
Iompar: Live Public Transport Tracking

College of Science & Engineering
Bachelor of Science (Computer Science & Information Technology)

Project Report

Author:
AndrewHayes

Student ID: 21321503

Academic Supervisor:
Dr. Adrian Clear

2025–04–05

Contents

1 Introduction 1
1.1 Project Overview . 1
1.2 Objectives . 2

1.2.1 Core Objectives . 2
1.2.2 Secondary Objectives . 2
1.2.3 Additional Objectives . 2

1.3 Use Cases . 3
1.4 Constraints . 4

2 Research & Planning 5
2.1 Similar Services . 5

2.1.1 Irish Rail Live Map . 5
2.1.2 Google Maps . 6
2.1.3 TFI Live Departures . 7
2.1.4 Flightradar24 . 7

2.2 Data Sources . 8
2.2.1 Irish Rail API . 8
2.2.2 Luas API . 9
2.2.3 NTAGTFS API . 9

2.3 Technologies . 9
2.3.1 Backend Technologies . 9
2.3.2 Frontend Technologies . 12

2.4 Project Management . 13
2.4.1 Version Control . 14

3 Backend Design & Implementation 16
3.1 Database Design . 16
3.2 API Design . 22

3.2.1 API Endpoints . 23
3.3 Serverless Functions . 24
3.4 CI/CD Pipeline . 29

3.4.1 Unit Tests . 29
3.4.2 CI/CD . 30

4 Frontend Design & Implementation 32
4.1 Main Page . 33
4.2 Statistics Page . 43
4.3 Help Page . 44

5 Evaluation 45
5.1 Objectives Fulfilled . 45
5.2 Heuristic Evaluation: Nielsen’s 10 . 45
5.3 User Evaluation . 45

i

CONTENTS

6 Conclusion 46

ii

Chapter 1

Introduction

1.1 Project Overview

The purpose of this project is to create a useful & user-friendly application that can be used to track the current
whereabouts & punctuality of various forms of Irish public transport, as well as access historical data on the punctuality
of these forms of transport. In particular, this location-tracking takes the form of a live map upon which every currently
active public transport service is plotted according to its current location, with relevant information about these services
and filtering options available to the user.

The need for this project comes from the fact that there is no extant solution for a commuter in Ireland to track
the current location and whereabouts of all the different public transport services available to them. There are some
fragmented services that purport to display the live location of one particular mode of transport, such as the Irish
Rail live mapliveir, but this can be slow to update, displays limited information about the services, and only provides
information about one form of public transport.

The need for an application that tracks the live location & punctuality of buses in particular is felt here in Galway,
especially amongst students, as the ongoing housing shortage drives students to live further and further away from
the university and commute in, with Galway buses often being notoriously unreliable and in some cases not even
showing up, many commuters could benefit from an application that tells them where their bus actually is, not where
it’s supposed to be.

The name of the application, “Iompar” (IPA: /ˈʊmˠpˠəɾˠ/), comes from the Irish word for “transport” but also
can be used to mean carriage, conveyance, transmission, and communicationiompar_teanglann; it was therefore thought
to be an apt name for an application which conveys live Irish public transport information to a user.

Figure 1.1: Iompar project icontrainticket

1

CHAPTER 1. INTRODUCTION

1.2 Objectives

1.2.1 Core Objectives

The core objectives of the project are as follows:

• Create a live map of train, DART, bus, & Luas services in Ireland, which displays the real-time whereabouts of
the service, relevant information about that particular service, and the punctuality of the service, to the extent
that is possible with publicly-available data.

• Make the live map searchable to facilitate easy navigation & use, such as allowing the user to find the particular
service in which they are interested.

• Provide an extensive array of filters that can be applied to the map to limit what services are displayed, including
filtering by transport mode & punctuality.

• Collect & store historical data about services and make this available to the user as relevant, either via a dashboard
or via relevant predictions about the punctuality of a service based off its track record.

• An easy-to-use & responsive user interface that is equally functional on both desktop &mobile devices.

1.2.2 Secondary Objectives

In addition to the core objectives, some secondary objectives include:

• Many of those who commute by bus don’t have a specific service they get on as there are a number of bus routes
that go from their starting point to their destination, and therefore it would be useful to have some kind of
route-based information rather than just service-based information.

• A feature which allows the user to “favourite” or save specific services such as a certain bus route.

• Implement unit testing andobtain a high degree of test coverage for the application, using a unit testing framework
such as PyUnitpyunit.

• The ability to predict the punctuality of services that will be running in the coming days or weeks for precise
journey planning.

• User accounts that allow the user to save preferences and share them across devices.

• User review capability that allows users to share information not available via APIs, such as how busy a given
service is or reports of anti-social behaviour on that service.

• Make the web application publicly accessible online with a dedicated domain name.

• Port the Reactreact application to React Nativenative and make the application run natively on both Android &
iOS devices.

• Publish the native applications to the relevant software distribution platforms (Apple App Store & Google Play
Store).

1.2.3 Additional Objectives

Some additional objectives beyond the objectives that were specified before beginning development of this project were
added as the project was developed, including:

• Remember a user’s preferences the next time they visit the page.

• Optimise the performance of the frontend to process data as fast and as efficiently as possible.

• Make the UI design comply with Nielsen’s 10 Usability Heuristicsnielsenheuristics.

2

CHAPTER 1. INTRODUCTION

• Utilise the user’s geographical location to allow them to filter results by proximity to them.

• Optimise the backend to stay within the limits of AWS Free Tierawsfree.

• Create a CI/CD pipeline to automatically test and deploy new code.

1.3 Use Cases

The use cases for the application are essentially any situation in which a person might want to know the location or
the punctuality of a public transport service, or to gain some insight into the historical behaviour of public transport
services. The key issue considered was the fact that the aim of the project is to give a user an insight into the true location
and punctuality of public transport: where a service actually is, not where it’s supposed to be. The application isn’t
a fancy replacement for schedule information: the dissemination of scheduling information for public transport is a
well-solved issue. Schedules can be easily found online, and are printed at bus stops and train stations, and displayed on
live displays at Luas stops. Public transport users know when their service is supposed to be there, what they often don’t
know is where it actually is. The application is to bridge this gap between schedules and reality.

Figure 1.2: Photograph of a TFI display erroring due to the clocks going forward [Taken: 2025–03–30]

Furthermore, any existing solution that attempts to give public transport users live updates can be unreliable, slow to
update, difficult to use, and only supports one type of transport which forces users to download or bookmark numerous
different website and apps, and learn the different interfaces & quirks for each. Figure 1.2 above is a recent example of
this: the few bus stops in Galway that actually have a live information display all displayed error messages on Sunday
the 30th of March because the clocks went forward by an hour and the system broke. There is a need for a robust and
reliable solution for public transport users who want to know where their service is.

With this being said, the main use cases that were kept in mind during the design process were:

• A bus user waiting for their bus that hasn’t shown up when it was supposed to and needs to know where it
actually is so they can adjust their plans accordingly;

• A train user waiting for their train that hasn’t shown up;

• A train user on a train wondering when they will arrive at their destination;

• A Luas user who wants to catch the next Luas from their nearest stop.

3

CHAPTER 1. INTRODUCTION

1.4 Constraints

The primary constraint on this project is the availability of data. Different public transport providers have different
APIs which provide different types of data: some don’t provide location data, others don’t provide punctuality data,
and others don’t have any API at all. Other constraints include:

• API rate limits & update frequencies;

• Cost of compute & storage resources;

• API security policies which limit what kind of requests can be made and from what origin;

• Availability of live data for certain geographical locations.

4

Chapter 2

Research & Planning

2.1 Similar Services

As background research for this project, a list of transport-tracking applications available online was compiled, with
each application then being analysed to determine their positive characteristics from which inspiration should be taken
and their negative characteristics which should be avoided or fixed.

2.1.1 Irish Rail Live Map

The Irish Rail Live Mapliveir displays the current location of Irish Rail intercity, commuter, & DART services, with
clickable icons that display information about the selected service including the lateness of the train and its next stop.

Figure 2.1: Irish Rail live map

Strengths of the Irish Rail live map that were identified include:

• Services can be clicked on to display a pop-up panel showing the punctuality of that service, the next stop of that
service, and the stops on that service’s route;

• There are basic filtering options to display a specific type of service such as DARTs;

• Bridges, level crossings, & stations are shown on the map. The stations can also be selected and information
about them viewed.

5

CHAPTER 2. RESEARCH& PLANNING

Limitations of the Irish Rail live map that were identified include:

• The pop-up information panel covers the entire map and hides it;

• There is no search feature to find a specific service;

• The filtering options are greatly limited;

• The UI is slow and not particularly responsive;

• There is no visual distinction between the icons for different kinds of services.

2.1.2 Google Maps

Google Mapsgmaps is a common choice for finding the next the upcoming nearby services and route planning. It covers
a number of different types of service, include buses & trains. The mobile UI has been included here alongside the
desktop UI as there is no live service information available on the desktop version of Google Maps.

(a) Mobile view (b) Desktop view

Figure 2.2: Google Maps mobile & desktop views

Strengths of Google Maps include:

• It facilitates route determination, and can tell the user about what services they need to take to get any arbitrary
location;

• The mobile version lists when services are due and how long they are expected to be delayed.

Limitations of Google Maps include:

• There is no live service information on the desktop version;

• Vehicle locations are not plotted on the map and thus the user cannot tell where the service actually is;

• Specific services cannot be searched for, and there is no filtering to display only a certain type of service.

6

CHAPTER 2. RESEARCH& PLANNING

2.1.3 TFI Live Departures

The TFI Live Departures maptfilive shows live departure information for both bus stops and train stations.

Figure 2.3: TFI Live Departures map

Strengths of the TFI Live Departures map include:

• A stop or a station can be clicked on to show a pop-up information panel that appears at the side of the screen
and does not cover the map;

• There is a powerful search feature that allows the user to search by location, route, or stop number;

• If a specific route is selected, the route is highlighted on the map and its stops are plotted;

• The map is highly detailed, making it easier to find a particular location on the map and find nearby services.

Limitations of the TFI Live Departures map include:

• The map doesn’t show the live locations of the services, it shows the stops or stations from which the services
depart;

• The map has no filtering options beyond the search feature;

• The map has to be zoomed in very far to actually display the stations in that area, making the map more difficult
to use & navigate;

• It doesn’t say whether or not services will be delayed or where they currently are, only saying when they are
scheduled for.

2.1.4 Flightradar24

Flightradar24radar is a live-tracking application for monitoring aeroplane& helicopter flights; while not public transport
and therefore not within the scope of this project, this application has nonetheless chosen to be included in this analysis
as it is particularly good example of transport-tracking UI, and is highly successful

7

CHAPTER 2. RESEARCH& PLANNING

Figure 2.4: Flightradar24 UI

Strengths of Flightradar24 include:

• Ability to select a given service and open a pop-up panel that displays details about that service;

• Selected services are highlighted in red on the map;

• The information panel shows the scheduled departure time, the actual departure time, the scheduled arrival time,
& the estimated arrival time;

• The information panel displays an image of the selected vehicle;

• Searching & filtering features;

• Larger planes have larger icons on the map and helicopters have distinct icons from planes.

Limitations of Flightradar24 include:

• Bookmarking a vehicle requires a paid account;

• The UI contains advertisements for free users.

2.2 Data Sources

2.2.1 Irish Rail API

Live train data, including DART information, can be sourced from the Irish Rail Realtime APIirishrailapi. This is
a mostly RESTful-like API which seems to be a legacy hybrid between RESTfielding2000rest (Representational State
Transfer) and SOAPbox2000soap (Simple Object Access Protocol): unlike SOAP, it accepts HTTP GET requests instead
of a HTTP POST of an XML envelope containing the request, but it doesn’t use resource-based URLs and returns a
namespaced XML response instead of plain XML. Nonetheless, it can be interacted with in more or less the same way
as one would a RESTAPI to obtain data. It provides a number of endpoints, with the relevant endpoints to this project
being:

8

CHAPTER 2. RESEARCH& PLANNING

• /getAllStationsXML and getAllStationsXML_WithStationType?StationType=<A,M,S,D>which returns infor-
mation about Irish Rail stations including latitude & longitude.

