOTWvDvnbh8FjH3BhyI2mx95TKZGjh1hWzVu585TVBEHD//v1CYwvv3LkDQRBgZWX1yuqjpaWldr5RIiqVWq1Gy5Yt0a5dO/zyyy9il0M6QKVS4cqVKwWPxl8+2JO/esmDPURlY7CBMiYyAn5jBxT92j+Bsn+bemhiW7F2Oku2nkDNunaFVh8vX76MpKQkSCQStGrVqtDqY4sWLSCVFh9Uiajybdq0CVOmTEFERASaNGkidjmkY4o72JMfLnXtYI8h9VEm/WewgXLvxiU4c+inIlsDaR4oJYjLliPwSgTUajUsLS3RuXNndO3aFd26dYOHhwcfmRDpoKysLDg5OWH48OHYsGGD2OWQDnv5YE9AQEBBH9PXXnutYGJP/fr1q7wuQ+ijTIbJYAPlgpF9kBDztMjX8gOlqVyKnDw1jKQS1LM0QfvGVrCzKttvn4KRKTq/NQtdu3aFi4sLVx+J9ISfnx+++uorREVFoU6dOmKXQ3pAEATcvXu34NH4xYsXoVarq/Rgjz73UabqwSADZU5WBqYPaYfCv7n9v8T0XETEZsC+tglqGMmQlq3E7chUpGYrMaCdLRzrlmWahgQbDt/m4wUiPRMfH4+GDRti8eLF+OQT7XWAoOqjuIM9gwYNgpeXl9YP9uhTH2WqvgwyUEY9CMXnk7zL9Z5cpQq/XY1GDbkMb3Yu22OMhZsC4OjcqiIlEpGIJk6ciEOHDuHJkyeoUaOG2OWQHnv5YE9AQABCQkIgk8nQo0ePgkfjmhzs0fU+ykT5DPI5rVKpKPd7ashlaGhthqQMBfJU6kr7HCIS36xZsxAXF4c9e/aIXQrpufxT4V9++SVu376NyMhIbNy4ERYWFli0aBFat26Npk2bYtq0aTh27BhycnLKfO/zR/ZpJUwCgP/2NbhwdJ9W7kVUFK5QvuR8eCLCo9Mxuo8TjGSlZ22uUBLpryFDhuDRo0cICQlhWxiqFPkHe/KbqpfnYE9xfZQB4Hl6Lq49TEZShgI5yhfnACzN5GjVoBaa2Rc/ire8fZSJysMgVyht6jsBKN9fELlKFaISs1DXwrhMYRKQ/PM5RKSP5s6di7t37+L48eNil0IGytTUFJ6envjuu+/w5MkThISEYOHChUhKSsLkyZPRoEEDuLu747PPPsPly5eheml/5K71C6BS5RV539w8NcxNjNCpaR0MbGeL3q1tUNPUCGdCE3DjcXKx9ahUedi1foHWv08iwEBXKIGST3n/eSceFiZGsK5ZAybGUqRlKXH7aRrSspUY5GaH+nVMS72/jYMTlu08re2yiaiKCIJQ0OLrjz/+ELscqmaSkpJw7NgxBAYG4tixY4UO9vTu1hFXf11f7nv6X4tBZm4e3u3RsMTrlmw9AXsn5wpWTlQ0g1yhBABXj76QSotu4VDHwhh/P8/G+fBEHAmOw7WHyahtLodPR4cyhUmpTAZXjz5arpiIqpJEIsHcuXNx8uRJ3Lx5U+xyqJqpU6cO3n33XezevRvPnj3DhQsXMG7cONy8eRNb1y2BWl3+tZ4acimkpWzfkMpkOHt4d0XLJiqWwa5QljQpRxv4Gx6R/svLy4OzszN69uyJXbt2iV0OEQBg/vAeSE6IKfU6QRAgCC8egT+Oz8Sl+8/RvXlduDSoVeL7+ISNKoPBrlA6ODWDS4cekGq50axUJoNLhx4Mk0QGwMjICDNnzsTevXvx999/i10OEXKyMpCcEFumay/ce46tp5/gp/NPcfn+c3QrQ5gEgISYp8jJztS0VKJCDDZQAsCImcsgkxlp9Z4ymRFGzFym1XsSkXjGjh0Lc3NzjmIknfBi73/ZHhy6N7KCbycHDGhnixYONXHp3nPcjkwtwzsFJERHalQn0b8ZdKC0tnfEsKl+Wr3n8Gl+bLlAZEBq1qyJiRMnYvPmzUhLSxO7HKrmytPf2MLECDa1aqChtRl6tLRGy/o1EfQwCdmK0qfpsI8yaZtBB0oA6Ok5FD6j52jlXr5j5qDHII6vIjI006dPR1ZWFrZu3Sp2KVTNyeXGFX6vTa0aEAQgPVtZqZ9DVBSDD5QA4PXeFIyYvRxy4xrl3lMpkUohN66BkXOWw/Ndjq0iMkT169fH8OHDsX79euTlFd37j6iyCYKAmITi+0iWJiY5BxIANU3lpVzJPsqkfdUiUAIvViqXbD2BFm5dAaDUYJnfcihbMMGSrSe4Mklk4ObMmYOnT5/i119/FbsUqkaUSiVOnTqFadOmwcnJCV269UBGTsmPrM+HJeJKxHM8fJaB2ORsPI7PxKmQeDyIy4BrQ0uYGpf895uNQ0OYmJpr89sgMty2QSWJiYzAucN7EBJ0pogN0BLYODSEq0cfZBvXxZiJ03Dq1Cn069dPrHKJqIq88cYbeP78Of766y+OY6RKk56ejmPHjsHf3x+BgYFISUlBgwYN4OvrCx8fHzwLPY/zAXugVhcdLO/FpON+bDpSMpXIzVNDLpOiroUxWjjULHH0IvBiMaXP4PcxbOriyvjWqBqrloHyZTnZmUiIjoRSqYBcbgyb+k4Fv7kJgoAuXbpApVIhKCgIUmm1WdAlqpaOHz+OgQMH4vTp0+jTp4/Y5ZABiYuLw6FDh3Dw4EGcOnUKCoUCbdu2hY+PD3x9feHu7l7wSwz7KJM+qvaBsjTnzp1D79698fPPP2PYsGFil0NElUgQBLRt2xaNGjXC4cOHxS6H9Fx4eDj8/f1x8OBBXL16FRKJBD179oSPjw98fHzQpEmTYt+7bv5I3Lt5GWpV6Se2y0otCKhp0xCrd/8JmZZ7NBMxUJbBkCFDcOfOHYSFhaFGjRpil0NElWjHjh0YPXo0QkND4eLiInY5pEfUajWuXr2KgwcPwt/fH/fu3YOpqSkGDBgAX19feHl5wdraukz3SoyNwuKxb0CpyNVegRIp9l6IRBv3Tti2bRtatmypvXtTtcdnuGWwYsUKREZG4vvvvxe7FCKqZMOHD4e9vT3WrVsndimkB3JychAYGIgJEybAwcEB3bp1w7Zt29C9e3f4+/sjMTERBw4cwKhRo8ocJoHK6aM8cvYyBJ74E4mJiXBzc8OKFSvY1YC0hiuUZTR+/HgcOHAADx48gJWVldjlEFElWrFiBfz8/BAZGQlbW1uxyyEdk5ycjMDAQBw8eBDHjh1DZmYmmjZtCl9fX/j6+qJr165ae6QcuPtb+G9fo/F9fMfMKWh9l52djcWLF2PNmjVwd3fHtm3b0LZtW40/g6o3BsoyiomJgbOzM2bMmIHly5eLXQ4RVaLk5GQ4Ojpi9uzZWLp0qdjlkA54+vRpwX7Is2fPQqVSoVOnTgUns1u1alVpnQHOH9mHvRv9oFLllWtPpVQmg0xmhOHT/IpsfRcUFIQxY8bg3r17WLBgAT799FMYG7PhOVUMA2U5fPbZZ1izZg0iIiLQoEEDscshoko0Y8YM7N69G0+fPoWZmZnY5VAVEwQBt2/fLtgPGRwcDLlcjr59+8LX1xdDhgxB/fr1q6yexNgo7Fq/AGHXL0Aqk5UYLPNfd+nQAyNmLitxXHBubi6WLVuG5cuXw8XFBdu2bUPHjh0r41sgA8dAWQ5paWlo2rQpBg8ejG3btoldDhFVosePH8PZ2RkbN27E5MmTxS6HqkBeXh7Onz9fsBIZGRmJWrVqwdPTEz4+Phg0aBAsLS1FrbGsfZR7D36vXK2Bbt68idGjR+P27duYN28e/Pz8YGJiovX6yXAxUJbTxo0bMWPGDNy8eROurq5il0NEleidd97BzZs3ERYWxjYrBiozMxPHjx/HwYMHERgYiKSkJDg4OBT0h+zTp4/OPgYuqY9yRSiVSqxatQpLly5F48aNsW3bNnTr1k2LFZMhY6AsJ4VCgVatWqFFixYIDAwUuxwiqkRXr15Fly5dcODAAfj6+opdDmnJs2fPcPjwYfj7++OPP/5Abm4uWrduXbAfskOHDtV6kMXdu3cxZswYXLt2DdOnT8eyZctgbs5RjVQyBsoK+OWXX/DOO+/gzz//RN++fcUuh4gqUc+ePSEIAi5cuCB2KaSBiIiIgv2Qly5dAgB07969IEQ6O3NyzMtUKhXWr1+Pzz77DA4ODvjxxx/59x2ViIGyAvJHMuY3sa3Ov8kSGTp/f3/4+vri8uXL6NKli9jlUBmp1Wpcu3atYD9kWFgYTExM8MYbb8DHxwfe3t6oV6+e2GXqvIiICIwdOxbnz5/HpEmTsHLlStSqVUvsskgHMVBW0NmzZ9GnTx+OZCQycGq1Gi1btkS7du3wyy+/iF0OlSA3NxenT5/GwYMHcejQIcTGxqJu3brw9vaGr68vXn/9dT66rQC1Wo3vv/8e8+fPR506dfDDDz9g4MCBYpdFOoaBUgMcyUhUPWzatAlTpkxBREREifOXqeqlpKTgyJEj8Pf3x9GjR5Geno7GjRsXPMru3r07jIyMxC7TIDx58gTjx4/HyZMn8cEHH2Dt2rWoXbu22GWRjmCg1EBoaChcXV2xdu1azJgxQ+xyiKiSZGVlwcnJCcOHD8eGDRvELqfai4qKwqFDh3Dw4EGcOXMGeXl56NChQ8HJ7DZt2lRak/HqThAEbNu2DbNnz4aZmRk2bdoEHx8fscsiHcBAqaH8kYwPHz4UvT8ZEVWexYsXY/Xq1YiKikKdOnXELqdaEQQBd+7cKdgPef36dRgZGaFPnz7w8fHBkCFD0LBhQ7HLrFb+/vtvTJo0CYGBgRg2bBg2bNgAGxsbscsiETFQaih/JOPMmTPx5Zdfil0OEVWS+Ph4NGzYEIsXL8Ynn3widjkGLy8vD5cuXSo4mf3o0SNYWFhg0KBB8PX1haenJ6ysrMQus1oTBAF79uzB9OnTIZVKsXHjRrzzzjtcHa6mGCi1gCMZiaqHiRMn4tChQ3jy5An3TVeCrKwsnDhxAv7+/jh8+DCeP38OOzs7+Pj4wMfHB/369eM/dx0UFxeHKVOm4Pfff8d//vMffPfdd7CzsxO7LKpiDJRakD+ScciQIdi6davY5RBRJQkPDy+Ydzx69GixyzEICQkJCAgIwMGDB/HHH38gOzsbLi4uBfshO3XqxNZseuLXX3/Fhx9+iLy8PKxfvx4jRozgamU1wkCpJd988w1mzpyJW7duoU2bNmKXQ0SVZMiQIXj06BFCQkL4l2UFPXz4sGA/5MWLFyEIArp27VpwMrt58+Zil0gVlJiYiJkzZ2L37t0YNGgQNm/eDEdHR7HLoirAQKkl+SMZW7ZsiYCAALHLIaJKkt+D9ujRo+zFV0aCIOD69esF+yHv3LmDGjVq4LXXXoOvry8GDx4MW1tbscskLTp8+DAmTZqE9PR0rF69GuPHj+cvYAaOgVKL9u/fj6FDh3IkI5EBEwQBHh4esLKywh9//CF2OTpLoVDgzJkz8Pf3h7+/P6Kjo1G7dm14e3vDx8cHAwYMgIWFhdhlUiVKSUnB3LlzsXXrVvTr1w9btmxhH1cDxkCpRYIgoHPnzhAEgSMZiQzYvn37MGzYMAQHB8PNzU3scnRGWloajh49ioMHD+LIkSNIS0uDk5NTwX7IHj16QC6Xi10mVbETJ05g/PjxSExMxIoVKzBlyhT+/WiAGCi1LP9x2N69ezF06FCxyyGiSpCXlwdnZ2f07NkTu3btErscUcXExBQ0Gf/zzz+hVCrh5uZWsB+yXbt2fNRJSE9Px8cff4zvvvsO3bt3x7Zt27hX1sAwUFaCwYMHIzQ0FGFhYTA2Nha7HCKqBOvXr8e8efPw+PHjatUuTBAEhIWFFeyHDAoKgkwmQ69eveDr64shQ4agUaNGYpdJOurs2bMYO3YsoqOjsXTpUsyaNYujMQ0EA2UluHv3Ltq2bYt169Zh+vTpYpdDRJUgPT0djo6OmDBhAlatWiV2OZVKpVLh8uXLBSezHzx4AHNzcwwcOBA+Pj7w8vLi9CAqs6ysLCxcuBDr1q1Dx44dsW3bNnZHMQAMlJVk3LhxOHjwIEcyEhmw+fPnY9OmTYiKikKtWrXELkersrOzcfLkSRw8eBCHDx9GQkIC6tWrhyFDhsDX1xf9+/eHiYmJ2GWSHrty5QrGjBmDBw8eYOHChfj444+5x1aPMVBWkujoaDRr1owjGYkMWHR0NBo1aoRVq1Zh1qxZYpejsefPnyMgIAD+/v44fvw4srKy0Lx584L9kJ07d4ZMJhO7TDIgOTk5+Pzzz7Fy5Uq0adMG27dvh7u7u9hlUQUwUFYijmQkMnwjR47E2bNn8fDhQ73cC/b48eOC1j7nz5+HSqVC586d4evrC19fX7Rs2VLsEqkauHHjBkaPHo27d+/i448/xsKFCzlmU88wUFYijmQkMny3bt2Cm5sbfv75ZwwbNgwAkJOdiYToSCiVCsjlxrCp7wQTU3ORK31BEAQEBwcX7Ie8ffs2jI2N0b9/f/j4+GDIkCGwt7cXu0yqhhQKBVasWIEvvvgCzs7O2L59Ozp37ix2WVRGDJSVjCMZiQzf66+/juzUREwZ6YM7QWeQEBMF4OUfrRLYODjC1aMveg1+Fw5Ozaq0PqVSiXPnzhWczI6KioKlpSW8vLzg6+uLgQMHombNmlVaE1FxQkJCMGbMGNy4cQOzZs3C0qVLYWZmJnZZVAoGykrGkYxEhi0xNgrrP5uE+MgwSCRSCIK62GulUhnUahVcOvTAiJnLYG1feTOO09PTcezYMfj7+yMwMBApKSlo0KBBwX7I3r178wAE6ay8vDysXbsWixYtgqOjI7Zu3YpevXqJXRaVgIGyCuSPZDx9+jT69OkjdjlEpCXnj+zD3o1+UKnyoFapyvw+qUwGmcwIw6b6oaen9gYgxMXFFTQZP3XqFBQKBdq2bVswqcbd3Z1Nxkmv3Lt3D2PGjMGlS5cwZcoUrFixgiM7dRQDZRXgSEYiwxO4+1v4b1+j8X18Rs+B13tTKvz+8PDwgv2QV69ehUQiQc+ePeHj4wMfHx/OTia9p1Kp8O233+KTTz6BjY0NfvzxR7z22mtil0X/wkBZRTiSkchwnD+yD7vWfqK1+42csxw9BpXt54JarcbVq1cL9kPeu3cPpqamGDBgAHx9feHl5QVra2ut1UakKx49eoRx48bh9OnTGDduHFavXs0+zzqEgbIKcSQjkf5LjI3C4rFvQKnI1do95cY1sGTriWL3VObk5ODUqVPw9/fHoUOH8OzZM1hbW2PIkCHw8fHBa6+9xkMLVC0IgoAtW7Zg7ty5qFWrFjZt2gRvb2+xyyIwUFYpjmQk0n/r5o/EvZuXi90zqchTI/hxCp5n5OJ5ugI5SjXaN7ZChya1i72nVCZDC7eumLVyZ8HXkpOTERgYiIMHD+LYsWPIzMxE06ZNC/pDdu3alU3GqdqKiorCxIkTcfToUbz//vtYv3496tatK3ZZ1RoDZRUbN24c/P398eDBAy7VE+mZmMgI+I0dUOI16dlK/B4UgzoWxrA0M8K9mIxSA2W+SV/8Dxev3cTBgwdx9uxZqFQqdOrUqeBkdqtWrXiohugfgiBg586dmDlzJoyNjfHdd9/hzTffFLusaouBsorlj2ScNWsWli1bJnY5RFQOezcuwZlDP0GtLv5Ed/6PVIlEghyFCrvOPy1ToBQE4O7fqfjrcTr69u0LX19fDBkyBPXr19fq90BkaGJjYzF58mT4+/vjrbfewsaNG2Frayt2WdUOjxtXsfr162PWrFlYt24doqOjxS6HiMohJOh0iWESeBEkK7KKKJEAnVo3QUJCAo4fP47JkyczTBKVgb29PQ4cOIC9e/fizJkzaN26Nfbs2QOul1UtBkoRfPTRRzA3N8fixYvFLoWIyignK+OfCTiVJzstCTWM9W8eOJHYJBIJhg4ditDQULz++ut477334OPjw4WbKsRAKQJLS0ssXLgQ27dvx927d8Uuh4jKICHmKQqPU6wMAhKiIyv5M4gMl42NDX7++WccOHAA165dQ+vWrbFt2zauVlYB7qEUiUKhgIuLC1q1aoXDhw+LXQ4RleJRaDBWTC/fhv/y7KHMZ+PmBduGzWBlZVXwp3bt2gX/28LCggdziMogOTkZs2fPxo4dO/D6669jy5YtcHJyErssg8VAKaJ9+/Zh2LBhOHPmDHr37i12OUTVlkKhQGxsLKKjo4v9k5XyDN5uNuW6b0UC5bmHuXj6LBnZ2dlFvi6TyWBpaVkoZBYXPov6mqmpKQMpVSvHjh3DhAkTkJycjJUrV2LSpEmcWFcJGChFpFar0aVLFwAoGJlGRNojCAJSU1NLDIrR0dGIj48v9EjMxMQE9evXL/TH3tYG4cc2levzyx8oJdhw+DZMTM2Rk5OD1NRUpKSkFPxJTk4u9P+L+3pycjKUSmWRnyCXy0sMn6WF0ho1apTrnwGRLkhLS8P8+fOxadMm9OrVC1u3boWzs7PYZRkUBkqRnTlzBn379sW+ffvwzjvviF0Okd7Iy8tDXFwc/v7775JXFrOyCr3P2tq6UFBs0KDBK+Gxdu3aRf6Ct2Bkn3/2UpZNeQOljYMTlu08Xeb7F0cQBGRnZ5cpfBb3NVUxjdtNTEzKtSL67z9yuVzj74+oovLHNsbGxuKLL77AjBkzKjwgICc7EwnRkVAqFZDLjWFT3wkmpuZarlh/MFDqAG9vb4SFhXEkI9E/0tLSSl1VfPbsGdRqdcF7jI2NXwmG//7j4OCg0QpbWfpQAkBUYhaUKgFKlRrnwhLRuJ45mtR78RdNQ2tTGMlefdwmlcnQZ/D7GDZV/O4PgiAgMzOzzOHz319PTU0t9hCEubl5mcJnUV+3tLTkdCDSWGZmJj777DN8/fXX8PDwwLZt29CqVasyvTcmMgLnDu9BSNDpf7o+vPzvuQQ2Do5w9eiLXoPfhYNTs0qpX1cxUOqAO3fuoF27dli/fj2mTZsmdjlElUalUuHZs2cFobC41cWMjIxC76tTp06RAfHl1cW6detW+raRskzKAYCfL0YhIyevyNeGdWuAmqZFr9It2XoC9k76/xhOrVYjPT29zI/o//319PT0Yu9dq1atMq+I/vvrNWvW5N45KnDx4kWMGTMGT548gZ+fH+bOnVvsCnpibBR2rV+AsOsXIJXKSvylMv91lw49MGLmMljbO1bWt6BTGCh1xNixY3Ho0CE8fPgQtWrVErsconLLyMgodVUxLi6u0KNUuVwOBweHUlcVTU1NRfzO/p8gCPjkg4FI/Ps+pFoMr0XN8q7O8vLykJaWVq59oy9/7d/bHPJJpVJYWlpW6DCTlZUVzM3NudfdwGRnZ2PJkiX46quv4Obmhm3btqFdu3aFrjl/ZB/2bvSDSpUHdTFbQYoilckgkxlh2FQ/9PQcqu3SdQ4DpY74+++/0bx5c8yePRtffPGF2OUQFVCr1YiPj38lHP57dTEtLa3Q+6ysrEoMig0aNIC1tbXerBjFxsZiypQpOHn0MIZ2bwiJFntSyo1rYMnWE9VmJaOyKRSKQgeayhtKc3Nzi7yvTCar8GEmKysrmJiYMJDqqGvXrmHMmDEIDw/Hp59+igULFsDY2BiBu7+F//Y1Gt/fZ/QceL03RQuV6i4GSh2yYMECrFu3DhERERy5RlUiKyur1FXF2NhY5OX9/+NbmUxWplVFc3PD2JwuCAJ27tyJmTNnwtjYGN9++y1szVTYtfYTrX3GyDnL0WOQ4a9g6IucnJwKH2ZKTk4u9N/Ly4yNjSt0mCn/69xjX7kUCgW+/PJLLFu2DC1btsRHk9/D+d9/0Nr9Df2/cwZKHZKamoqmTZvC19cXP/74o9jlkB5Tq9VITEwsNiTmry6mpKQUel+tWrVKPdhSr169anMw4unTp5g4cSKOHTuG999/H+vXr0fdunUBQGsrF75j5sDzXcNeuahOBEFAVlZWhQ4z5f95+bDZy0xNTSt0mKl27dqwtLSEkRHHepbFrVu3MGncKLhYpBR5gK6iDP1JBAOljtmwYQNmzZqF27dvo3Xr1mKXQzooJyen1FXFmJiYQn0IpVIp7Ozsim2Tk//HwsJCxO9Md6jVamzevBkfffQRLC0tsXnzZnh5eb1ynaZ7q4ZP8zPoFQsqP0EQkJGRodEJ++JYWFhU6DCT1T8n7PVle4o2rP1oBMKDLwFFRKTopGw8iMvAs9RcZObkwVguhU3NGnBvbAWbWsV3kTD0vdIMlDqGIxmrL0EQ8Pz581LD4vPnzwu9z8LCotRVRVtbW65OlNGDBw8wbtw4nD17FhMmTMCqVatgaWlZ7PWFTn/KZCUGy/zXq9vpT6o6KpWq3CfsX/7avzss5JNIJGU+YV/U12rWrKk3+0dL6+ZwMuQZcpRqNKlnjtrmcmQr1Ah5moqE9FwMcrND/TolHyI0lG4O/8ZAqYOKG8nIJqr6S6FQICYmpsQm3DExMYUOA0gkEtja2pbahJtdAbRDpVJh/fr1WLhwIezs7PDjjz+iX79+ZX7///enO/NP8/N/96drCFePPug9+D2D/MuEDENeXl7BgaaKrJIWNzJUKpWWeTW0qK+bmZlVWSAtrd9stkIFU+PC236UeWrsu/w3apvL4dXevth761K/WW1joNRB+SMZJRIJft+3C+cDfmYTVR0lCAKSk5NLXVVMSEgo9D4zM7NSVxXt7Ow4VaSK3L17F2PHjkVQUBCmT5+OZcuWaXSoiL/8UXWVm5tbYiAtKaiWNDLUyMiowoeZrP45YV9W5Z2IlS/gRiyyclV4p2uDEq/T1kQsXcNAqaMCDvyC75ZOQ4O6ZmyiKhKlUonY2NgSm3DHxMS88ht5vXr1Sm3CbWlpqTePfwyZUqnEypUrsXTpUjRt2hRbt25Ft27dxC6LqFoSBOGVE/blDaXFjQytUaNGmcKnhZkpzuwo/+qhIk+Nny9GwaG2CV5va1vK1RJsOHzb4H7JZKDUQfkb/RWKXJQnclS3JqoVJQgCUlNTS11VjI+PLzQ+zsTEpNRVRXt7e7b20BM3btzAmDFjcOfOHXz00UdYtGhRuVYxiEi35I8MLe++0Zf/1DaX483O5W/bd/puPB4+y4RPR4cSD+bkW7gpAI7OZRv3qC+4S1/HvNyKpLzrV2qVCmrVi/54acmJBt9EtSh5eXmIi4srtQn3vydpWFtbF4TCDh06YMiQIa+sLtauXZurigYgJycHS5cuxapVq9CmTRsEBQWhffv2YpdFRBqSSCSwsLCAhYUFGjQo+bFzUdRqNe5ev4RvPhlZrvf99TAZD+Iy0a153TKFSQBQKhXlrk/XMVDqkPNH9mmlrx0A+G9fA8s61gbVkiQtLa3UVcVnz54V6uFmbGxcKBi2b9++yCbcNWqU7YcA6bdLly5h7NixePToEfz8/DB//nzuUyUiAP8cHKpdp1zvuf4oGcFPUtCxaW20diz7AUm53PCeZDFQ6ojE2Cjs3ein1Xv+/I0fWrp10/k9lSqVCs+ePSuxAXd0dPQr7Szq1KlTEArbtWsHT0/PV8KitbU1VxUJmZmZWLBgATZs2IBOnTrhxo0b7PNKRK+wqe+EF88HS98NeP1RMm48TkH7xlZwb2RVjk+R/PM5hoWBUkfsWr8AKlXR47ryxaXk4OaTFDxLzYVKLcC8hgzN7C3QvnHtIq9XqfKwa/0CUZuoZmRklLqqGBcXV2gjtZGRUcFovwYNGqBt27ZFriqampbc64sIAE6dOoXx48cjLi4Oq1evxowZM6rNpB8iKh8TU3PYODiWesr7xuMXYdK9kRU6NCn67+Di2Dg0NLgDOQADpU6IiYxA2PULJV7zIC4DZ+4moImtOfq0soFcJkFadh6ycosPoWqVCmHXLyA28oHW+96p1WrEx8eXOtovLS2t0PusrKwKQmHr1q3xxhtvvBIWbWxsqtVEBqocqampmDdvHrZs2YLevXvjxIkTcHZm/0ciKpmrR