OLLSCOILNAGAILLIMHE
UNIVERSITY OF GALWAY

Iompar: Live Public Transport Tracking

College of Science & Engineering

Bachelor of Science (Computer Science & Information Technology)

Project Report

Author:

Andrew Hayes
21321503

Academic Supervisor:
Dr. Adrian Clear

2025-03-27

Contents

(L Introduction| 1
1.1 Project Overview| e 1
(L1.1 Problem Statement 1

(I.1.2° Background| 1

[1.2 DocumentStructurel 1

2 Research 2
21 Intoductionl 2
2.2 rcesl ..o 2

2.3 Similar Services| 2
24 Technologies|. 2
2.4.1 Frontend Technologies|o o o oo 2

2.42 Backend Technologies| 2

2.43 Droject Management Technologies] 2

25 Conclusion| 2

[3 Requirements| 3
3.1 Functional Requirements| L o 3

3.2 Non-Functional Requirements|, 3
B3 USeCases . - o v oot 3
3.4 Constraints] 3
esign 4

[4.1 Backend Design| 4
4.1.1 Database Design| oo o 4

412 APIDesign| 10

4.1.3 Serverless Functions| L 10

[4.2 Frontend Design| 10

[Development 11
5.1 Introduction| 11
5.2 Backend Development| o 11

5.3 Frontend Development 11

5.4 Development Considerations| 11

[6 Code Quality| 12
61 TInwoduction] 12
[6.2 Clean Coding Principles|. 12
[63 UnitTesting].o oot 12
6.4 CI/CD| e 12
6.4.1 Continuous Integration| L0 o Lo 12

G427 Contnuows DEPIOYImEnT . « + + + o o oo 12

CONTENTS

13
... 13
[7.2 Reflection on Requirements| 13
[7.3 Reflection on Skill Developmend 13
... 13

ii

Chapter 1

Introduction

1.1 Project Overview

1.1.1 Problem Statement
1.1.2 Background

1.2 Document Structure

Chapter 2

Research

2.1 Introduction
2.2 Data Sources
2.3 Similar Services

2.4 Technologies

2.4.1 Frontend Technologies
2.4.2 Backend Technologies

2.4.3 Project Management Technologies

2.5 Conclusion

Chapter 3

Requirements

3.1 Functional Requirements
3.2 Non-Functional Requirements
3.3 Use Cases

3.4 Constraints

Chapter 4

Design

4.1 Backend Design

LURS wasan

fetch_permanent_data permanent_data
V) Lambda Funetion DynamaDB Table

National Transport
Authority API

(fetch_transient_data transient_data update_average_punctuality
L D Lambda Function DynamoDB Table D Lambda Function

\’ » Irish RailAPI

punctuality_by_timestamp

punctuality_by_objsctiD

Figure 4.1: Backend architecture

4.1.1 Database Design

Since the chosen database system was DynamoDB, a No-SQL database, the question of how best to separate the data is
more open-ended: unlike a relational database, there is no provably correct, optimised structure of separated tables
upon which to base the database design. The decision was made that data would be separated into tables according to
the type of data, how its used, and how its updated, thus allowing separation of concerns for functions which update
the data and allowing different primary keys and indices to be used for different querying patterns.

Permanent Data Table

The permanent data table holds the application data which is unchanging and needs to be updated only rarely, if ever.
This includes information about bus stops, train stations, Luas stops, and bus routes. This data does not need to be
updated regularly, just on an as-needed basis. Since this data is not temporal in nature, no timestamping of records is
necessary.

"objectID": "IrishRailStation-GALWY",
"objectType": "IrishRailStation",
"trainStationCode": "GALWY",
"trainStationID": "170",
"trainStationAlias": null,
"trainStationDesc": "Galway",
"latitude": "53.2736"

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

CHAPTER 4. DESIGN

"longitude": "-9.04696",
}'

"objectID": "BusStop-8460B5226101",
"objectType": "BusStop",
"busStopID": "8460B5226101",
"busStopCode": "522611",
"busStopName": "Eyre Square",
"latitude": "53.2750947795551"
"longitude": "-9.04963289544644",

"objectID": "BusRoute-4520 67654",

"objectType": "BusRoute",

"busRouteID": "4520 67654"

"busRouteAgencyName": "City Direct",
"busRouteAgencyID": "7778028",

"busRouteShortName": "411",

"busRoutelLongName": "Mount Prospect - Eyre Square",

"objectType": "LuasStop",

"objectID": "LuasStop-STS",
"luasStopCode": "STS"

"luasStopID": "24",

"luasStopName": "St. Stephen's Green",
"luasStopIrishName": "Faiche Stiabhna",
"luasStopIsParkAndRide": "0",
"luasStopIsCycleAndRide": "0",
"luasStopLineID": "2",
"luasStopZoneCountA": "I1",
"luasStopZoneCountB": "1",
"luasStopSortOrder": "10",
"luasStopIsEnabled": "I",

"latitude": "53.3390722222222",
"longitude": "-6.26133333333333",

Listing 1: Sample of the various types of items stored in the permanent data table

Beyond what is returned for an item by its source API, two additional fields are included for each item: the objectType
to allow for querying based on this attribute and the objectID, an attribute constructed from an item’s objectType and
the unique identifier for that item in the system from which it was sourced, thus creating a globally unique identifier
for the item. However, this attribute is zot used as the primary key for the table; instead, it exists primarily so that
each item has a unique identifier that does not need to be constructed on the fly on the frontend, thus allowing the
frontend to treat specific items in specific ways. An example of a use for this is the “favourites” functionality: a unique
identifier must be saved for each item that is added to a user’s favourites. Defining this unique identifier in the backend
rather than the frontend reduces frontend overhead (important when dealing with tens of thousands of items) and also
makes the system more flexible. While the “favourites” functionality is implemented fully on the frontend at present,
the existence of unique identifiers for items within the table means that this functionality could be transferred to the
backend without major re-structuring of the database.

There are two ways in which a primary key can be created for a DynamoDB table®:

20

21

22

CHAPTER 4. DESIGN

* A simple primary key, consisting solely of a partition key: the attribute which uniquely identifies an item,
analogous to simple primary keys in relational database systems.

* A composite primary key, consisting of a partition key and a sort key, analogous to composite primary keys in
relational database systems. Here, the partition key determines the partition in which an item’s data is stored,
and the sort key is used to organise the data within that partition.

While the objectID could be used as a partition key and thus a simple primary key, it was decided not to use the attribute
for this purpose as it was not the most efficient option. The primary function of the permanent data table is to provide
data for a user when they want to display a certain type of object, such as bus stops, train stations, Luas stops, or some
combination of the three. Therefore, the most common type of query that the table will be dealing with is queries
which seek to return all items of a certain objectType. Partitioning the table by objectID would make querying by
objectID efficient, but all other queries inefficient, and querying by objectID is not useful for this application. Instead,
the permanent data table uses a composite primary key, using the objectType as the partition key and the objectID as
the sort key. Thus, it is very efficient to query by objectType and return, for example, all the bus stops and Luas stops
in the country.

Technically speaking, there is some redundant data in each primary by using the objectID as the sort key when the
partition key is the objectType: since the objectID already contains the objectType, it is repeated. However, the unique
identifier for each item is different depending on the system from which it was sourced: for train stations, the unique
identifier is named trainStationCode, while the unique identifier for bus stops is named busStopID. To use these fields
as sort key, they would have to be renamed in each item to some identical title, thus adding overhead to the process of
fetching data, and making the table less human-readable. Since the objectID was to be constructed regardless for use on
the frontend, it is therefore more efficient to re-use it as the sort key, even if it does result in a few bytes of duplicated
data in the primary key of each item.

Transient Data Table

The transient data table holds the live tracking data for each currently running public transport vehicle in the country,
including information about the vehicle and its location. Similar to the permanent data table, a unique objectID is
constructed for each item.

"objectType": "IrishRailTrain",

"latenessMessage": "On time",

"timestamp": "1742897696",

"trainDirection": "Southbound",

"trainStatus": "R",

"trainDetails": "09:41 - Maynooth to Grand Canal Dock ",
"trainType": "S",

"objectID": "IrishRailTrain-P656",

"averagePunctuality": "0",

"trainUpdate": "Departed Pelletstown next stop Broombridge",
"trainStatusFull": "Running",

"longitude": "-6.31388",

"trainPublicMessage": "P656\\n09:41 - Maynooth to Grand Canal Dock (0 mins late)\\nDeparted
— Pelletstown next stop Broombridge",

"trainPunctuality": "0",

"trainPunctualityStatus": "on-time",

"trainTypeFull": "Suburban",

"trainDate": "25 Mar 2025",

"latitude": "53.3752",

"trainCode": "P656"

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

CHAPTER 4. DESIGN

"objectType": "Bus",
"busScheduleRelationship": "SCHEDULED",
"timestamp": "1742908007",

"busID": "V598",

"busRoute": "4538 90219",
"busRouteAgencyName": "Bus Eireann",
"objectID": "Bus-V598",
"busRoutelLongName": "Galway Bus Station - Derry (Magee Campus Strand Road)",
"longitude": "-8.50166607",
"busDirection": "1",

"busStartbate": "20250325",
"busRouteShortName": "64",

"latitude": "54.2190742",

"busTripID": "4538 114801",
"busStartTime": "10:30:00"

Listing 2: Sample of the various types of items stored in the transient data table

There are only two types of objects stored in the transient data table: Irish Rail Trains and Buses. There is no per-vehicle
data provided in the Luas API, and thus no way to track the live location of Luas trams. For the two types of objects
stored in the transient data table, additional fields are added beyond what is returned by their respective APIs (and
beyond the objectType & objectID fields) to augment the data.

The following additional pieces of data are added to each IrishRailTrain object:

* The trainStatus & trainType fields are single-character codes returned by the API, representing longer strings;
for example a trainStatus of "R" indicates that the train is 7#nning. To avoid having to construct these strings
on the frontend, the fields trainStatusFull & trainTypeFull are automatically added to the record when the
data is retrieved.

* The Irish Rail API compacts much of its interesting data into a single field: trainPublicMessage. This field
contains the trainCode (which is also supplied individually in its own field by the API), a string containing details
about the train’s origin & terminus, a string describing how late the train is, a string containing an update about
the train’s current whereabouts, all separated by \\n characters. This string is parsed into several additional fields
to prevent additional computation on the frontend, including:

— latenessMessage: a human-readable string which describes whether a train is early, late, or on time.
— trainDetails: a string describing the train service itself, its start time, origin, & terminus.

— trainUpdate: a string containing an update about the current whereabouts of the train, such as what
station it last departed and what station it will visit next.

— trainPunctuality: an integer which represents how many minutes late the train is (where a negative
number indicates that the train is that many minutes early).

— trainPunctualityStatus: a whitespace-free field which gives the same information as latenessMessage
but for use in filtering rather than information presentation to the user. While one of these fields could be
derived from the other on the frontend, the extra computation necessary when repeated for multiple trains
and multiple users dwarfs the few extra bytes in the database to store the data in the machine-readable and
human-readable forms.

* The averagePunctuality field is a field which contains the average recorded value of the trainPunctuality for
trains with that trainCode in the database, thus giving a predictor of how early or late that particular train usually
is.

The following additional pieces of data are added to each Bus object:

7

CHAPTER 4. DESIGN

* busRouteAgencyName.
® busRouteShortName.
* busRouteLongName.

These details are not included in the response from the GTFS API, but can be obtained by looking up the given
busRoute attribute in the permanent data table to find out said information about the bus route. In a fully-normalised
relational database, this would be considered data duplication, but storing the data in both places allows for faster
querying as no “joins” need to be performed.

Since the primary role of the transient data table is to provide up-to-date location data about various public transport
services, each item in the table is given a timestamp attribute. This timestamp attribute is a UNIX timestamp in seconds
which uniquely identifies the batch in which this data item was obtained. Each train & bus obtained in the same
batch have the same timestamp, making querying for the newest data in the table more efficient. Because the data is
timestamped, old data does not have to be deleted, saving both the overhead of deleting old data every time new data is
fetched, and allowing an archive of historical data to be built up over time.

Since the primary type of query ran on this table will be queries which seek to return all the items of a certain objectType
(or objectTypes) for the latest timestamp, it would be ideal if the primary key could be a combination of the two for max-
imum efficiency in querying; however, such a combination would fail to uniquely identify each record and thus would
be inappropriate for a primary key. Instead, the primary key must be some combination of the timestamp attribute and
the objectID attribute. It was decided that the partition key would be the objectID and the sort key to be the timestamp
so that all the historical data for a given item could be retrieved efficiently. Equivalently, the partition key could be
the timestamp and the sort key could be the objectID which would allow for queries of all items for a given times-
tamp, but this was rejected on the basis that such scenarios were covered by the introduction of a Global Secondary Index.

A Global Secondary Index (GSI) allows querying on non-primary key attributes by defining an additional par-
tition and sort key from the main table®. Unlike a primary key, there is no requirement for a GSI to uniquely identify
each record in the table; a GSI can be defined on any attributes upon which queries will be made. The addition of GSIs
to a table to facilitate faster queries is analogous to SELECT queries on non-primary key columns in a relational database
(and the specification of a sort key is analogous to a relational ORDER BY statement); the structured nature of a relational
database means that such queries are relatively efficient by default as each column in the table functions as an index
itself. In a No-SQL database, this functionality does not come for free, and instead must be manually specified.

To facilitate efficient querying of items in the table by objectType and timestamp, a GSI was created with partition
key objectType and sort key timestamp, thus making queries for the newest data on a public transport type as efficient
as querying on primary key attributes. The downside of creating a GSI is the additional storage requirements, as
DynamoDB implements GSIs by duplicating the data into a separate index: efficient for querying, but less so in terms
of storage usage.

Average Punctuality by objectIb Table

To give the user punctuality predictions based off the historical data stored for a given service, it’s necessary that the
average punctuality be calculated. The most obvious way to do this would be to calculate the average of the punctuality
values for a given objectID in the transient data table every time data a new data item with that objectID is added to
the transient data table. However, this would be greatly inefficient, as it would require scanning the entire table for each
item uploaded to the table, greatly slowing down the fetching of new data and consuming vast amounts of DynamoDB
read/write resources. It is also intractable, as the historical data archive in the transient table grows, it will become
linearly more expensive to compute the average punctuality for an item.

Instead, it was decided that the average punctuality for an item would be stored in a table and updated as neces-
sary. By storing the objectID, the average punctuality, and the count of the number of records upon which this
average is based, the mean punctuality for an item can be updated on an as-needed basis in an efficient manner. The

CHAPTER 4. DESIGN

new mean value for an item can be calculated as:

(.foIdXC)—i-{L'
c+1

Thew =
where z is the punctuality value for a given item, Zq is the previous mean punctuality value for that item, c is the

count of records upon which that mean was based, and Zyy is the new mean punctuality value. By calculating the
average punctuality in this way, the operation is O(1) instead of O(n), thus greatly improving efficiency.

[

{
"average punctuality": "0.5",
"count": "2",
"objectType": "IrishRailTrain",
"objectID": "IrishRailTrain-P746"

I

{
"average punctuality": "-4",
"count": "1",
"objectType": "IrishRailTrain",
"objectID": "IrishRailTrain-A731"

I

{
"average punctuality": "9.333333333333333333333333333",
“count": "3",
"objectType": "IrishRailTrain",
"objectID": "IrishRailTrain-E112"

I

]

Listing 3: Sample of items from the average punctuality by objectID table

At the time of writing, Irish Rail is the only Irish public transport provider to offer any kind of punctuality data in their
public APIs, and therefore, this table only stores items with "objectType": "IrishRailTrain". It could be argued
that including this value in the table is therefore redundant, as it can be inferred, but the decision was made to include
this additional value to make the table expandable and updatable. If another transport provider were to begin to offer
punctuality data via their API, this table would require no updates to start including, for example, bus punctuality data.
If the objectType were not included, this table would have to be replaced with a re-structured table in the event thata
new category of public transport items were to be added.

In the same vein as including the objectType in each record, the primary key for this table was created with parti-
tion key objectType and sort key objectID, like in the permanent data table. This means that if an additional type of
public transport were to be added to the table, querying based on that objectType would be fast & efficient by defaul.
Since the primary key of a table cannot be changed once the table has been created, not using the objectType in the
primary key would meant that adding an additional public transport type to the table would require deleting the table
and starting again, or at the very least the creation of an otherwise unnecessary GSI to facilitate efficient querying.

Punctuality by timestamp Table

To provide historical insights such as punctuality trends over time, it is necessary to keep a record of the average
punctuality for each timestamp recorded in the database. Similarly to the punctuality by objectID table, it is more
efficient to calculate this value and store it than to calculate the average for every item in the table as the data is needed.
Unlike the punctuality by objectID table, however, the average punctuality value for a timestamp need never be updated,
as the average is calculated for each data upload run.

CHAPTER 4. DESIGN

"average punctuality": "0.8823529411764706",
"timestamp": "1742908007"
}I

"average punctuality": "1.0625",
"timestamp": "1742905796"

Listing 4: Sample of items from the average punctuality by timestamp table

The partition key for this table is the timestamp value, and there is no need for a sort key or secondary index.

4.1.2 API Design

4,1.3 Serverless Functions

4.2 Frontend Design

10

Chapter 5

Development

5.1 Introduction
5.2 Backend Development
5.3 Frontend Development

5.4 Development Considerations

11

Chapter 6

Code Quality

6.1
6.2
6.3

6.4

Introduction
Clean Coding Principles
Unit Testing

CI/CD

6.4.1 Continuous Integration

6.4.2 Continuous Deployment

12

Chapter 7

Conclusion

7.1
7.2
7.3
7.4

Evaluation
Reflection on Requirements
Reflection on Skill Development

Potential Future Work

13

Bibliography

(1]

(2]

Gowri Balasubramanian and Sean Shriver. Choosing the Right DynamoDB Partition Key. AWS Database Blog.
2017. URL: https://aws .amazon.com/blogs/database/choosing - the - right - dynamodb - partition - key/

Accessed on: 2025-03-26.

Amazon Web Services Inc. Using Global Secondary Indexes in DynamoDB. Amazon DynamoDB Developer Guide.
2025. URL:|https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html Accessed on:

2025-03-26.

14

https://aws.amazon.com/blogs/database/choosing-the-right-dynamodb-partition-key/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

	Introduction
	Project Overview
	Problem Statement
	Background

	Document Structure

	Research
	Introduction
	Data Sources
	Similar Services
	Technologies
	Frontend Technologies
	Backend Technologies
	Project Management Technologies

	Conclusion

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Use Cases
	Constraints

	Design
	Backend Design
	Database Design
	API Design
	Serverless Functions

	Frontend Design

	Development
	Introduction
	Backend Development
	Frontend Development
	Development Considerations

	Code Quality
	Introduction
	Clean Coding Principles
	Unit Testing
	CI/CD
	Continuous Integration
	Continuous Deployment

	Conclusion
	Evaluation
	Reflection on Requirements
	Reflection on Skill Development
	Potential Future Work