• /getCurrentTrainsXML and /getCurrentTrainsXML_WithTrainType?=<A,M,S,D> which returns information
about all the currently running trains (with latitude & longitude), including trains that are due to depart
within 10 minutes of the query time.

• /getStationDataByCodeXML?StationCode=<station_code>which returns the trains due to serve the station in
question in the next 90 minutes.

The documentation page for the API warns that some areas are not fully supported for real-time information due to
the central signalling system being subject to “ongoing work to support this real-time facility” and that, in the case that
a train is in an area of the rail system where real-time data is unavailable, the scheduled data for the train will be returned
instead. The extent to which coverage of real-time data is available today is unclear, as the API documentation page has
not been updated since the 8th of December 2015 at the very latestirishrail-api-archive (although a more realistic estimate
would be 2011 based off example dates used in the documentation) and so is now likely nearly a decade out-of-date, but
this does not affect how the data will have to be processed very much; since the scheduling information is just returned
in the absence of real-time data, this can be treated as a best approximation of the real-time data and does not need to be
handled differently.

2.2.2 Luas API

The Luas APIluasapi is an XML-over-HTTP API with a REST-like interface that provides real-time updates of expected
Luas arrivals for a given Luas stop, based upon the location data of the trams from their Automatic Vehicle Location
System (AVLS). No location data about individual trams is made publicly available; instead each stop must be queried
individually using the /get.ashx?action=forecast&stop=<stop_code> endpoint, which returns an XML file with a
list of all inbound & outbound trams due into that stop.

2.2.3 NTA GTFS API

The National Transport Authority (NTA) provides a General Transit Feed Specification (GTFS)gtfs REST API named
GTFS-Realtimegtfsapi which provides real-time location data about buses operating in Ireland. GTFS is a standardised
format for public transport schedules & associated geographic information that provides both static data (such as
timetables, routes, & stop locations) and real-time data (such as live location data). The static GTFS feed is made up of
comma-separated value files (as is standard) and the real-time data is returned in JSON format from the REST API
endpoint gtfsr/v2/Vehicles[?format=json]. It is free to use, but requires an API key for access.

2.3 Technologies

2.3.1 Backend Technologies

Server-Based versus Serverless Architectures

The first choice to be made for the backend technologies for this project was whether the backend should be designed
using a server-based or serverless architecture. A traditional server-based model was initially considered, either running
on its own dedicated hardware or making use of a Virtual Private Server (VPS)AWS:VPS but was ultimately rejected. A
server-based architecture requires extensive management of infrastructure, including the provisioning of hardware,
system administration, and maintenance of the server application itself. Despite extensive personal experience with
Linux-based and UNIX-like operating systems, the ongoing administration of a server would distract from the develop-
ment of the application itself, and would be very difficult to scale to make the application available to a large number
of users. While scaling issues could be partially mitigated with the utilisation of containerisation and a server-based
microservices architectureIBM:Microservices,AWS:Microservices using technologies such as DockerDockerEngineDocs, it would
nonetheless take a large amount of administrative effort to scale the application as usage demands grew.

In contrast, serverless architecturesdigitalocean_serverless_2023, google_serverless_2025, aws_serverless_2025 abstract away these
infrastructure concerns, allowing the focus of the project to be solely on the application logic. Since serverless functions

9

CHAPTER 2. RESEARCH& PLANNING

are invoked on demand and billing for serverless models is based solely upon the usage, serverless architectures are
generally much more cost-effective for the workloads with variable or intermittent traffic that would be expected for a
user-facing application such as this one. The serverless model lends itself especially well to a microservices architecture,
which allows the system to broken into small, independent services responsible for their own pieces of functionality, with
each microservice being independently deployable and scalable. Instead of establishing or purchasing server infrastruc-
ture in advance, a serverless architecture can automatically scale up or down tomeet the demand put upon it, preventing
outages when large strain is put upon the service and preventing excessive financial or computational costs when there
is low usage; the issue of over-provisioning or under-provisioning of compute resources is entirely circumvented, and
the need for load balancers is eliminated entirely. Serverless functions support event-driven architecture, making them
a natural fit for a system that must react to user demands as they occur. Furthermore, the fast time-to-production
of serverless architectures results in faster iteration & experimentation, easier integration into CI/CD pipelines for
continuous delivery, and simplifies rollbacks (should they be necessary) by deploying only small, isolated units, all
without the need to spin up servers or configure deployment environment.

The ephemeral nature of serverless functions makes them highly fault-tolerant, as an error in a function execution will
only affect that execution, whereas an improperly handled error in a server architecture could, in the very worst-case
scenario, bring the entire system down and require a reboot. Moreover, although not especially relevant for this project
as it does not handle sensitive data, the attack surface for a serverless architecture is much smaller and there is no need to
manually configure server patches or firewall rules, as these are handled by the serverless provider. For these reasons, a
serverless architecture was chosen for this project.

Serverless Platforms

A number of serverless platforms were considered for this project, including AmazonWeb Services (AWS)aws, Google
Cloudgooglecloud, Microsoft Azureazure, and Cloudflarecloudflare. While these platforms have innumerable differences,
and are better and worse suited for different applications, a brief overview of their strengths & weaknesses as considered
for this project is as follows:

• AWShas amature& extensive ecosystemwith broad service integration and a generous free tier, but its complexity
can result in a steeper learning curve and a more complex initial set-up.

• Google Cloud has a simpler set-up, and tight integration with Firebase & Google APIs along with a similarly
generous free tier, but fewer advanced features, less control over configuration, and a less extensive ecosystem.

• Microsoft Azure has a deep integration with theMicrosoft ecosystem such as SQL serverazuresql, but less commu-
nity support and a steep learning curve for non-Windows developers.

• Cloudflare has extremely low latency, excellent support for edge computingibm_edge_computing (running on servers
geographically close to users), and is great for lightweight apps, but has extremely limited memory and runtime,
making it unsuitable for heavy backend logic. Its database & storage solutions are also not as mature or as scalable
as comparable solutions.

AWS and Google cloud offer the most generous free tiers, while Cloudflare has very tight limits (CPU time is limited
to 10ms maximum in the free tiercloudflareworkers) and thus is only suitable for very lightweight tasks, not the kind of
extensive data processing that this application will be engaging in. Therefore, AWS was chosen as the serverless platform
for this project as it is was deemed to be the most flexible & affordable option.

Relational versus Non-Relational Databases

AWS offers a wide array of relational and non-relational database services, so the next choice was between a relational &
non-relational database. Relational databases store data in tables using fixed schemata consisting of rows & columns,
and use SQL for querying; relationships between tables are strictly enforced with the use of foreign keys. These rigid,
pre-defined schemata are excellent for data integrity & relational consistency, and are suitable for applications in which
relationships between entities are complex and querying across those relationships is common.

Non-relational databases store data in more flexible formats, such as key-value pairs, JSON documents, or graphs.

10

CHAPTER 2. RESEARCH& PLANNING

They are more suitable to scaling horizontally and for handling unstructured or semi-structured data. The simplified
structure means that they can be very high performance for simple read/write patterns, and are ideal for applications
that handle large volumes of fast-changing or unstructured data.

For this application, data is semi-structured and varies greatly by API source. The data is updated very frequently,
which would require many JOIN operations or schema migrations for a normalised relational database. Non-relational
databases, on the other hand, offer flexibility for heterogeneous transport data with different attributes, aremore suitable
for real-time data ingestion & retrieval due to low-latency reads & writes, and can support on-demand scaling without
the need for the manual intervention required by relational databases to be scaled up; a non-relational database structure
was selected for this reason.

AWS offers several non-relational database services, each of which is optimised for a different use caseawsdatabases:

• Amazon DynamoDBdynamodb is a fully-managed, serverless No-SQL database designed for low-latency, high-
throughput workflows that supports storing data as key-value pair or as JSON-like documents. Key features of
DynamoDB include the choice between on-demand or provisioned capacity, global tables for replication across
multiple geographic regions, and fine-grained access control with Amazon Identity and Access Management
(IAM).

• Amazon DocumentDBdocumentdb is a fully-managed, document-based database using JSON-like BSONwith
MongoDB compatibilities, designed for applications using MongoDB APIs. However, unlike DynamoDB, it is
not fully serverless, and is instead a managed cluster-based service that must be provisioned & scaled manually.

• Amazon ElastiCacheelasticache is an in-memory data store for extremely fast caching (sub-millisecond response
times) and changing data, with data stored only per session. However, it cannot be used for persistent data
storage, making it insufficient as a sole database service for this application.

• Amazon Neptuneneptune is a managed database for storing & querying relationships using graph models,
generally used for recommendation engines & knowledge graphs and therefore not suitable for this application.

• Amazon Timestreamtimestream is a time-series database that is purpose-built for the storage and analysis of
time-series data, i.e., timestamped data. This would be a good choice for the historical analysis side of this
application, but inappropriate for real-time data.

• Amazon OpenSearch serviceopensearch is a distributed full-text search & analytics engine based upon Elastic-
search that supports advanced filtering, sorting, & ranking of query results on an ad-hoc basis by default and
supports JSON document ingestion. However, the higher querying flexibility comes at the cost of higher-latency
queries, making it less appropriate for real-time data.

DynamoDB was chosen for the database service due to its suitability for the data being processed, its scalability, and its
low-latencies.

Programming Language

AWS Lambda functions officially support many programming languages, including Node JS, Python, Java, C#, &
Go; custom runtime environments can also be created, making practically any language usable within AWS Lambda
functions with some effort. Due to previous experiencewith these programming languages, themain options considered
for this project were Node JS, Python, & Java:

• Node JSnode is a good choice for event-driven & real-time web applications because of its non-blocking IO,
fast cold starts for latency-sensitive functions, and extensive library ecosystem. Asynchronous operations are
supported out-of-the-box, making it a good choice for querying external APIs. However, it can become complex
to manage for lengthy source files, and can be cumbersome to write compared to something like Python. An
advantage of writing the backend in Node JS would be that both the frontend & the backend would utilise
JavaScript code, meaning that the same tooling could be used for both.

11

CHAPTER 2. RESEARCH& PLANNING

• Pythonpython is a good choice for polling of APIs & data ingestion due to its clean syntax, data parsing features,
and extensive library ecosystem. Development & prototyping in Python is fast and easy to manage, but it does
not have built-in support for asynchronous programming. Python is generally slightly slower than Node JS, and
start-up time for Python Lambda functions can be longer.

• Javajava is a good choice for complex, enterprise-grade applications due to its strong typing & compile-time safety,
and has a mature library ecosystem. However, it can be slower to write due to its verbose syntax, and development
environments can be more complex to set up & configure. Despite having fast execution times, it can be slow to
start up for Lambda functions as the JVMmust be initialised each time, leading to∼1–2 seconds of delay.

Java was rejected on the basis that its slow start-up times made it unsuitable for this application, so the decision came
down to whether the speed of execution for Node JS or the speed of development for Python should be favoured;
ultimately, it was decided that Python would be a better choice for rapid prototyping & development, as the execution
speed differences between the two languages are negligible (in this scenario), but the development speed differences are
not.

2.3.2 Frontend Technologies

JavaScript Frameworks

While a web application like this could be developed using HTML and JavaScript alone, the complexity & dynamic
nature of the application means that a JavaScript framework would more suitable for the benefits of re-usability &
modularity, simplified application state management, optimised performance, and extensive library ecosystems. The
main frameworks considered were React, Angular, & Vue due to their widespread popularity, good documentation,
and extensive feature set:

• Reactreact is the most popular choice of the three, with a large user community and a wide array of third-party
libraries. It is component-based, making code easily re-usable and allowing the frontend design to be flexible
for different design patterns & architectures. However, it can have a steep learning curve and can be needlessly
complicated for simple applications. Technically speaking, it is not a full JavaScript framework, as it only provides
built-in features for building UI components: it doesn’t have built-in features for routing, data fetching, or tight
integration with any backend services, although these can be added either with third-party libraries or by writing
custom JavaScript code.

There is also a mobile development framework built on top of React called React Nativenative, which al-
lows for native Android & iOS mobile application to be developed using JavaScript and React components.
Instead of rendering to a DOM like vanilla React, React Native maps its UI components to native iOS/Android
views (i.e., a button in React Native would use the operating system’s native button component instead of being
defined inHTML). This means that the same React Native codebase can be used to write an iOS and an Android
application, and means that the performance will be superior to that of a webview application because of the
utilisation of native components. However, React Native does not support any HTML or CSS, meaning that
while a React web application is highly portable to React Native, it is not a simple drop-in solution, and a React
web application would have to undergo extensive re-writing to use React Native.

• Angularangular is a complete JavaScript framework for large-scale enterprise applications that comes with com-
plete routing, state management, and a HTTP client out-of-the-box, therefore eliminating much of the need for
third-party libraries. However, it has a rather steep learning curve, and takes a lot more development time to get
up and running than other comparable JavaScript frameworks. It requires a lot of boilerplate code and complex
configuration, with relatively simple features sometimes taking a great deal of set-up. It also rigidly enforces
certain best practices, which is both a positive and a negative, as this ties the development into the Angular way
of doing things.

• Vuevue is a JavaScript framework known for its simplicity and ease-of-use, with very beginner-friendly syntax
that is highly similar in appearance to standard HTML& JavaScript. Reactivity is baked into the framework,
with the view updating automatically as data changes, reducing the need to manually update data values. All
the HTML, CSS, & JavaScript for a Vue component is contained within a single component file, simplifying

12

CHAPTER 2. RESEARCH& PLANNING

development. However, it has a far less mature library ecosystem than the other two discussed frameworks, and
fragmentation between the Vue 2 version and the Vue 3 version means that the few plug-ins that do exist may
not be compatible with the version used. Vue’s automatic handling of reactivity, while simplifying development,
can be a black box that is difficult to understand for debugging purposes.

It was decided that React would be the most suitable JavaScript framework for this project, as it has extensive library
support, is flexible & lightweight, and it lends itself to porting the codebase to a native application if so desired in the
future. Since the consideration of native applications is only a secondary objective of this project, the decision was
made to focus only on React development and to make use of React-only functionality wherever suitable (such as using
HTML + CSS), but to write the components in a clean &modularised fashion so that a React Native port would not
be excessively difficult.

CSS Frameworks

ACSS framework is a collection of pre-written styles, utility classes, or components that can be used to help build UIs
quickly without reinventing basic functionality. CSS frameworks allow applications to be responsive by default on
mobile devices, and maintain consistency throughout the application. The two CSS frameworks considered for this
application were Tailwind CSS and Bootstrap CSS:

• Tailwind CSStailwind is a utility-first CSS framework in which the user interface is built by composing utility
classes directly in HTML / React code; in this context, “utility first” refers to the fact that Tailwind does not
provide any pre-built components, but instead provides pre-defined utility classes. Layout and styling are all
done in-line via class names. This utility-based approach makes the framework very flexible & customisable, but
comes at the cost of not providing any out-of-the-box re-usable components and require for components to be
designed from scratch instead.

• Bootstrap CSSbootstrap is a component-first CSS framework designed to help developers build responsive, styled
UIs quickly. It comes with many pre-built components such as buttons and navigation bars, and JavaScript
plug-ins for drop-down menus and image carousels. This makes it very useful for fast prototyping and building
of UIs, but can look generic due to its pre-built components and overriding the default component styles can be
time-consuming.

Tailwind CSS was chosen for this project due to its flexibility & customisability, and because its utility-first approach
means it integrates very well with React’s component-based approach as a component’s style can be contained entirely
within that component.

2.4 Project Management

Agile methodologiesagile were employed throughout this project to facilitate iterative development with continuous
feedback & adaptation: Agile is a development approach which divides work into phases, emphasising continuous
delivery & improvement. Tasks are prioritised according to importance & dependencies, and are approached in a flexible
manner so that approaches could be adjusted if something isn’t working as intended. Progress was reflected upon
regularly, with areas for improvement being identified and plans adjusted accordingly. Automated CI/CD pipelines
were employed to streamline development, and to ensure that new changes never broke existing functionality. Progress
was tracked in a Markdown diary file, and a physical Kanbankanban board with Post-It notes was used to track planned
work, in progress work, & completed work.

The principles of clean codingmartin2008cleancode (famously put forward by Robert “Uncle Bob” Martin) were also
employed to ensure that all code written was easy to read, understand, & maintain. Key principles of clean coding
involve ensuring that the code is readable with meaningful function & variable names, ensuring that the code is simple
& concise with each function doing one thing only and doing that thing well, using consistent naming conventions,
and employing the Don’t Repeat Yourself (DRY) principle which involves the avoidance of duplicated code by creating
re-usable functions & modules. Code should be structured in a way that is meaningful, and should have proper
comments & documentation where necessary; comments should only explain why something is done, not what it
does as properly written clean code should be self-explanatory. Code should also be written in a way that lends itself

13

CHAPTER 2. RESEARCH& PLANNING

easily to unit testing, and should be refactored to make testing as simple as possible rather than making the tests more
complicated; if the code is decomposed into functions properly, it should be easier to test, upgrade, & maintain.

Proper functional decomposition also results in code that is less tightly coupled in to specific libraries, platforms,
or services, making it more flexible & easier to port to different services if needs be. With proper separation of concerns,
each function has a single responsibility and so dependencies can be isolated, and abstraction layers can prevent direct
dependency on a specific implementation; if a function is abstracted properly switching libraries or services requires
fewer changes and in fewer places. Isolated functions are also easier to test with mock functions, reducing reliance on
real services during unit testing.

2.4.1 Version Control

Any software development project of substantial size shouldmake use of version control software, andGitgit was chosen
for this project due to its ubiquitousness and extensive personal experience with the software. GitHubgithub was chosen
as the hosting platform for the Git repository, again largely due to its ubiquitousness and extensive personal experience,
but also because of its excellent support for CI/CD operations with GitHub Actionsgithubactions. The decision was
made to keep all relevant files for this project, including frontend code, backend code, and document files in a single
monolithic repository (monorepo) for ease of organisation, a simplified development workflow, and easier CI/CD
set-up. While this is not always advisable for very large projects where multiple teams are collaborating, or projects
in which the backend and frontend are truly independent of one another and are developed separately, this works
well for projects like this one where development is done by a single individual or a small teambrito2018monorepos, and is
even used on very large projects where unified versioning and simplified dependency management are of paramount
importance, such as at Googlepotvin2016google.

Commits to this repository were made in adherence with the philosophy of atomic commits, meaning that each commit
represents a single, logical change: commits are kept as small as reasonably possible, and are made very frequently. This
makes the Git history easier to read, understand, & revert if needed, makes debugging easier, keeps changes isolated and
understandable, and reduces merge conflicts. This is the generally accepted best practice, as bundling unrelated changes
into a single commit can make review, reversion, & integration of these commits much more difficultdias2015untangling.

Meaningful commit messages are of great importance when using version control software, and evenmore so whenmak-
ing atomic commits as there will be a very large volume of commits& commitmessages. For this reason, a custom scoped
commitmessage conventionwas chosen, where each commitmessage follows the format [scope]: Details of commit,
where the scope can be [frontend] for changes to frontend code, [backend] for backend code, [report] for changes to
the LATEX project report files, and so on. This ensure consistency & clarity in commit messages, and the strict formatting
of the messages make it easy to parse commit messages in a script should that be necessary. Recent examples of commit
messages to the GitHub repository can be seen in Figure 2.5 below.

14

CHAPTER 2. RESEARCH& PLANNING

Figure 2.5: Screenshot of the repository files on GitHub

15

Chapter 3

Backend Design & Implementation

Figure 3.1: High-level backend architecture

3.1 Database Design

Since the chosen database system was DynamoDB, a No-SQL database, the question of how best to separate the data is
more open-ended: unlike a relational database, there is no provably correct, optimised structure of separated tables
upon which to base the database design. The decision was made that data would be separated into tables according to
the type of data, how its used, and how its updated, thus allowing separation of concerns for functions which update
the data and allowing different primary keys and indices to be used for different querying patterns.

Permanent Data Table

The permanent data table holds the application data which is unchanging and needs to be updated only rarely, if ever.
This includes information about bus stops, train stations, Luas stops, and bus routes. This data does not need to be
updated regularly, just on an as-needed basis. Since this data is not temporal in nature, no timestamping of records is
necessary.

1 [

2 {

3 "objectID": "IrishRailStation-GALWY",

4 "objectType": "IrishRailStation",

5 "trainStationCode": "GALWY",

6 "trainStationID": "170",

7 "trainStationAlias": null,

8 "trainStationDesc": "Galway",

9 "latitude": "53.2736"

10 "longitude": "-9.04696",

11 },

12 {

13 "objectID": "BusStop-8460B5226101",

16

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

14 "objectType": "BusStop",

15 "busStopID": "8460B5226101",

16 "busStopCode": "522611",

17 "busStopName": "Eyre Square",

18 "latitude": "53.2750947795551"

19 "longitude": "-9.04963289544644",

20 },

21 {

22 "objectID": "BusRoute-4520_67654",

23 "objectType": "BusRoute",

24 "busRouteID": "4520_67654"

25 "busRouteAgencyName": "City Direct",

26 "busRouteAgencyID": "7778028",

27 "busRouteShortName": "411",

28 "busRouteLongName": "Mount Prospect - Eyre Square",

29 },

30 {

31 "objectType": "LuasStop",

32 "objectID": "LuasStop-STS",

33 "luasStopCode": "STS"

34 "luasStopID": "24",

35 "luasStopName": "St. Stephen's Green",

36 "luasStopIrishName": "Faiche Stiabhna",

37 "luasStopIsParkAndRide": "0",

38 "luasStopIsCycleAndRide": "0",

39 "luasStopLineID": "2",

40 "luasStopZoneCountA": "1",

41 "luasStopZoneCountB": "1",

42 "luasStopSortOrder": "10",

43 "luasStopIsEnabled": "1",

44 "latitude": "53.3390722222222",

45 "longitude": "-6.26133333333333",

46 }

47]

Listing 1: Sample of the various types of items stored in the permanent data table

As can be seen in Listing 1, two additional fields are included for each item beyond what is returned for that item by its
source API: the objectType to allow for querying based on this attribute and the objectID, an attribute constructed
from an item’s objectType and the unique identifier for that item in the system fromwhich it was sourced, thus creating
a globally unique identifier for the item. However (for reasons that will be discussed shortly), this attribute is not
used as the primary key for the table; instead, it exists primarily so that each item has a unique identifier that does not
need to be constructed on the fly on the frontend, thus allowing the frontend to treat specific items in specific ways.
An example of a use for this is the “favourites” functionality: a unique identifier must be saved for each item that is
added to a user’s favourites. Defining this unique identifier in the backend rather than the frontend reduces frontend
overhead (important when dealing with tens of thousands of items) and also makes the systemmore flexible. While the
“favourites” functionality is implemented fully on the frontend at present, the existence of unique identifiers for items
within the table means that this functionality could be transferred to the backend without major re-structuring of the
database.

There are two ways in which a primary key can be created for a DynamoDB tablechoosing-the-right-key:

• A simple primary key, consisting solely of a partition key: the attribute which uniquely identifies an item,
analogous to simple primary keys in relational database systems.

17

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

• A composite primary key, consisting of a partition key and a sort key, analogous to composite primary keys in
relational database systems. Here, the partition key determines the partition in which an item’s data is stored,
and the sort key is used to organise the data within that partition.

While the objectID could be used as a partition key and thus a simple primary key, it was decided not to use the attribute
for this purpose as it was not the most efficient option. The primary function of the permanent data table is to provide
data for a user when they want to display a certain type of object, such as bus stops, train stations, Luas stops, or some
combination of the three. Therefore, the most common type of query that the table will be dealing with is queries
which seek to return all items of a certain objectType. Partitioning the table by objectID would make querying by
objectID efficient, but all other queries inefficient, and querying by objectID is not useful for this application. Instead,
the permanent data table uses a composite primary key, using the objectType as the partition key and the objectID as
the sort key. Thus, it is very efficient to query by objectType and return, for example, all the bus stops and Luas stops
in the country.

Technically speaking, there is some redundant data in each primary by using the objectID as the sort key when the
partition key is the objectType: since the objectID already contains the objectType, it is repeated. However, the unique
identifier for each item is different depending on the system from which it was sourced: for train stations, the unique
identifier is named trainStationCode, while the unique identifier for bus stops is named busStopID. To use these fields
as sort key, they would have to be renamed in each item to some identical title, thus adding overhead to the process of
fetching data, and making the table less human-readable. Since the objectIDwas to be constructed regardless for use on
the frontend, it is therefore more efficient to re-use it as the sort key, even if it does result in a few bytes of duplicated
data in the primary key of each item.

Transient Data Table

The transient data table holds the live tracking data for each currently running public transport vehicle in the country,
including information about the vehicle and its location. Similar to the permanent data table, a unique objectID is
constructed for each item. A sample of the data stored in the transient data table can be seen below in Listing 2:

1 [

2 {

3 "objectType": "IrishRailTrain",

4 "latenessMessage": "On time",

5 "timestamp": "1742897696",

6 "trainDirection": "Southbound",

7 "trainStatus": "R",

8 "trainDetails": "09:41 - Maynooth to Grand Canal Dock ",

9 "trainType": "S",

10 "objectID": "IrishRailTrain-P656",

11 "averagePunctuality": "0",

12 "trainUpdate": "Departed Pelletstown next stop Broombridge",

13 "trainStatusFull": "Running",

14 "longitude": "-6.31388",

15 "trainPublicMessage": "P656\\n09:41 - Maynooth to Grand Canal Dock (0 mins late)\\nDeparted

Pelletstown next stop Broombridge",↪→

16 "trainPunctuality": "0",

17 "trainPunctualityStatus": "on-time",

18 "trainTypeFull": "Suburban",

19 "trainDate": "25 Mar 2025",

20 "latitude": "53.3752",

21 "trainCode": "P656"

22 },

23 {

24 "objectType": "Bus",

18

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

25 "busScheduleRelationship": "SCHEDULED",

26 "timestamp": "1742908007",

27 "busID": "V598",

28 "busRoute": "4538_90219",

29 "busRouteAgencyName": "Bus Éireann",

30 "objectID": "Bus-V598",

31 "busRouteLongName": "Galway Bus Station - Derry (Magee Campus Strand Road)",

32 "longitude": "-8.50166607",

33 "busDirection": "1",

34 "busStartDate": "20250325",

35 "busRouteShortName": "64",

36 "latitude": "54.2190742",

37 "busTripID": "4538_114801",

38 "busStartTime": "10:30:00"

39 },

Listing 2: Sample of the various types of items stored in the transient data table

There are only two types of objects stored in the transient data table: Irish Rail Trains and Buses. There is no per-vehicle
data provided in the Luas API, and thus no way to track the live location of Luas trams. For the two types of objects
stored in the transient data table, additional fields are added beyond what is returned by their respective APIs (and
beyond the objectType& objectID fields) to augment the data.

The following additional pieces of data are added to each IrishRailTrain object:

• The trainStatus& trainType fields are single-character codes returned by the API, representing longer strings;
for example a trainStatus of "R" indicates that the train is running. To avoid having to construct these strings
on the frontend, the fields trainStatusFull& trainTypeFull are automatically added to the record when the
data is retrieved.

• The Irish Rail API compacts much of its interesting data into a single field: trainPublicMessage. This field
contains the trainCode (which is also supplied individually in its own field by the API), a string containing details
about the train’s origin & terminus, a string describing how late the train is, a string containing an update about
the train’s current whereabouts, all separated by \\n characters. This string is parsed into several additional fields
to prevent additional computation on the frontend, including:

– latenessMessage: a human-readable string which describes whether a train is early, late, or on time.
– trainDetails: a string describing the train service itself, its start time, origin, & terminus.
– trainUpdate: a string containing an update about the current whereabouts of the train, such as what

station it last departed and what station it will visit next.
– trainPunctuality: an integer which represents how many minutes late the train is (where a negative

number indicates that the train is that many minutes early).
– trainPunctualityStatus: a whitespace-free field which gives the same information as latenessMessage

but for use in filtering rather than information presentation to the user. While one of these fields could be
derived from the other on the frontend, the extra computation necessary when repeated for multiple trains
and multiple users dwarfs the few extra bytes in the database to store the data in the machine-readable and
human-readable forms.

• The averagePunctuality field is a field which contains the average recorded value of the trainPunctuality for
trains with that trainCode in the database, thus giving a predictor of how early or late that particular train usually
is.

The following additional pieces of data are added to each Bus object:

• busRouteAgencyName.

19

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

• busRouteShortName.

• busRouteLongName.

These details are not included in the response from the GTFS API, but can be obtained by looking up the given
busRoute attribute in the permanent data table to find out said information about the bus route. In a fully-normalised
relational database, this would be considered data duplication, but storing the data in both places allows for faster
querying as no “joins” need to be performed.

Since the primary role of the transient data table is to provide up-to-date location data about various public transport
services, each item in the table is given a timestamp attribute. This timestamp attribute is a UNIX timestamp in seconds
which uniquely identifies the batch in which this data item was obtained. Each train & bus obtained in the same
batch have the same timestamp, making querying for the newest data in the table more efficient. Because the data is
timestamped, old data does not have to be deleted, saving both the overhead of deleting old data every time new data is
fetched, and allowing an archive of historical data to be built up over time.

Since the primary type of query to be run on this table will be queries which seek to return all the items of a cer-
tain objectType (or objectTypes) for the latest timestamp, it would be ideal if the primary key could be a combination
of the two for maximum efficiency in querying; however, such a combination would fail to uniquely identify each
record and thus would be inappropriate for a primary key. Instead, the primary key must be some combination of the
timestamp attribute and the objectID attribute. It was decided that the partition key would be the objectID and the
sort key to be the timestamp so that all the historical data for a given item could be retrieved efficiently. Equivalently,
the partition key could be the timestamp and the sort key could be the objectIDwhich would allow for queries of all
items for a given timestamp, but this was rejected on the basis that such scenarios were covered by the introduction of a
Global Secondary Index.

A Global Secondary Index (GSI) allows querying on non-primary key attributes by defining an additional par-
tition and sort key from the main tablegsi. Unlike a primary key, there is no requirement for a GSI to uniquely identify
each record in the table; a GSI can be defined on any attributes upon which queries will be made. The addition of GSIs
to a table to facilitate faster queries is analogous to SELECT queries on non-primary key columns in a relational database
(and the specification of a sort key is analogous to a relational ORDER BY statement); the structured nature of a relational
database means that such queries are possible by default, although an index must be created on the column in question
for querying on that column to be efficient (such as with the SQL CREATE INDEX statement). In a No-SQL database like
DynamoDB, this functionality does not come for free, and instead must be manually specified.

To facilitate efficient querying of items in the table by objectType and timestamp, a GSI was created with partition
key objectType and sort key timestamp, thus making queries for the newest data on a public transport type as efficient
as querying on primary key attributes. The downside of creating a GSI is the additional storage requirements, as
DynamoDB implements GSIs by duplicating the data into a separate index: efficient for querying, but less so in terms
of storage usage.

Average Punctuality by objectID Table

To give the user punctuality predictions based off the historical data stored for a given service, it’s necessary that the
average punctuality be calculated. The most obvious way to do this would be to calculate the average of the punctuality
values for a given objectID in the transient data table every time data a new data item with that objectID is added to
the transient data table. However, this would be greatly inefficient, as it would require scanning the entire table for each
item uploaded to the table, greatly slowing down the fetching of new data and consuming vast amounts of DynamoDB
read/write resources. It is also intractable, as the historical data archive in the transient table grows, it will become
linearly more expensive to compute the average punctuality for an item.

Instead, it was decided that the average punctuality for an item would be stored in a table and updated as neces-
sary. By storing the objectID, the average_punctuality, and the count of the number of records upon which this
average is based, the mean punctuality for an item can be updated on an as-needed basis in an efficient manner. The

20

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

newmean value for an item can be calculated as:

x̄new =
(x̄old × c) + x

c+ 1

where x is the punctuality value for a given item, x̄old is the previous mean punctuality value for that item, c is the
count of records upon which that mean was based, and x̄new is the new mean punctuality value. By calculating the
average punctuality in this way, the operation isO(1) instead ofO(n), thus greatly improving efficiency.

1 [

2 {

3 "average_punctuality": "0.5",

4 "count": "2",

5 "objectType": "IrishRailTrain",

6 "objectID": "IrishRailTrain-P746"

7 },

8 {

9 "average_punctuality": "-4",

10 "count": "1",

11 "objectType": "IrishRailTrain",

12 "objectID": "IrishRailTrain-A731"

13 },

14 {

15 "average_punctuality": "9.333333333333333333333333333",

16 "count": "3",

17 "objectType": "IrishRailTrain",

18 "objectID": "IrishRailTrain-E112"

19 },

20]

Listing 3: Sample of items from the average punctuality by objectID table

At the time of writing, Irish Rail is the only Irish public transport provider to offer any kind of punctuality data in their
public APIs, and therefore, this table only stores items with "objectType": "IrishRailTrain". It could be argued
that including this value in the table is therefore redundant, as it can be inferred, but the decision was made to include
this additional value to make the table expandable and updatable. If another transport provider were to begin to offer
punctuality data via their API, this table would require no updates to start including, for example, bus punctuality data.
If the objectTypewere not included, this table would have to be replaced with a re-structured table in the event that a
new category of public transport items were to be added.

In the same vein as including the objectType in each record, the primary key for this table was created with parti-
tion key objectType and sort key objectID, like in the permanent data table. This means that if an additional type of
public transport were to be added to the table, querying based on that objectTypewould be fast & efficient by default.
Since the primary key of a table cannot be changed once the table has been created, not using the objectType in the
primary key would mean that adding an additional public transport type to the table would require deleting the table
and starting again, or at the very least the creation of an otherwise unnecessary GSI to facilitate efficient querying.

Punctuality by timestamp Table

To provide historical insights such as punctuality trends over time, it is necessary to keep a record of the average
punctuality for each timestamp recorded in the database. Similarly to the punctuality by objectID table, it is more
efficient to calculate this value and store it than to calculate the average for every item in the table as the data is needed.
Unlike the punctuality by objectID table, however, the average punctuality value for a timestamp need never be updated,
as the average is calculated for each data upload run.

21

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

1 [

2 {

3 "average_punctuality": "0.8823529411764706",

4 "timestamp": "1742908007"

5 },

6 {

7 "average_punctuality": "1.0625",

8 "timestamp": "1742905796"

9 }

10]

Listing 4: Sample of items from the average punctuality by timestamp table

The partition key for this table is the timestamp value, and there is no need for a sort key or secondary index.

3.2 API Design

Tomake the data available to the frontend application, a number of API endpoints are required so that the necessary
data can be requested as needed by the client. AWS offers two main types of API functionality with Amazon API
Gatewayawsapi:

• RESTful APIs: for a request/responsemodel wherein the client sends a request and the server responds, stateless
with no session information stored between calls, and supporting commonHTTPmethods&CRUDoperations.
AWS API Gateway supports two types of RESTful APIshttpvsrest:

– HTTP APIs: low latency, fast, & cost-effective APIs with support for various AWSmicroservices such as
AWS Lambda, and native CORS supporta, but with limited support for usage plans and caching. Despite
what the name may imply, these APIs default to HTTPS and are RESTful in nature.

– REST APIs: older & more fully-featured, suitable for legacy or complex APIs requiring fine-grained
control, such as throttling, caching, API keys, and detailed monitoring & logging, but with higher latency,
cost, and more complex set-up &maintenance.

• WebSocket APIs: for real-time full-duplex communication between client & server, using a stateful session to
maintain the connection & context.

It was decided that a HTTP API would be more suitable for this application for the low latency and cost-effectiveness.
The API functions needed for this application consist only of requests for data and data responses, so the complex
feature set of AWSREST APIs is not necessary. The primary drawback of not utilising the more complex REST APIs is
that HTTP APIs do not natively support caching; this means that every request must be processed in the backend and
a data response generated, meaning potentially slower throughput over time. However, the fact that this application
relies on the newest data available to give accurate & up-to-date location information about public transport means
that the utility of caching is somewhat diminished, as the cache will expire and become out of date within minutes or
even seconds of its creation. This combined with the fact that HTTP APIs are 3.5× cheaperapipricing than REST APIs
resulted in the decision that a HTTP API would be more suitable.

It is important to consider the security of public-facing APIs, especially ones which accept query parameters: a malicious
attacker could craft a payload to either divert the control flow of the program or simply sabotage functionality. For
this reason, no query parameter is ever evaluated as code or blindly inserted into a database query; any interpolation of
query parameters is done in such a way that they are not used in raw query strings but in parameterised expressions
using the boto3 libraryboto3query(the official AWS SDK for Python). This means that query parameters are safely bound

aCross-Origin Resource Sharing (CORS) is a web browser security feature that restricts web pages frommaking requests to a different
domain than the one that served the page, unless the API specifically allows requests from the domain that served the pagew3c-cors. If HTTP
APIs did not natively support CORS, the configuration to allow requests from a given domain would have to be done in boilerplate code in the
Lambda function that handles the API requests for that endpoint, and duplicated for each Lambda function that handles API requests.

22

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

to named placeholder attributes in queries rather than inserted into raw query strings and so the parameters have no
potential for being used to control the structure or logic of the query itself. The AWS documentation emphasises
the use of parameterised queries for database operations, in particular for SQL databases which are more vulnerable,
but such attacks can be applied to any database architectureuseparameterisedqueries. This, combined with unit testing of
invalid API query parameters means that the risk of malicious parameter injection is greatly mitigated (although never
zero), as each API endpoint simply returns an error if the parameters are invalid.

Figure 3.2: CORS configuration for the HTTP API

The Cross-Origin Resource Sharing (CORS) policy accepts only GET requests which originate from http://localhost:

5173 (the URL of the locally hosted frontend application) to prevent malicious websites frommaking unauthorised
requests on behalf of users to the API. While the API handles no sensitive data, it is nonetheless best practice to enforce
a CORS policy and a “security-by-default” approach so that the application does not need to be secured retroactively as
its functionality expands. If the frontend application were moved to a publicly available domain, the URL for this new
domain would need to be added to the CORS policy, or else all requests would be blocked.

3.2.1 API Endpoints

/return_permanent_data[?objectType=IrishRailStation,BusStop,LuasStop]

The /return_permanent_data endpoint accepts a comma-separated list of objectType query parameters, and returns a
JSON response consisting of all items in the permanent data table whichmatch those parameters. If no query parameters
are supplied, it defaults to returning all items in the permanent data table.

/return_transient_data[?objectType=IrishRailTrain,Bus]

The /return_transient_data endpoint accepts a comma-separated list of objectType query parameters, and returns a
JSON response consisting of all the items in the transient data table which match those parameters and were uploaded
to the transient data table most recently, i.e., the items which have the newest timestamp field in the table. Since the
timestamp pertains to the batch of data uploaded to the table in a single run, each item in the response will have the
same timestamp as all the others. If no objectType parameter is supplied, it defaults to returning all items from the
newest upload batch.

/return_historical_data[?objectType=IrishRailTrain,Bus]

The /return_historical_data endpoint functions in the same manner as the /return_transient_data endpoint,
with the exception that it returns matching items for all timestamp values in the table, i.e., it returns all items of the
given objectTypes in the transient data table.

/return_luas_data?luasStopCode=<luas_stop_code>

The /return_luas_data returns incoming / outgoing tram data for a given Luas stop, and is just a proxy for the Luas
real-time API. Since the Luas API returns data only for a queried station and does not give information about indi-
vidual vehicles, the Luas data for a given station is only fetched on the frontend when a user requests it, as there is no

23

http://localhost:5173
http://localhost:5173

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

information to plot on the map beyond a station’s location. However, this request cannot be made from the client to
the Luas API, as the Luas API’s CORS policy blocks requests from unauthorised domains for security purposes; this
API endpoint acts as a proxy, accepting API requests from the localhost domain and forwarding them to the Luas
API, and subsequently forwarding the Luas API’s response back to the client.

This endpoint requires a single luasStopCode query parameter for each query to identify the Luas stop for which
incoming / outgoing tram data is being requested.

/return_station_data?stationCode=<station_code>

The return_station_data returns information about the trains due into a given station in the next 90 minutes. This
data is only shown to a user if requested for a specific station, so it is not stored in a DynamoDB table. Like the
/return_luas_data endpoint, it too is just a proxy for an (Irish Rail) API, the CORS policy of which blocks requests
from any unauthorised domain for security purposes. It requires a single stationCode query parameter for each query
to identify the train station for which the incoming train data is being requested.

/return_punctuality_by_timestamp[?timestamp=<timestamp>]

The /return_punctuality_by_timestamp returns the contents of the punctuality_by_timestampDynamoDB table.
It accepts a comma-separated list of timestamps, and defaults to returning the average punctuality for all timestamps in
the table if no timestamp is specified.

/return_all_coordinates

The /return_all_coordinates endpoint returns a JSON array of all current location co-ordinates in the transient data
table for use in statistical analysis.

3.3 Serverless Functions

All the backend code & logic is implemented in a number of serverless functionshassan2021survey, triggered as needed.
Serverless functions are small, single-purpose units of code that run in the cloud and reduce the need to manage servers
& runtime environments. In contrast to a server program which is always running, serverless functions are event-driven,
meaning that they are triggered by events such as API calls or invocations from other serverless functions and do not
run unless triggered. Each serverless function is stateless, which means that each function invocation is independent
and that no state data is stored between calls; they are also ephemeral, starting only when triggered and stopping when
finished, running only for a short period of time. This means that they automatically scale up or down depending on
usage, and because they only run when they need to, they are much cheaper in terms of compute time than a traditional
server application.

AWS Lambdaawslambda is a serverless compute service provided by AmazonWeb Services that allows for the creation of
serverless functions without provisioning or managing servers. A Python AWS Lambda function typically consists
of a single source code file with specified entrypoint function, the name of which can vary, but is typically called
lambda_handler(). They can be created and managed via the GUI AWSManagement Consoleaws_management_console

or via the AWS CLI toolaws_cli. Each Lambda function can be configured to have a set memory allocation, a timeout
duration (how long the function can run for before being killed), and environment variables.

Often, when a serverless application replaces a legacy mainframe application, the time & memory needed to per-
form routine tasks is drastically reduced because it becomes more efficient to process events individually as they come
rather than batching events together to be processed all at once; the high computational cost of starting up a mainframe
system means that it’s most efficient to keep it running and to batch process events. For this reason, serverless functions
often require very little memory and compute time. This application, however, is somewhat unusual as it requires the
processing of quite a large amount of data at once: status updates for public transport don’t come from the source APIs
individually for each vehicle on an event-by-event basis, but in batches of data that are updated regularly. Therefore,
the serverless functions for this application will require more memory and more compute time to complete. In this

24

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

context, memory and compute time have an inversely proportional relationship: more memory means more items can
be processed quickly, thus reducing computational time, and less memory means that fewer items can be processed
quickly, thus increasing the computational time.

One common approach to tuning the configuration of AWS Lambda functions is to use AWS Lambda Power
TuningawsPowerTuning, an open-source tool that is designed to help optimise the memory & power configurations
for AWS Lambda functions. It works by invoking the function to be tuned multiple times across various memory
allocations, recording metrics such as execution duration and cost for each configuration, and visualises the trade-off
between cost and performance for each tested memory configuration, allowing the user to decide the most suitable
memory allocation based on minimising cost, maximising speed, or balancing the two. While this is a very powerful
& useful tool for Lambda function optimisation, it was not used in this project in order to (somewhat ironically)
manage costs and remain with the AWS Free Tier: running the tuner involves several invocations of the target Lambda
function at various memory levels, and a typical tuning run involves dozens of Lambda invocations. With the amount
of data being written to the database per Lambda run (thousands of items), this would quickly exceed the free tier
and begin incurring costs. While these costs would not be prohibitively high, doing so would change the nature of
the project from researching & implementing the optimal approach for this application to paying for a faster & more
performant application. The tuner could be run with database writes disabled, but this would not generate meaningful
results for the functions aswriting to theDynamoDBdatabase is the critical choke point for functions in this application.

Instead, each function was manually tuned to consume the least amount of resources (reasonably) possible by gradually
incrementing the memory allocation until the function could run to completion in what was deemed to be a reasonable
amount of time (somewhat subjectively) for this application; for this reason, the functions could almost certainly
achieve superior execution times if they were allocated more resources, but this would bring the application closer and
closer to exceeding the free tier limit of 400,000 GB-seconds (allocated memory in GB× execution time in seconds).

fetch_permanent_data

The fetch_permanent_data Lambda function is used to populate the permanent data table. As the data in question
changes rarely if ever, this function really need only ever be triggered manually, such as when a new train station is
opened or a new bus route created. However, for the sake of completeness and to avoid the data being out of date, a
schedule was created withAmazon EventBridge to run the function every 28 days to ensure that no changes to the
data are missed. Like all other schedules created for this application, the schedule is actually disabled at present to avoid
incurring unnecessary AWS bills, but can be enabled at any time with the click of a button.

Figure 3.3: Screenshot of the Amazon EventBridge schedule to run the fetch_permanent_data Lambda function

The fetch_permanent_data function retrieves Irish Rail Station data directly from the Irish Rail API, but Luas stop
data and bus data are not made available through an API; instead, the Luas stop data is made available online in a
tab-separated TXT file, and the bus stop & bus route data are available online in comma-separated TXT files distributed
as a single ZIP file. This makes little difference to the data processing however, as downloading a file from a server

25

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

and parsing its contents is little different in practice from downloading an API response from a server and parsing its
contents. The function runs asynchronously with a thread per type of data being fetched (train station data, Luas stop
data, and bus stop & route data), and once each thread has completed, batch uploads the data to the permanent data
table, overwriting its existing contents.

fetch_transient_data

The fetch_transient_data function operates much like the fetch_permanent_data function, but instead updates
the contents of the transient data table. It runs asynchronously, with a thread per API being accessed to speed up
execution; repeated requests to an API within a thread are made synchronously to avoid overloading the API. For
example, retrieving the type (e.g., Mainline, Suburban, Commuter) of the trains returned by the Irish Rail API requires
three API calls: the Irish Rail API allows the user to query for all trains or for trains of a specific type but it does not
return the type of the train in the API response. Therefore, if a query is submitted for all trains, there is no way of
knowing which train is of which type. Instead, the function queries each type of train individually, and adds the type
into the parsed response data.

Additionally, the return_punctuality_by_objectID function is called when processing the train data so that each
train’s average punctuality can be added to its data for upload. Somewhat unintuitively, it transpired that the most effi-
cient way to request this data was to request all data from the punctuality by objectID data table rather than individually
request each necessary objectID; this means that much of the data returned is redundant, as many of the trains whose
punctualities are returned are not running at the time and so will not be uploaded, but it means that the function is only
run once, and so only one function invocation, start-up, database connection, and database query have to be created. It’s
likely that if bus punctuality data were to become available in the future, this approach would no longer be the most ef-
ficient way of doing things, and instead a return_punctuality_by_objectType functionwould be the optimal solution.

The bus data API doesn’t return any information about the bus route beyond a bus route identifier, so the per-
manent data table is queried on each run to create a dictionary (essentially a Python hash tablepythondict) linking bus
route identifiers to information about said bus route (such as the name of the route). As the bus data is being parsed,
the relevant bus route data for each vehicle is inserted. Once all the threads have finished executing, the data is uploaded
in a batch to the transient data table, with each item timestamped to indicate which function run it was retrieved on.

This function is run as part of an AWS Step Function with a corresponding Amazon EventBridge schedule (al-
beit disabled at present). A step function is an AWS service which facilitates the creation of state machines consisting
of various AWSmicroservices to act as a single workflow. The state machine allows multiple states and transitions to
be defined, with each state representing a step in the workflow and the transitions representing how the workflow
moves from one state to another and what data is transferred. Step functions have built-in error handling and retry
functionality, making them extremely fault-tolerant for critical workflows.

26

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

Figure 3.4: Screenshot of the get_live_data step function definition

The step function runs the fetch_transient_data function and then runs the update_average_punctuality function,
if and only if the fetch_transient_data function has completed successfully. This allows the average punctuality
data to be kept up to date and in sync with the transient data, and ensures that they do not become decoupled and
therefore incorrect. This step function is triggered by a (currently disabled) Amazon EventBridge schedule which
runs the function once a minute, which is the maximum frequency possible to specify within a cron schedule, and
suitable for this application as the APIs from which the data is sourced don’t update much more frequently than that.
Furthermore, the data from which bus data is sourced will time out if requests are made too frequently, so this value
was determined to be appropriate after testing to avoid overwhelming the API or getting timed-out. It is possible to
run EventBridge schedules even more frequently using the rate-based schedule schedule type instead of the cron-based
schedule schedule type but a more frequent schedule would be inappropriate for this application.

update_average_punctuality

The update_average_punctuality function runs after fetch_transient_data in a step function and populates the
average punctuality by objectID and average punctuality by timestamp tables to reflect the new data collected by
fetch_transient_data. For each item in the new data, it updates the average punctuality in the average punctuality by
objectID table according to the aforementioned formula:

x̄new =
(x̄old + c) + x

c+ 1

As the function iterates over each item, it adds up the total punctuality and then divides this by the total number of
items processed before adding it to the average punctuality by timestamp table, where the timestamp in question is
the timestamp that the itemswere uploadedwith (the timestampof the fetch_transient_data runwhich created them).

There are a number of concerns that one might reasonably have about using the mean punctuality for the average
displayed to users:

• Means are sensitive to outliers, meaning that if, for example, a train is very late just once but very punctual the
rest of the time, its average punctuality could be misleading.

• The punctuality variable is an integer that can be positive or negative, which could have the result that the positive
& negative values could cancel each other out for a train that is usually either very late or very early, giving the
misleading impression of an average punctuality close to zero.

• Considering the entire history of a train for its average punctuality may not be reflective of recent trends: a
train may historically have been consistently late, but become more punctual as of late and therefore the average
punctuality may not be reflective of its recent average punctuality.

27

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

These questions were carefully considered when deciding how to calculate the average punctuality, but it was decided
that the mean would nonetheless be the most appropriate for various reasons:

• The mean lends itself to efficient calculation with theO(1) formula described above. No other average can be
calculated in so efficient a manner: the median requires the full list of punctualities to be considered to determine
the newmedian, and the mode requires at the very least a frequency table of all the punctualities over time to
determine the newmode, which requires both additional computation and another DynamoDB table.

• Similarly, considering only recent data would destroy the possibility for efficient calculation: the mean could not
be updated incrementally, and instead a subset of the historic punctualities would have to be stored and queried
for each update.

• The outlier sensitivity is addressed by the sheer number of items that are considered for the mean: since this will
be updated every minute of every day, an outlier will quickly be drowned out with time.

• Finally, the average is being calculated so that it can be shown to the user and so that they can make decisions
based off it. The average person from a non-technical or non-mathematical background tends to assume that any
average value is a mean value, and so it would only serve to confuse users if they were given some value that did
not mean what they imagined it to mean. While calculating additional different measures of averages would be
possible, displaying them to the user would likely be at best not useful and at worst confusing, while also greatly
increasing the computation and storage costs. This aligns with the second of Nielsen’s famous 10 Usability
Heuristics for User Interface Design, which were consulted throughout the design process: “Match between the
System and the Real World: The design should speak the users’ language. Use words, phrases, and concepts
familiar to the user, rather than internal jargon”nielsenheuristics.

For these reasons, it was decided that the mean was the most suitable average to use.

return_permanent_data

The return_permanent_data function is the Lambda function which is called when a request is made from the client
to the /return_permanent_dataAPI endpoint. It checks for a comma-separated list of objectType parameters in the
query parameters passed from the API event to the Lambda function, and scans the permanent data table for every item
matching those objectTypes. If none are provided, it returns every item in the table, regardless of type. It returns this
data as a JSON string.

When this function was first being developed, the permanent data table was partitioned by objectID alone with
no sort key, meaning that querying was very inefficient. When the table was re-structured to have a composite primary
key consisting of the objectType as the partition key and the objectID as the sort key, the return_permanent_data
function was made 10× faster: the average execution time was reduced from∼10 seconds to∼1 second, demonstrating
the critical importance of choosing the right primary key for the table.

return_transient_data

The return_transient_data function is the Lambda function which is called when a request is made from the client
to the /return_transient_dataAPI endpoint. Like return_permanent_data, it checks for a comma-separated list of
objectType parameters in the query parameters passed from the API event to the Lambda function, and scans the
permanent data table for every item matching those objectTypes. If none are provided, it returns every item in the
table, regardless of type.

Similar to return_permanent_data, when this function was originally being developed, there was no GSI on the
transient data table to facilitate efficient queries by objectType and timestamp; the addition of the GSI and updating
the code to exploit the GSI resulted in an average improvement in run time of∼8×, thus demonstrating the utility
which GSIs can provide.

28

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

return_punctuality_by_objectID

The return_punctuality_by_objectID function is invoked by the fetch_transient_data function to return the con-
tents of the punctuality by objectID table. It accepts a list of objectIDs and defaults to returning all items in the table
if no parameters are provided.

return_punctuality_by_timestamp

The return_punctuality_by_timestamp function is similar to return_punctuality_by_objectID but runs when in-
voked by anAPI request to the /return_punctuality_by_timestamp endpoint and simply returns a list of JSONobjects
consisting of a timestamp and an average_punctuality. It is used primarily to graph the average punctuality of services
over time.

return_all_coordinates

The return_all_coordinates function is used to populate the co-ordinates heatmap in the frontend application which
shows the geographical density of services at the present moment. It accepts no parameters, and simply scans the
transient data table for the newest items and returns their co-ordinates.

return_historical_data

The return_historical_data function operates much like the return_transient_data function, accepting a list of
objectTypes or defaulting to all objectTypes if none are specified, with the only difference being that this function does
not consider the timestamps of the data and just returns all data in the transient data table. This function, along with
its corresponding API endpoint exist primarily as a debugging & testing interface, although they also give a convenient
access point for historical data analysis should that be necessary.

return_luas_data

The return_luas_data function is a simple proxy for the Luas API which accepts requests from the client and forwards
them to the Luas API to circumvent the Luas API’s restrictive CORS policy which blocks requests from unauthorised
domains. It simply accepts a luasStopCode parameter, and makes a request to the Luas API with said parameter, parses
the response from XML into JSON, and returns it.

return_station_data

Like return_luas_data, the return_station_data is a proxy for the Irish Rail API so that requests can be made as
needed from the client’s browser to get data about incoming trains due into a specific section without running afoul of
Irish Rail’s CORS policy. It also accepts a single parameter (stationCode) and makes a request to the relevant endpoint
of the Irish Rail API, and returns the response (parsed from XML to JSON).

3.4 CI/CD Pipeline

3.4.1 Unit Tests

As the code for each Lambda function was written, so too were corresponding PyUnitpyunit (based on the Java unit
testing framework JUnitjunit) unit tests for that function to ensure that the function was working as expected, that
edge cases were covered, and to indicate if functionality was broken when updates were made. Indeed, this often
proved invaluable, as the unit tests revealed on multiple occasions edge cases that were not handled properly, such as the
handling of the API responses when only a single item was returned. Without the utilisation of unit testing, it’s likely
that these issues would have gone unnoticed in the codebase until they caused an error in deployment, which could
have lead to Lambda function crashes, inconsistent database data, and wasted developer time spent on debugging the
application.

These PyUnit tests are run using pytest
pytest which automatically discovers Python test files in a given directory

and can generate code coverage reports. While PyUnit tests can be run with python -m unittest, pytestmakes it

29

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

easier to run the tests and can generate coverage reports automatically. pytest also allows for unit tests to be specified in
its own non-standard format alongside to the standard PyUnit format, but this was not used in an effort to keep the
tests as standard and as homogeneous as possible.

A statement coverage of 70% was selected to be aimed for when writing tests for this application; this is a high degree
of test coverage, but allows the tests to focus on testing the core logic of the application rather than boilerplate code
and allows for interactions with third-party services that cannot be fully covered by testing and instead have to be
mockedpyunitmock. The actual total coverage achieved is 85%, which exceeds this minimum value and ensures that the
application is well-covered with test cases.

Figure 3.5: Screenshot of (some of) the results from the HTML coverage report generated

3.4.2 CI/CD

To run the unit tests automatically, a GitHubWorkflowworkflow was created. This workflow is triggered when a pull
request to merge code into the mainGit branch is opened, or when code is pushed to the main branch. Since the Git
repository used for this project is a monorepo containing all code files for the project, not just the backend Python
files, many of the commits to this repository will not require re-running the unit tests, as the Python code will not have
changed; therefore, the workflow only runs if the changes have been made to a *.py file.

1 name: Continuous Integration / Continuous Deployment

2

3 on:

4 pull_request:

5 branches:

6 - main

7 paths:

8 - "**.py"

9 push:

10 branches:

11 - main

12 paths:

13 - "**.py"

Listing 5: Snippet of the ci.ymlworkflow file

The workflow consists of two “jobs”:

• The test job installs the necessary dependencies and runs the unit tests, generating coverage reports in both
XML and HTML and uploading these as artifactsartifacts (a way to share data from a GitHub workflow run).

• The deploy job runs only on pushes to main (including direct pushes andmerges of pull requests). It installs AWS
CLIaws_cli and sets the AWS credentials using GitHub Secretsgithubsecrets which allow for sensitive information
such as environment variables to be stored privately for a repository, even if that repository is public, and avoids

30

CHAPTER 3. BACKENDDESIGN& IMPLEMENTATION

having to hard-code these values. It then iterates over each Lambda function in the repository, installs the
necessary Python libraries to a temporary directory, and bundles these along with the function source code into a
ZIP file for deployment via the AWS CLI.

31

Chapter 4

Frontend Design & Implementation

The frontenddesign is built following the Single-Page-Application (SPA)spa designpatternusing theReactRouterreactrouter
library, meaning that the web application loads a single HTML page and dynamically updates content as the user
interacts with the application, without reloading the webpage. Since there is just one initial page load, the content is
dynamically updated via the DOM using JavaScript rather than by requesting new pages from the server; navigation
between pseudo-pages is managed entirely using client-side routing for a smoother & faster user experience since no
full-page reloads are necessary.

The web application is split into three “pages”:

• The home (or map) page, which is the main page that displays live location data & service information to the user.
This page is where the user will spend the majority of their time, and where the majority of the functionality is
delivered.

• The statistics page, which is used to deliver statistical insights about the data to the user. This page is for providing
deeper insights into the stored data on a collective basis, rather than on a per-service basis.

• The help page, which gives some basic usage information on how to complete basic tasks within the application,
in keeping with Nielsen’s usability heuristic of “Help and Documentation”nielsenheuristics.

The web application follows the Container/Presentational Patterncontainerpresentational, which enforces separation of
concerns by separating the presentational logic from the application logic. This is done by separating the functionality
into two classes of components:

• Container Components: those which fetch the data, process it, and pass it to the presentational components
which are contained by their container components, i.e., the presentational components are children of the
container components.

• Presentational Components: those which display the data it receives from the container components to the
user as it is received. This makes the components highly re-usable, as there isn’t specific data handling logic within
them.

React components are reusable, self-containedpieces of theUIwhich act as buildingblocks for the applicationreactcomponents;
they can receive properties from their parent components, manage their own internal state, render other components
within themselves, and respond to events.

The Container/Presentational pattern can be contrasted with other design patterns for UI design such as the Model-
View-Controller (MVC) patternreenskaug2003mvc: in many ways, the containers of the Container/Presentational pattern
as a collective can be thought of as analogous to the controller of the MVC pattern, and the presentational components
as analogous to the view. The key difference between the two patterns is that the Container/Presentational pattern
defines only the architecture of the frontend layer, and does not dictate how the backend ought to be laid out; the
MVC pattern defines the architecture of the entire application and so the backend (the model) is necessarily tightly
coupledmcnatt2001coupling with the frontend layer (the view) bymeans of the controller. Therefore, updating the backend
code will most likely necessitate updating the frontend code (and vice-versa). For this reason, MVC is most commonly

32

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

used for applications in which the backend & the frontend are controlled by the same codebase, and especially for
application in which the frontend rendering is done server-side. The Container/Presentational pattern, however, is
loosely coupledmcnatt2001coupling with the backend and therefore the frontend & the backend can be updated almost
independently of one another as long as the means & format of data transmission remain unchanged, thus making de-
velopment both faster & easier, and mitigating the risk of introducing breaking changes. The Container/Presentational
pattern lends itself particularly well to React development, as React code is rendered client-side and makes extensive use
of components: the Container/Presentational pattern just ensures that this use of components is done in a way that is
logical & maintainable.

4.1 Main Page

Figure 4.1: Screenshot of the front page of the web application

The main page of the application contains a map upon which the live location of each public transport object is
marked, a navigation bar, a search bar to filter the vehicles shown on the map, and a filters side-panel which allows
the user to select what kind of objects the user wants displayed on the map. The location markers for each item
are clickable, and when clicked, display a pop-up with relevant information about the selected item. In line with
Container/Presentational pattern, the main App.jsx file contains the data retrieval & processing logic, and passes the
processed data to presentational components for display.

Data Retrieval & Processing

The data is retrieved and processed in a function named fetchData(). When the “Submit” button is clicked in the
filters side-panel, the function is triggered and sends asynchronous API requests to the /return_permanent_data and
/return_transient_dataAPI endpoints as necessary. The App.jsx file contains a JavaScript object which identifies
what checkboxes in the side-panel pertain to objectTypes in the backend, and which API endpoint they can be sourced
from. When the function is fetching data, it constructs a comma-separated list of selected objectTypes to send to each
API endpoint, thereby making only one request to each API endpoint to avoid unnecessary repeated queries.

Originally, the returned data was processed using JavaScript functional array methodsarraymethods (very superficially
similar to the Java Streamjavastream interface), which allow for the creation of chained operations on arrays, not dissimilar
to chained shell operations using the pipe (|) operator onUNIX-like systemsredhatpipe. Methods like .map(), .reduce(),

33

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

etc. are some of the methods covered in JavaScript functional array methods which allow data processing pipelines
to be specified in a clean, elegant, & readable manner. However, the price of this elegance is slower and less efficient
execution: these array methods add extra layers of abstraction, invoke a new function per element, create intermediate
arrays for each result, and (unlike their Java counterparts) do not support short-circuiting and therefore cannot break
early (with the exception of the .some() & .many() methods)shortcircuit. The modern JavaScript engine also is less
efficient at optimising these array methods than simple for-loopsjsmethodopti. Indeed, re-writing the function to use a
simple for loop resulted in an average loading speed increase of∼2 seconds when all data sources were selected.

While the data is loading, a loading overlay with a “spinner” icon is displayed on-screen which prevents the user
from interacting with the UI, keeps the user informed of what’s going on (in keeping with the first of Nielsen’s
10 usability heuristicsnielsenheuristics), prevents the user from changing any settings as the data is loaded that may
cause inconsistent behaviour, and gives the perception of a smoother loading experience. Studies have shown that
displaying a loading screen to the user instead of just waiting for the UI to update gives the impression of a faster
loading speed, so much so that even longer load times with a loading screen feel faster than shorter load times without
onemdnperceivedperformance, persson2019perceived,Vladic2020LoadingAnimations.

Once the JSON response is received, each item in the response is iterated over, as described above, and the marker for
each item is constructed. The map plotting is done with Leafletleaflet, and each marker on the map consists of an array
of co-ordinates, some HTML pop-up content when the marker is clicked, an icon depending on the transport type,
a Boolean display variable which dictates whether or not the marker is displayed, and some markup-free markerText
which is not part of the Leaflet APIleaflet but added to each icon to give it some text to which the search text can be
compared. This markerText is never displayed to the user, and is used solely for search & filtering purposes; it is created
as an additional variable instead of just using the pop-up content for searching as the pop-up content contains HTML
mark-up which would have to be removed at search time to make searching possible, leading to a large number of
unnecessary & costly string-processing operations. Each item has a colour-coded icon depending on the type of data it
represents:

34

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

trainicon
On-time & early, running Irish Rail trains

trainicon
Late, running Irish Rail trains

trainicon
Not-yet running & terminated Irish Rail trains

darticon
On-time & early, running DARTs

darticon
Late, running DARTs

darticon
Not-yet running & terminated DARTs

trainstaitionicon
Irish Rail stations

busicon
Buses

busstopicon
Bus stops

tramicon
Red line Luas stops

tramicon
Green line Luas stops

Table 4.1: Marker icons & their descriptions

The value of the Boolean display variable for each function is calculated before any pop-up content or markerText
is generated, so as not to waste computational time generating information that will not be shown to the user. Each
objectType has its ownBoolean formula that determineswhether or not an item should be shown to the user, depending
on what filters they have selected. Each formula is constructed in such a way that expensive computations are avoided
if they are unnecessary, by taking advantage of JavaScript’s ability to short-circuit logical expressions, that is, return
immediately if the left-hand side of a Boolean AND is falselogicaland or if the left-hand side of a Boolean OR is truelogicalor.

35

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

displaytrain = (latitude 6= 0) ∧ (longitude 6= 0)

∧
(
(showMainline ∧ (trainType = Mainline))
∨ (showSuburban ∧ (trainType = Suburban))
∨ (showDart ∧ (trainType = DART))

)
∧
(
(showRunning ∧ (trainStatus = Running))
∨ (showNotYetRunning ∧ (trainStatus = Not yet running))
∨ (showTerminated ∧ (trainStatus = Terminated))

)
∧
(
((trainStatus = Running)∧
((showEarly ∧ (trainPunctualityStatus = early))

∨ (showOnTime ∧ (trainPunctualityStatus = On time))
∨ (showLate ∧ (trainPunctualityStatus = late))))

∨ ((trainStatus = Not yet running) ∧ showNotYetRunning)
∨ ((trainStatus = Terminated) ∧ showTerminated)

)
∧
(
(withinDistance ∧ userLocationAvailable) ⇒
haversineDistance(userLocation, [latitude, longitude]) < withinDistance

)
∧ (showFavouritesOnly ⇒ trainCode ∈ favourites)

displaystation = (latitude 6= 0) ∧ (longitude 6= 0)

∧
(
(withinDistance ∧ userLocationAvailable) ⇒
haversineDistance(userLocation, [latitude, longitude]) < withinDistance

)
∧ (showFavouritesOnly ⇒ trainStationCode ∈ favourites)

displaybus = (latitude 6= 0) ∧ (longitude 6= 0)

∧
(
(withinDistance ∧ userLocationAvailable) ⇒
haversineDistance(userLocation, [latitude, longitude]) < withinDistance

)
∧ (showFavouritesOnly ⇒ busRoute ∈ favourites)

displaybus stop = (latitude 6= 0) ∧ (longitude 6= 0)

∧
(
(withinDistance ∧ userLocationAvailable) ⇒
haversineDistance(userLocation, [latitude, longitude]) < withinDistance

)
∧ (showFavouritesOnly ⇒ busStopID ∈ favourites)

36

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

displayLuas stop = (latitude 6= 0) ∧ (longitude 6= 0)

∧
(
(showGreenLine ∧ (luasLine = Green Line))
∨ (showRedLine ∧ (luasLine = Red Line))

)
∧
(
(showEnabled ∧ (luasStopIsEnabled = 1))

∨ (showDisabled ∧ (luasStopIsEnabled = 0))
)

∧
(
¬showCycleAndRide ∨ (showCycleAndRide ∧ (luasStopIsCycleAndRide = 1))

)
∧
(
¬showParkAndRide ∨ (showParkAndRide ∧ (luasStopIsParkAndRide = 1))

)
∧
(
(withinDistance ∧ userLocationAvailable) ⇒
haversineDistance(userLocation, [latitude, longitude]) < withinDistance

)
∧ (showFavouritesOnly ⇒ luasStopID ∈ favourites)

Although the formulae may appear excessively complex at first glance, they’re relatively easy to understand when broken
down: each line is essentially a conjunction of a variable that dictates whether or not a filter is applied and a check to see
if that condition is fulfilled, e.g., (showMainline ∧ (trainType = Mainline)) checks if the “ShowMainline” filter is
applied and if the item in question fulfils that criterion. Each line of logic is either in conjunction or disjunction with
the preceding line depending on whether or not that the filter is a permissive filter (that is, it increases the number of
items shown) or if it is a restrictive filter (that is, it decreases the number of items shown).

As can be seen in the preceding formulae, if the user location is available and the user has specified that all items
must be within a certain distance of their location, each marker is checked to see if it’s within range by usingHaversine
distance, which calculates the shortest distance between two points on the surface of a sphere. The Haversine distance
formula is defined as followschopde2013landmark:

d = 2r · arcsin

(√
sin2

(
∆φ

2

)
+ cos (φ1) cos (φ2) sin2

(
∆λ

2

))

where:

• d is the distance between the two points,

• r is the radius of the Earth (∼6,371 kilometresturcotte_earths_radius_1992),

• φ1, φ2 are the latitudes of each point in radians,

• λ1, λ2 are the longitudes of each point in radians,

• ∆φ = φ2 − φ1, and

• ∆λ = λ2 − λ1.

This formula was chosen as a good middle ground between accurate distance calculations and efficient computa-
tion. There are other distance formulae, such as Vincenty’s formulavincenty1975geodesics which is more accurate (be-
cause it considers the Earth to be an oblate spheroid rather than sphere) but slower to compute, or Euclidean dis-
tancesmith2013precalculus which is fast to compute, but inaccurate for points on the surface of the Earth (because it
considers the points to be on flat 2D grid). Arguably, one could get away with using Euclidean distance, as the distances
considered in this application are relatively short (covering only the island of Ireland) and in general, a user will be
specifying only short distances to see services in their immediate vicinity. However, this approach cannot be scaled if
the application scope was increased to include a broader geographical area as inaccuracies would rapidly build up, and
even over the island of Ireland alone, there is potential for inconsistent behaviour due to measurement inaccuracies.
Haversine distance is not too computationally expensive, and guarantees a reliable degree of accuracy for the user.

37

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

Marker Pop-Ups

(a) IrishRailTrain pop-up (b) Bus pop-up
(c) BusStop pop-up

(d) IrishRailStation pop-up (e) LuasStop pop-up

Figure 4.2: The 5 pop-up types

When the data is being fetched, a pop-up is created for each newmarker collected, to be displayed when the marker is
clicked. For each objectType, there is a separate React component for its pop-up to which the item’s data is passed so
that it can be rendered differently depending on the service type. The IrishRailTrain pop-up, Bus pop-up, & BusStop

are the most similar and the simplest, as they simply display information passed into their respective components, the
only variance being that different objectTypes have different fields to display.

Each pop-up has a “star” button which, when clicked, adds the selected item to a list of the user’s “favourite” services,
which is stored as a cookie in the user’s browser. This cookie is loaded when the main page is loaded and updated
every time an item is toggled to be “starred” or not. This list of favourites is used to determine whether or not the item
is displayed when the user selects “Show favourites only”, as can be seen in the Boolean display formulae previously
outlined. Favouriting behaves differently depending on the objectType of the item being favourited: notably, buses
are favourited not on a per-vehicle basis using the item’s objectID, but on a per-route basis. This means that if a user
favourites, for example, a 401 Bus Éireann bus, every bus on this route will appear when the user applies the “Show
favourites only” filter. This makes the favourites feature far more useful than it would be otherwise: users are generally
interested not in a specific bus vehicle, but a specific bus route.

38

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

(a) Bus pop-up with bus “favourited”

(b) Buses of the same route appearing when “favourites only” filter applied

Figure 4.3: Demonstration of the “favourite” functionality with buses

Train station pop-ups & Luas stop pop-ups also have an additional button which, when clicked, fetches data about the
services relating to that station. This is necessary for Luas stops, as Luas data is only available on a per station basis, and
just an extra feature for train stations, as train data is plotted on the map regardless. The “Load inbound/outbound
trams” button on the Luas stop pop-up fetches data from the /return_luas_dataAPI endpoint which contains the
inbound and outbound trams due into that stop. The “Load incoming trains” button on the train station pop-up
fetches data from the /return_station_dataAPI endpoint which contains the trains due into that station in the next
90 minutes. This information is then displayed in the pop-up itself, with a scrollbar if the information is too long to
display in the pop-up without it becoming unmanageably long.

(a) Results of clicking “Load inbound/outbound trams” (b) Results of clicking “Load incoming trains”

Figure 4.4: Demonstration of the “favourite” functionality with buses

39

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

Filters Side-Panel

Figure 4.5: Screenshot of the filters side-panel

The Boolean filter variables mentioned in the display formulae above are selected by the user in the filters side-panel,
implemented as a separate (presentational) component. The component appears in the top-right hand corner of the
screen, and can be minimised while browsing the map. When a user clicks “Submit”, the fetchData() function is
invoked with the selected filters, and these selected filters are saved as a cookie to the user’s browser; this cookie is
loaded when the main page is first loaded, so that a user’s last used filters are pre-selected for them when they open the
application. Even the value of the “Within KM” number is stored as a cookie and loaded in with page load so that a
user’s experience is a seamless as possible between uses.

The first three top-level filters determine what data sources are used: Irish Rail, Bus, and/or Luas Stops. If a top-
level or second-level filter is deselected, all its child filters are greyed out and cannot be interacted with until all its parents
are selected. By default, if no cookie is stored for a user, the top-level filters are all deselected and all of their children are
selected, making it as easy as possible for the user to select what they want to filter by. The only exception to this are
the “Must be Park & Ride” and the “Must be Cycle & Ride” filters underneath “Luas Stops”: these filters are more
restrictive, and hide any item that does not match them, and so are not selected by default.

The “Cluster overlapping icons” option does not change what data is shown, but how it is shown; by default, any items
whose icons overlap one another’s at the current zoom level are clustered into a single icon that displays the number

40

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

of items which are contained within it using a Leaflet plug-in called Leaflet.markercluster
leaflet_markercluster. This

option toggles this behaviour, which may be desirable depending on the user’s preferences, especially when only few
items are being displayed in a small geographical area.

(a) Screenshot of the effects of enabling clustering (b) Screenshot of the effects of disabling clustering

Figure 4.6: Effects of enabling/disabling clustering

The “Within KM” option accepts a number input value of the range within which an itemmust be for it to be displayed.
This option only appears if the user’s geographical location is available: if their browser does not support the option, or
if they have rejected location access to the application, the option will not appear. The option can be reset to showing
all items regardless of range by deleting the input to the textbox; if the user enters a value that doesn’t make sense, such
as a number≤ 0, the application defaults to displaying all items regardless of distance, on the assumption that the user
is either attempting to reset the filter by entering “0” or that they have accidentally entered a nonsensical value.

A subject of much deliberation in the design process was the behaviour of the “Submit” button. It’s important
that the map only updates when the user asks it to so as to avoid situations where the user is looking at an item, the
page refreshes automatically, and it disappears from view; therefore, fetching new data had to be a manually-specified
process, rather than occurring automatically. The question of whether or not the filters should be applied as soon
as they are selected or only upon a “Submit” also received much consideration: automatically updating them would
minimise the amount of user interactions necessary, but to re-calculate the display value for every item when there
are many being displayed could take a few seconds, and make the application unresponsive as the user makes many
changes to the selected filters. Therefore, it was decided that the filters should only be applied when the user requests
that they be applied, so that they can decide what filters to apply in a convenient & usable way. Finally, there was the
question of optimisations: if the data sources selected did not change but a display filter did (for example, the user didn’t
change that they wanted to look at Irish Rail Trains, but added a selection to specify only Mainline trains), should
another request be made to the API endpoints? Not requesting new data would mean a faster loading time and a more
responsive program, at the cost of showing the user potentially out-of-date data. It was decided that each new click of
“Submit” should always fetch new data, to align the program as much as possible with the user’s mental model of the
program, in keeping with the HCI principle of conceptual model alignmentnorman_design_2013: the behaviour of
the application should match how the user imagines it to behave. Users are familiar with the “make selections, then
confirm” paradigm, and will expect the submit button to do the same thing each time (which aligns with Nielsen’s
usability heuristic of “Consistency & Standards” and of “speaking the user’s language”nielsenheuristics).

Search Bar

The search bar allows the user to further refine the displayed items beyond what is possible with the filters side-panel by
specifying text that should be present in the marker. The search is based upon a markerText variable that is constructed
for each marker as the data is fetched, consisting of the pop-up content without any formatting, upper-case characters,
or non-alphanumeric characters. Similarly, entered search terms are made lower-case and stripped of non-alphanumeric
characters to facilitate searching, and an item is deemed to match the search term if the search term occurs in the
markerText. This approach is relatively simplistic as search algorithms go, but is fast & efficient, and more than suitable
for this application.

41

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

Figure 4.7: Screenshot of the search bar being used

Unlike the filters panel, the displayed items are automatically filtered as the user enters text, which is facilitated by
the search-based filtering being separated from and less computationally complex than the side-panel based filtering.
This allows the results to be quickly filtered in a responsive manner by the user, and makes the completion of tasks
generally faster & more responsive. However, updating the filtered items for every keystroke that the user enters would
be wasteful, as each key entry further refines their search and they would type it regardless, and constantly re-computing
which items match the search term for each keypress would result in the application becoming less responsive. To
prevent this, the search bar employs a debounce functiondebounce which waits for a very short interval after the user’s
last keypress to start searching for the entered text; the search will only commence once the user has finished typing.
Experiments with different values on different users indicated that 300milliseconds is the ideal value for this application:
long enough that it won’t be triggered until the user pauses typing, but short enough that the gap between the user
stopping typing and the search being applied is nearly imperceptible.

However, if very large amounts of data are being displayed, such as in the event that the user has selected all data
sources, the search can take a noticeable amount of time and make the UI sluggish & unresponsive as the search is
executed. To address this, if the number of items being displayed is so high that it will induce noticeably slow loading
times, the debounce time is increased to 400 milliseconds to be more careful in avoiding unnecessary computations, and
the loading overlay is displayed as the filtering is performed to prevent the user from being exposed to a sub-optimally
performant UI.

The search function makes use of the useMemousememo React hook to cache the results of filtering the markers based off
the search text, and making it so that it will only be re-calculated if the search term changes or if the markers change.
Without useMemo, every re-render of the page would cause the filter function to run even if nothing had changed, which
would be a huge waste of computational resources.

Map

The map component itself is the presentational component in which all of the mapping & plotting functionality is
performed, implemented using the Leafletleaflet mapping library and map tiles fromOpenStreetMaposm; this option
was chosen as it is lightweight & performant, free to use, and is flexible & customisable. It is also by far the most popular
mapping library, and has comprehensive documentation and a wide range of plug-ins. Other mapping options exist,
such asMapboxmapbox and the GoogleMaps APIgmaps, but these have limited free tiers compared to the completely free

42

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

& open-source option of Leaflet with OpenStreetMap. It receives the markers to be displayed, a Boolean determining
whether clustering is enabled, and the geolocation of the user, if available. If the user’s geolocation is available, a “You
are here” marker is added to the map and the map is centered on those co-ordinates; otherwise, the map centers on the
geographical centre of the island of Irelandosi and displays no marker.

Each marker variable component passed to the map component is added to the map, and if clustering is enabled,
is wrapped in a MarkerClusterGroup to cluster the icons together if they overlap.

4.2 Statistics Page

Figure 4.8: Screenshot of the statistics page

The statistics page of the application exists to give the user a deeper insight into the data than simply live data. The
grid layout is achieved with the use of Tailwind CSS flexboxflexbox. It consists of 6 graphs, each displaying a different
statistical insight about the application data:

• The Service Density Heatmap displays a heatmap depicting the geographical distribution of currently-running
public transport services on the island of Ireland;

• The Live Transport Types pie chart displays the proportion of objectTypes for which there is currently live
location data;

• The Live Train Types pie chart displays the proportion of mainline, suburban, & DART Irish Rail Trains
currently in operation;

• The Live Train Statuses pie chart displays the proportion of running, not yet running, & terminated trains at the
present moment;

• The Live Punctuality pie chart displays the proportion of late, on-time, & early services at the present moment.

• TheAverage PunctualityOver Time line graph displays how the average punctuality of services varies per collected
timestamp.

43

CHAPTER 4. FRONTENDDESIGN& IMPLEMENTATION

Each pie chart uses the same re-usable presentation component which accepts some data and displays it. Pie charts
are somewhat controversial in the realm of data visualisation and are often rejected in favour of bar charts, and are
only recommended to be used under certain particular situations: when the data being illustrated is a part-to-whole
representation, when there is no more than 5 categories in the pie chart, and when there are not small differences
between the categoriesatlassianpiechart, spotfirepie, inforirver. Since the data for this application fulfils these criteria, and
because testing with bar charts resulted with more difficult to understand results (as part of the proportion), pie charts
were deemed suitable for this purpose.

4.3 Help Page

Figure 4.9: Screenshot of the help page

The help page is a very simple web page that just contains questions and answers on how to perform basic tasks, such as
favouriting an item or viewing real-time Luas information. It is intended to be user-friendly and easy to search through;
this is in part facilitated through its minimalist design (achieved with TailwindCSS) which attempts to prevent the user
from having to sift through irrelevant information to find out how to perform a basic task.

44

Chapter 5

Evaluation

5.1 Objectives Fulfilled

5.2 Heuristic Evaluation: Nielsen’s 10

5.3 User Evaluation

45

Chapter 6

Conclusion

46

	Introduction
	Project Overview
	Objectives
	Core Objectives
	Secondary Objectives
	Additional Objectives

	Use Cases
	Constraints

	Research & Planning
	Similar Services
	Irish Rail Live Map
	Google Maps
	TFI Live Departures
	Flightradar24

	Data Sources
	Irish Rail API
	Luas API
	NTA GTFS API

	Technologies
	Backend Technologies
	Frontend Technologies

	Project Management
	Version Control

	Backend Design & Implementation
	Database Design
	API Design
	API Endpoints

	Serverless Functions
	CI/CD Pipeline
	Unit Tests
	CI/CD

	Frontend Design & Implementation
	Main Page
	Statistics Page
	Help Page

	Evaluation
	Objectives Fulfilled
	Heuristic Evaluation: Nielsen's 10
	User Evaluation

	Conclusion