98S+1DejkzF9UcpaFDXFI7WpniWmlPodVvL4g/3SWUyuHr00Wa5OoOBUgecO7ynxNZAmTl5OB+eiJb1a6JHS+uCrzuU4d5SmQxnD+8uVxPVrKysUlcVY2NjkZf3/2FWJpPB3t6+IBS+9tprrzThdnBw0Ki3H1FZBQQEYNKkSUhNTcX333+PCRMm8JcUIiqTXoPfxZ8H/1fs608TXxzq/Pt5Nv5+/moj9/H9Gxf7XrVKhd6D39O8SB3EQKkDQoJOl9hnMjwmHXkqAe2cih//Vhy1SoWQoDMYhsVQq9VITEwsNSwmJycXuketWrUKQmGLFi3Qr1+/V1YV69Wrx8eIJLrnz59jxowZ2L17NwYOHIjNmzejYcOGYpdFRHrEwakZXDr0wL2bl4scperdofhJOCXJn+VtqJOyGChFlpOV8c8EnOLFpeSghpEUKVlKnLgdj+RMBWoYSdGonjk6O9eBsVHJKy/x0ZFo2rgRoqJjCk0hkEqlsLOzKwiFvXv3LrIJt4WFhVa+V6LKIggCfv31V0ydOhVKpRI7duzAyJEjeSCLiCpkxMxlWDz2jSIDZUXJZEYYMXOZ1u6naxgoRfbqzN9XZeaqkKcWcCokHm6NrFDPsg4S0nJx/VEKkjMUGNzBvsS/OCUS4L9DBsKpWZtCq4q2trYwMuK/AqTf4uLi8OGHH+LAgQP4z3/+g++++w52dnZil0VEesza3hHDpvph19pPtHbP4dP8dL7riiaYJkRWluamgiBApRbQvmltuP3TmsChtilkEgkuRyQhJjkH9euUfOJ58qRJaOLipoWKiXSDIAjYuXMnZs2aBblcjv379+Ott97iqiQRaUVPz6FIS07USn9o3zFzDKovdFG4S11kZWluaiJ/sTexQd3CobGBtRkAIDE9VyufQ6Qvnj59Ck9PT3zwwQfw8vJCaGgo3n77bYZJItIqr/emYMTs5ZAb14C0nOcEpDIZ5MY1MHLOcni+a/iT6xgoRfb/TVSLV8eimDD4z5xpSalDGg2ziSpVP2q1Gt9//z1at26NkJAQBAQEYNeuXahbt67YpRGRgerpORRLtp5AC7euAFBqsMx/vYVbVyzZesLgVybz8ZG3yMrSRLVxPTOEx6Qj6nk2rGv+/4jAqH/aFdSzLHlsoKE2UaXq5cGDBxg3bhzOnj2L8ePH46uvvoKlZfk7HxARlZe1vSNmrdyJmMgInDu8ByFBZ4o4AyGBjUNDuHr0Qe/B7xnsae7iMFDqgNKaqDaoa4aG1mYIfpwCQRBga2mChLRc3HicgobWprCzKqGJqtRwm6hS9aBSqbB+/XosXLgQdnZ2OHXqFPr16yd2WURUDTk4NcOwqYsxDIuRk52JhOhIKJUKyOXGsKnvVK0XbxgodUBpTVQBoH8bG9x4nILw6HTceJwC8xoyuDrWQvtSRj6p1So8eq5AVlYWzMzMtFk2UaW7e/cuxo4di6CgIEyfPh3Lli1jc3wi0gkmpuZwdG4ldhk6QyIIQukT0KnSrZs/stgmqhUlkcqgNrbEjuO3ULduXcyfPx+TJk3iDGzSeUqlEitXrsTnn3+Oxo0bY9u2bejWrZvYZRERUTF4KEdHjJi5DDKZdheMjYyMsHzLAdy7dw9eXl6YN28emjRpgg0bNiAnJ6f0GxCJ4MaNG+jUqRP8/PwwZ84c3Lx5k2GSiEjHMVDqiPwmqtqU30S1SZMm2Lp1K8LDwzFgwADMmjULTZs2xcaNGxksSWfk5OTg008/hYeHBwRBQFBQEL788kuYmBS/R5iIiHQDA6UO6ek5FD6j52jlXkU1UXV2dsaOHTsQHh6O/v37Y8aMGXB2dsb333+P3NzSe1kSVZZLly7B3d0dq1evxuLFi3Ht2jW0b99e7LKIiKiMGCh1TFU0UW3WrBl27tyJ0NBQ9O7dG1OmTEGzZs2wefNmKBSlT+4h0pbMzEzMnDkTPXr0QK1atRAcHIyFCxfC2JiN+ImI9AkP5eioxNgo7Fq/AGHXL0Aqk5V4WCf/dZcOPTBi5rJyzwoNDQ3F0qVLsX//fjRs2BCfffYZRo0aBblcrum3QVSsP//8E+PGjUNsbCy++OILzJw5E7Jy/hJFRES6gYFSx1VlE9W7d+9iyZIl+OWXX9C4cWN89tlnGDFiBIMlaVVqairmzZuHLVu2oHfv3vjxxx/h7Fy9GgATERkaBko9UlVNVENCQrBkyRL89ttvaNq0KRYuXIj33nsPRkZsW0qaCQwMxMSJE5GamopVq1Zh4sSJkEq584aISN8xUFKxbt26BT8/Pxw8eBDNmjXDwoUL8e677/KxJJXb8+fPMWPGDOzevRsDBgzADz/8gIYNG4pdFhERaQmXBqhY7dq1w4EDB3Djxg24uLhg5MiRaNWqFXbv3g2VFhuwk2H79ddf0apVKwQGBmLHjh04evQowyQRkYFhoKRSubu7w9/fH9euXUOzZs3w/vvvo02bNti7dy+DJRUrLi4Ob775Jt5++210794doaGhGDVqFCQSidilERGRljFQUpl17NgRAQEBuHr1Kho3bozhw4ejbdu22L9/P9RqtdjlkY4QBAE7d+5Eq1atcP78eezfvx+//fYb7O3txS6NiIgqCQMllZuHhweOHDmCy5cvo0GDBhg6dCjatWuH3377jcGymnv69Ck8PT0xatQoeHp6IjQ0FG+//TZXJYmIDBwDJVVYly5dcPz4cVy8eBF2dnZ466234O7ujgMHDoBnvaoXtVqNTZs2oXXr1ggJCcHhw4fx008/wdraWuzSiIioCjBQksa6deuGP/74A+fOnUPdunXx3//+Fx06dMChQ4cYLKuBBw8eoF+/fpg8eTKGDx+Ou3fvwtvbW+yyiIioCjFQktb07NkTf/75J86cOYOaNWvCx8cHnTp1QkBAAIOlAVKpVFi7di3atm2Lp0+f4uTJk/jhhx9gaWkpdmlERFTFGChJ63r37o0zZ87g1KlTMDU1xeDBg9G5c2ccPXqUwdJA3L17F927d8fcuXMxYcIEhISEoH///mKXRUREImGgpEohkUjQr18/nDt3Dn/88Qfkcjk8PT3RtWtXHD9+nMFSTymVSnzxxRdo3749UlJScP78eaxfvx7m5tqf2ERERPqDgZIqlUQiwWuvvYYLFy7g2LFjAICBAweiR48eOHnyJIOlHgkODoaHhwf8/Pwwe/Zs3Lx5E927dxe7LCIi0gEMlFQlJBIJBgwYgMuXL+PIkSNQKpV4/fXX0atXL5w+fVrs8qgEOTk5+PTTT9GpUyeo1WpcvXoVy5cvh4mJidilERGRjmCgpColkUgwaNAgXL16FYcPH0ZWVhb69euHPn364OzZs2KXR/9y+fJluLu7Y/Xq1Vi8eDGuXbuGDh06iF0WERHpGAZKEoVEIoG3tzf++usv+Pv7IzU1FX369EG/fv1w/vx5scur9jIzMzFr1ix0794dtWrVwo0bN7Bw4UIYGxuLXRoREekgBkoSlUQiwZAhQ3Djxg38/vvveP78OXr16oXXX38dly5dEru8aunPP/9E27ZtsWnTJnz11Ve4dOkS2rRpI3ZZRESkwxgoSSdIJBL85z//QXBwMH799VfExcWhe/fuGDBgAK5cuSJ2edVCamoqJk6ciP79+6NBgwa4ffs25syZA5lMJnZpRESk4xgoSadIpVK8+eabuHXrFvbv34+///4bXbt2haenJ4KCgsQuz2AFBgaidevW2LNnD7777jucPn0azZo1E7ssIiLSEwyUpJOkUinefvtt3L59Gz///DMeP36Mzp07w9vbG9evXxe7PIPx/PlzjBgxAt7e3mjTpg3u3LmDyZMnQyrljwYiIio7/q1BOk0mk2HYsGG4c+cOdu/ejYiICHTs2BFDhgxBcHCw2OXptV9//RWtWrVCQEAAduzYgaNHj8LJyUnssoiISA8xUJJekMlkePfdd3H37l3s3LkTYWFhaN++Pf7zn//g1q1bYpenV+Li4vDmm2/i7bffRvfu3REaGopRo0ZBIpGIXRoREekpBkrSK0ZGRhgxYgTCwsKwY8cO3L59G25ubnjzzTcREhIidnk6TRAE7Ny5E61atcL58+exf/9+/Pbbb7C3txe7NCIi0nMMlKSXjIyMMGrUKISHh2Pr1q24ceMG2rZti3feeQd3794Vuzyd8/TpU3h6emLUqFHw9PREaGgo3n77ba5KEhGRVjBQkl6Ty+UYM2YM7t+/jy1btuDq1atwdXXF8OHDERYWJnZ5olOr1di0aRPatGmD27dv4/Dhw/jpp59gbW0tdmlERGRAGCjJIMjlcowbNw4RERH4/vvvcfHiRbRu3Rrvvfce7t27J3Z5onjw4AH69euHyZMnY+jQobh79y68vb3FLouIiAwQAyUZFGNjY0ycOBERERH49ttvcfbsWbRq1QojR45ERESE2OVVCZVKhbVr16Jt27aIjIzEyZMnsWXLFlhZWYldGhERGSgGSjJINWrUwOTJk/HgwQN8/fXXOHXqFFxcXPDBBx/g4cOHYpdXaUJDQ9G9e3fMnTsX48ePR0hICPr37y92WUREZOAYKMmgmZiYYOrUqXj48CHWrl2L48ePo0WLFhg7diweP34sdnlao1Qq8cUXX8Dd3R0pKSk4f/48vv76a1hYWIhdGhERVQMSQRAEsYsgqirZ2dnYtGkTVqxYgaSkJHzwwQdYsGABGjVqJHZpFRYcHIwxY8YgJCQE8+bNw+LFi2FiYiJ2WUREVI1whZKqFVNTU8yaNQuPHz/GihUr4O/vj+bNm2PSpEl4+vSp2OWVS05ODhYsWIBOnTpBrVbj6tWrWL58OcMkERFVOa5QUrWWmZmJb7/9FqtWrUJaWhrGjRuHTz/9FA0aNND6Z+VkZyIhOhJKpQJyuTFs6jvBxNS8Qve6fPkyxowZg4cPH2LhwoWYP38+jI2NtVwxERFR2TBQEgHIyMjAxo0b8dVXXyEjIwMTJkzAJ598AgcHB43uGxMZgXOH9yAk6DQSYqIAvPyfmwQ2Do5w9eiLXoPfhYNTs1Lvl5mZic8++wxff/01OnbsiG3btqFNmzYa1UhERKQpBkqil6SlpeGbb77BmjVrkJWVhYkTJ+Ljjz8u93jCxNgo7Fq/AGHXL0AqlUGtVhV7bf7rLh16YMTMZbC2dyzyuj///BPjx49HTEwMPv/8c8ycORNGRkblqouIiKgyMFASFSE1NRUbNmzA2rVrkZOTg0mTJmH+/Pmws7Mr9b3nj+zD3o1+UKnyoFYVHyT/TSqTQSYzwrCpfujpObRQLR999BF++OEH9OrVCz/++COaNSt9NZOIiKiqMFASlSAlJQXr16/HunXroFQq8eGHH+Kjjz5CvXr1irw+cPe38N++RuPP9Rk9B17vTUFgYCAmTpyI1NRUrFy5EpMmTYJUyrN0RESkWxgoicogOTkZ69atw/r166FSqTBlyhTMmzcPNjY2BdecP7IPu9Z+orXPVFg643+//4EBAwZg8+bNcHJy0tq9iYiItImBkqgckpKSsGbNGmzYsAGCIGDatGmYO3cuBEUWFo99A0pFrlY+RxAEqATA47/TMXHKTEgkEq3cl4iIqDIwUBJVQGJiItasWYNvvvkGEokEI193hSojocjDN2dCExARm1HsvYZ0tIet5au9I6VSGVq4d8WslTu1WjsREZG2MVASaSAhIQErli5EetiJYq9Jy1IiW/lq0Dxx6xlkUgmGdXeEtIQVyCVbT8DeyVkr9RIREVUG7u4n0oCNjQ06tbCHVCor9ppaZnLYWpoU+qNWC8hRqtHcvmaJYVIqk+Hs4d2VUToREZHWMFASaSgk6HSJfSaLEh7z4hF4cweLEq9Tq1QICTpT0dKIiIiqBAMlkQZysjL+mYBTdoo8NR7HZ6J+HRPUMpWXen1CzFPkZGdWtEQiIqJKx0BJpIGEmKcoPE6xdA/iMqBSC2hhX7OM7xCQEB1Z7tqIiIiqCgMlkQaUSkW533MvJh015FI0qmdeqZ9DRERUVRgoiTQglxuX6/rn6QokpivQzM4CMmnZe0uW93OIiIiqEgMlkQZs6jsBKHswvBeTDgBo4VDWx90AIPnnc4iIiHQTAyWRBkxMzWHj4Fima1VqAQ/iMmBTqwbqWJR9xdHGoSFMTMv+eJyIiKiqMVASacjVo2+JfSjzPUnIRG6eGi1LaRX0MqlMBlePPhpUR0REVPkYKIk01Gvwu2XqQ3kvJh1GMgma2JY9UKpVKvQe/J4m5REREVU6I7ELINJ3Dk7N4NKhB+7dvAy1qvhg6eluX677SmUytHDryrGLRESk87hCSaQFI2Yug0ym3d/PZDIjjJi5TKv3JCIiqgwMlERaYG3viGFT/bR6z+HT/GBtX7YDP0RERGJioCTSkp6eQ+Ezeo5W7uU7Zg56DBqqlXsRERFVNokgCOWbG0dEJTp/ZB/2bvSDSpVX4p7Kf5PKZJDJjDB8mh/DJBER6RUGSqJKkBgbhV3rFyDs+gVIZbISg2X+6y4demDEzGV8zE1ERHqHgZKoEsVERuDc4T0ICTqDhJinAF7+z00CG4eGcPXog96D3+NpbiIi0lsMlERVJCc7EwnRkVAqFZDLjWFT34kTcIiIyCAwUBIRERGRRnjKm4iIiIg0wkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCMMlERERESkEQZKIiIiItIIAyURERERaYSBkoiIiIg0wkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCMMlERERESkEQZKIiIiItIIAyURERERaYSBkoiIiIg0wkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCMMlERERESkEQZKIiIiItIIAyURERERaYSBkoiIiIg0wkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCMMlERERESkEQZKIiIiItIIAyURERERaYSBkoiIiIg0wkBJRERERBphoCQiIiIijTBQEhEREZFGGCiJiIiISCP/B/L0IkqsfcTAAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "