
Iompar: Live Public Transport Tracking
College of Science & Engineering

Bachelor of Science (Computer Science & Information Technology)

Project Report

Author:
AndrewHayes
21321503

Academic Supervisor:
Dr. Adrian Clear

2025–03–30

Contents

1 Introduction 1
1.1 Project Overview . 1

1.1.1 Problem Statement . 1
1.1.2 Background . 1

1.2 Document Structure . 1

2 Research 2
2.1 Introduction . 2
2.2 Data Sources . 2
2.3 Similar Services . 2
2.4 Technologies . 2

2.4.1 Frontend Technologies . 2
2.4.2 Backend Technologies . 2
2.4.3 Project Management Technologies . 2

2.5 Conclusion . 2

3 Requirements 3
3.1 Functional Requirements . 3
3.2 Non-Functional Requirements . 3
3.3 Use Cases . 3
3.4 Constraints . 3

4 Backend Design & Implementation 4
4.1 Database Design . 4
4.2 API Design . 10
4.3 Serverless Functions . 12

5 Frontend Design & Implementation 17

i

Chapter 1

Introduction

1.1 Project Overview

1.1.1 Problem Statement

1.1.2 Background

1.2 Document Structure

1

Chapter 2

Research

2.1 Introduction

2.2 Data Sources

2.3 Similar Services

2.4 Technologies

2.4.1 Frontend Technologies

2.4.2 Backend Technologies

2.4.3 Project Management Technologies

2.5 Conclusion

2

Chapter 3

Requirements

3.1 Functional Requirements

3.2 Non-Functional Requirements

3.3 Use Cases

3.4 Constraints

3

Chapter 4

Backend Design & Implementation

Figure 4.1: Backend architecture

4.1 Database Design

Since the chosen database system was DynamoDB, a No-SQL database, the question of how best to separate the data is
more open-ended: unlike a relational database, there is no provably correct, optimised structure of separated tables
upon which to base the database design. The decision was made that data would be separated into tables according to
the type of data, how its used, and how its updated, thus allowing separation of concerns for functions which update
the data and allowing different primary keys and indices to be used for different querying patterns.

Permanent Data Table

The permanent data table holds the application data which is unchanging and needs to be updated only rarely, if ever.
This includes information about bus stops, train stations, Luas stops, and bus routes. This data does not need to be
updated regularly, just on an as-needed basis. Since this data is not temporal in nature, no timestamping of records is
necessary.

1 [

2 {

3 "objectID": "IrishRailStation-GALWY",

4 "objectType": "IrishRailStation",

5 "trainStationCode": "GALWY",

6 "trainStationID": "170",

7 "trainStationAlias": null,

8 "trainStationDesc": "Galway",

9 "latitude": "53.2736"

10 "longitude": "-9.04696",

4

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

11 },

12 {

13 "objectID": "BusStop-8460B5226101",

14 "objectType": "BusStop",

15 "busStopID": "8460B5226101",

16 "busStopCode": "522611",

17 "busStopName": "Eyre Square",

18 "latitude": "53.2750947795551"

19 "longitude": "-9.04963289544644",

20 },

21 {

22 "objectID": "BusRoute-4520_67654",

23 "objectType": "BusRoute",

24 "busRouteID": "4520_67654"

25 "busRouteAgencyName": "City Direct",

26 "busRouteAgencyID": "7778028",

27 "busRouteShortName": "411",

28 "busRouteLongName": "Mount Prospect - Eyre Square",

29 },

30 {

31 "objectType": "LuasStop",

32 "objectID": "LuasStop-STS",

33 "luasStopCode": "STS"

34 "luasStopID": "24",

35 "luasStopName": "St. Stephen's Green",

36 "luasStopIrishName": "Faiche Stiabhna",

37 "luasStopIsParkAndRide": "0",

38 "luasStopIsCycleAndRide": "0",

39 "luasStopLineID": "2",

40 "luasStopZoneCountA": "1",

41 "luasStopZoneCountB": "1",

42 "luasStopSortOrder": "10",

43 "luasStopIsEnabled": "1",

44 "latitude": "53.3390722222222",

45 "longitude": "-6.26133333333333",

46 }

47]

Listing 1: Sample of the various types of items stored in the permanent data table

Beyond what is returned for an item by its source API, two additional fields are included for each item: the objectType
to allow for querying based on this attribute and the objectID, an attribute constructed from an item’s objectType and
the unique identifier for that item in the system from which it was sourced, thus creating a globally unique identifier
for the item. However, this attribute is not used as the primary key for the table; instead, it exists primarily so that
each item has a unique identifier that does not need to be constructed on the fly on the frontend, thus allowing the
frontend to treat specific items in specific ways. An example of a use for this is the “favourites” functionality: a unique
identifier must be saved for each item that is added to a user’s favourites. Defining this unique identifier in the backend
rather than the frontend reduces frontend overhead (important when dealing with tens of thousands of items) and also
makes the systemmore flexible. While the “favourites” functionality is implemented fully on the frontend at present,
the existence of unique identifiers for items within the table means that this functionality could be transferred to the
backend without major re-structuring of the database.

There are two ways in which a primary key can be created for a DynamoDB table1:

• A simple primary key, consisting solely of a partition key: the attribute which uniquely identifies an item,

5

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

analogous to simple primary keys in relational database systems.

• A composite primary key, consisting of a partition key and a sort key, analogous to composite primary keys in
relational database systems. Here, the partition key determines the partition in which an item’s data is stored,
and the sort key is used to organise the data within that partition.

While the objectID could be used as a partition key and thus a simple primary key, it was decided not to use the attribute
for this purpose as it was not the most efficient option. The primary function of the permanent data table is to provide
data for a user when they want to display a certain type of object, such as bus stops, train stations, Luas stops, or some
combination of the three. Therefore, the most common type of query that the table will be dealing with is queries
which seek to return all items of a certain objectType. Partitioning the table by objectID would make querying by
objectID efficient, but all other queries inefficient, and querying by objectID is not useful for this application. Instead,
the permanent data table uses a composite primary key, using the objectType as the partition key and the objectID as
the sort key. Thus, it is very efficient to query by objectType and return, for example, all the bus stops and Luas stops
in the country.

Technically speaking, there is some redundant data in each primary by using the objectID as the sort key when the
partition key is the objectType: since the objectID already contains the objectType, it is repeated. However, the unique
identifier for each item is different depending on the system from which it was sourced: for train stations, the unique
identifier is named trainStationCode, while the unique identifier for bus stops is named busStopID. To use these fields
as sort key, they would have to be renamed in each item to some identical title, thus adding overhead to the process of
fetching data, and making the table less human-readable. Since the objectIDwas to be constructed regardless for use on
the frontend, it is therefore more efficient to re-use it as the sort key, even if it does result in a few bytes of duplicated
data in the primary key of each item.

Transient Data Table

The transient data table holds the live tracking data for each currently running public transport vehicle in the country,
including information about the vehicle and its location. Similar to the permanent data table, a unique objectID is
constructed for each item.

1 [

2 {

3 "objectType": "IrishRailTrain",

4 "latenessMessage": "On time",

5 "timestamp": "1742897696",

6 "trainDirection": "Southbound",

7 "trainStatus": "R",

8 "trainDetails": "09:41 - Maynooth to Grand Canal Dock ",

9 "trainType": "S",

10 "objectID": "IrishRailTrain-P656",

11 "averagePunctuality": "0",

12 "trainUpdate": "Departed Pelletstown next stop Broombridge",

13 "trainStatusFull": "Running",

14 "longitude": "-6.31388",

15 "trainPublicMessage": "P656\\n09:41 - Maynooth to Grand Canal Dock (0 mins late)\\nDeparted

Pelletstown next stop Broombridge",↪→

16 "trainPunctuality": "0",

17 "trainPunctualityStatus": "on-time",

18 "trainTypeFull": "Suburban",

19 "trainDate": "25 Mar 2025",

20 "latitude": "53.3752",

21 "trainCode": "P656"

22 },

23 {

6

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

24 "objectType": "Bus",

25 "busScheduleRelationship": "SCHEDULED",

26 "timestamp": "1742908007",

27 "busID": "V598",

28 "busRoute": "4538_90219",

29 "busRouteAgencyName": "Bus Éireann",

30 "objectID": "Bus-V598",

31 "busRouteLongName": "Galway Bus Station - Derry (Magee Campus Strand Road)",

32 "longitude": "-8.50166607",

33 "busDirection": "1",

34 "busStartDate": "20250325",

35 "busRouteShortName": "64",

36 "latitude": "54.2190742",

37 "busTripID": "4538_114801",

38 "busStartTime": "10:30:00"

39 },

Listing 2: Sample of the various types of items stored in the transient data table

There are only two types of objects stored in the transient data table: Irish Rail Trains and Buses. There is no per-vehicle
data provided in the Luas API, and thus no way to track the live location of Luas trams. For the two types of objects
stored in the transient data table, additional fields are added beyond what is returned by their respective APIs (and
beyond the objectType& objectID fields) to augment the data.

The following additional pieces of data are added to each IrishRailTrain object:

• The trainStatus& trainType fields are single-character codes returned by the API, representing longer strings;
for example a trainStatus of "R" indicates that the train is running. To avoid having to construct these strings
on the frontend, the fields trainStatusFull& trainTypeFull are automatically added to the record when the
data is retrieved.

• The Irish Rail API compacts much of its interesting data into a single field: trainPublicMessage. This field
contains the trainCode (which is also supplied individually in its own field by the API), a string containing details
about the train’s origin & terminus, a string describing how late the train is, a string containing an update about
the train’s current whereabouts, all separated by \\n characters. This string is parsed into several additional fields
to prevent additional computation on the frontend, including:

– latenessMessage: a human-readable string which describes whether a train is early, late, or on time.
– trainDetails: a string describing the train service itself, its start time, origin, & terminus.
– trainUpdate: a string containing an update about the current whereabouts of the train, such as what

station it last departed and what station it will visit next.
– trainPunctuality: an integer which represents how many minutes late the train is (where a negative

number indicates that the train is that many minutes early).
– trainPunctualityStatus: a whitespace-free field which gives the same information as latenessMessage

but for use in filtering rather than information presentation to the user. While one of these fields could be
derived from the other on the frontend, the extra computation necessary when repeated for multiple trains
and multiple users dwarfs the few extra bytes in the database to store the data in the machine-readable and
human-readable forms.

• The averagePunctuality field is a field which contains the average recorded value of the trainPunctuality for
trains with that trainCode in the database, thus giving a predictor of how early or late that particular train usually
is.

The following additional pieces of data are added to each Bus object:

7

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

• busRouteAgencyName.

• busRouteShortName.

• busRouteLongName.

These details are not included in the response from the GTFS API, but can be obtained by looking up the given
busRoute attribute in the permanent data table to find out said information about the bus route. In a fully-normalised
relational database, this would be considered data duplication, but storing the data in both places allows for faster
querying as no “joins” need to be performed.

Since the primary role of the transient data table is to provide up-to-date location data about various public transport
services, each item in the table is given a timestamp attribute. This timestamp attribute is a UNIX timestamp in seconds
which uniquely identifies the batch in which this data item was obtained. Each train & bus obtained in the same
batch have the same timestamp, making querying for the newest data in the table more efficient. Because the data is
timestamped, old data does not have to be deleted, saving both the overhead of deleting old data every time new data is
fetched, and allowing an archive of historical data to be built up over time.

Since the primary type of query ran on this table will be queries which seek to return all the items of a certain objectType

(or objectTypes) for the latest timestamp, it would be ideal if the primary key could be a combination of the two formax-
imum efficiency in querying; however, such a combination would fail to uniquely identify each record and thus would
be inappropriate for a primary key. Instead, the primary key must be some combination of the timestamp attribute and
the objectID attribute. It was decided that the partition key would be the objectID and the sort key to be the timestamp
so that all the historical data for a given item could be retrieved efficiently. Equivalently, the partition key could be
the timestamp and the sort key could be the objectID which would allow for queries of all items for a given times-
tamp, but this was rejected on the basis that such scenarioswere covered by the introduction of aGlobal Secondary Index.

A Global Secondary Index (GSI) allows querying on non-primary key attributes by defining an additional par-
tition and sort key from the main table9. Unlike a primary key, there is no requirement for a GSI to uniquely identify
each record in the table; a GSI can be defined on any attributes upon which queries will be made. The addition of GSIs
to a table to facilitate faster queries is analogous to SELECT queries on non-primary key columns in a relational database
(and the specification of a sort key is analogous to a relational ORDER BY statement); the structured nature of a relational
database means that such queries are possible by default, although an index must be created on the column in question
for querying on that column to be efficient (such as with the SQL CREATE INDEX statement). In a No-SQL database like
DynamoDB, this functionality does not come for free, and instead must be manually specified.

To facilitate efficient querying of items in the table by objectType and timestamp, a GSI was created with partition
key objectType and sort key timestamp, thus making queries for the newest data on a public transport type as efficient
as querying on primary key attributes. The downside of creating a GSI is the additional storage requirements, as
DynamoDB implements GSIs by duplicating the data into a separate index: efficient for querying, but less so in terms
of storage usage.

Average Punctuality by objectID Table

To give the user punctuality predictions based off the historical data stored for a given service, it’s necessary that the
average punctuality be calculated. The most obvious way to do this would be to calculate the average of the punctuality
values for a given objectID in the transient data table every time data a new data item with that objectID is added to
the transient data table. However, this would be greatly inefficient, as it would require scanning the entire table for each
item uploaded to the table, greatly slowing down the fetching of new data and consuming vast amounts of DynamoDB
read/write resources. It is also intractable, as the historical data archive in the transient table grows, it will become
linearly more expensive to compute the average punctuality for an item.

Instead, it was decided that the average punctuality for an item would be stored in a table and updated as neces-
sary. By storing the objectID, the average_punctuality, and the count of the number of records upon which this

8

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

average is based, the mean punctuality for an item can be updated on an as-needed basis in an efficient manner. The
newmean value for an item can be calculated as:

x̄new =
(x̄old × c) + x

c+ 1

where x is the punctuality value for a given item, x̄old is the previous mean punctuality value for that item, c is the
count of records upon which that mean was based, and x̄new is the new mean punctuality value. By calculating the
average punctuality in this way, the operation isO(1) instead ofO(n), thus greatly improving efficiency.

1 [

2 {

3 "average_punctuality": "0.5",

4 "count": "2",

5 "objectType": "IrishRailTrain",

6 "objectID": "IrishRailTrain-P746"

7 },

8 {

9 "average_punctuality": "-4",

10 "count": "1",

11 "objectType": "IrishRailTrain",

12 "objectID": "IrishRailTrain-A731"

13 },

14 {

15 "average_punctuality": "9.333333333333333333333333333",

16 "count": "3",

17 "objectType": "IrishRailTrain",

18 "objectID": "IrishRailTrain-E112"

19 },

20]

Listing 3: Sample of items from the average punctuality by objectID table

At the time of writing, Irish Rail is the only Irish public transport provider to offer any kind of punctuality data in their
public APIs, and therefore, this table only stores items with "objectType": "IrishRailTrain". It could be argued
that including this value in the table is therefore redundant, as it can be inferred, but the decision was made to include
this additional value to make the table expandable and updatable. If another transport provider were to begin to offer
punctuality data via their API, this table would require no updates to start including, for example, bus punctuality data.
If the objectTypewere not included, this table would have to be replaced with a re-structured table in the event that a
new category of public transport items were to be added.

In the same vein as including the objectType in each record, the primary key for this table was created with parti-
tion key objectType and sort key objectID, like in the permanent data table. This means that if an additional type of
public transport were to be added to the table, querying based on that objectTypewould be fast & efficient by default.
Since the primary key of a table cannot be changed once the table has been created, not using the objectType in the
primary key would meant that adding an additional public transport type to the table would require deleting the table
and starting again, or at the very least the creation of an otherwise unnecessary GSI to facilitate efficient querying.

Punctuality by timestamp Table

To provide historical insights such as punctuality trends over time, it is necessary to keep a record of the average
punctuality for each timestamp recorded in the database. Similarly to the punctuality by objectID table, it is more
efficient to calculate this value and store it than to calculate the average for every item in the table as the data is needed.
Unlike the punctuality by objectID table, however, the average punctuality value for a timestamp need never be updated,
as the average is calculated for each data upload run.

9

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

1 [

2 {

3 "average_punctuality": "0.8823529411764706",

4 "timestamp": "1742908007"

5 },

6 {

7 "average_punctuality": "1.0625",

8 "timestamp": "1742905796"

9 }

10]

Listing 4: Sample of items from the average punctuality by timestamp table

The partition key for this table is the timestamp value, and there is no need for a sort key or secondary index.

4.2 API Design

Tomake the data available to the frontend application, a number of API endpoints are required so that the necessary
data can be requested as needed by the client. AWS offers two main types of API functionality with Amazon API
Gateway4:

• RESTful APIs: for a request/responsemodel wherein the client sends a request and the server responds, stateless
with no session information stored between calls, and supporting commonHTTPmethods&CRUDoperations.
AWS API Gateway supports two types of RESTful APIs6:

– HTTP APIs: low latency, fast, & cost-effective APIs with support for various AWSmicroservices such as
AWS Lambda, and native CORS support, but with limited support for usage plans and caching. Despite
what the name may imply, these APIs default to HTTPS and are RESTful in nature.

– REST APIs: older & more fully-featured, suitable for legacy or complex APIs requiring fine-grained
control, such as throttling, caching, API keys, and detailed monitoring & logging, but with higher latency,
cost, and more complex set-up &maintenance.

• WebSocket APIs: for real-time full-duplex communication between client & server, using a stateful session to
maintain the connection & context.

It was decided that a HTTP API would be more suitable for this application for the low latency and cost-effectiveness.
The API functions needed for this application consist only of requests for data and data responses, so the complex
feature set of AWSREST APIs is not necessary. The primary drawback of not utilising the more complex REST APIs is
that HTTP APIs do not natively support caching; this means that every request must be processed in the backend and
a data response generated, meaning potentially slower throughput over time. However, the fact that this application
relies on the newest data available to give accurate & up-to-date location information about public transport, so the
utility of caching is somewhat diminished, as the cache will expire and become out of date within minutes or even
seconds of its creation. This combined with the fact that HTTP APIs are 3.5× cheaper5 than REST APIs resulted in
the decision that a HTTP API would be more suitable.

It is important to consider the security of public-facing APIs, especially ones which accept query parameters: a malicious
attacker could craft a payload to either divert the control flow of the program or simply sabotage functionality. For this
reason, no query parameter is ever evaluated as code or blindly inserted into a database query; any interpolation of query
parameters is done in such a way that they are not used in raw query strings but in parameterised expressions using
the boto3 library7. The AWS documentation emphasises the use of parameterised queries for database operations, in
particular for SQL databases which are more vulnerable, but such attacks can be applied to any database architecture8.
This, combined with unit testing of invalid API query parameters means that the risk of malicious parameter injection
is greatly mitigated (although never zero), as each API endpoint simply returns an error if the parameters are invalid.

10

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

Figure 4.2: CORS configuration for the HTTP API

The Cross-Origin Resource Sharing (CORS) policy accepts only GET requests which originate from http://localhost:

5173 (the URL of the locally hosted frontend application) to prevent malicious websites frommaking unauthorised
requests on behalf of users to the API. While the API handles no sensitive data, it is nonetheless best practice to enforce
a CORS policy and a “security-by-default” approach so that the application does not need to be secured retroactively as
its functionality expands. If the frontend application were moved to a publicly available domain, the URL for this new
domain would need to be added to the CORS policy, or else all requests would be blocked.

/return_permanent_data[?objectType=IrishRailStation,BusStop,LuasStop]

The /return_permanent_data endpoint accepts a comma-separated list of objectType query parameters, and returns a
JSON response consisting of all items in the permanent data table whichmatch those parameters. If no query parameters
are supplied, it defaults to returning all items in the permanent data table.

/return_transient_data[?objectType=IrishRailTrain,Bus]

The /return_transient_data endpoint accepts a comma-separated list of objectType query parameters, and returns a
JSON response consisting of all the items in the transient data table which match those parameters and were uploaded
to the transient data table most recently, i.e., the items which have the newest timestamp field in the table. Since the
timestamp pertains to the batch of data uploaded to the table in a single run, each item in the response will have the
same timestamp as all the others. If no objectType parameter is supplied, it defaults to returning all items from the
newest upload batch.

/return_historical_data[?objectType=IrishRailTrain,Bus]

The /return_historical_data endpoint functions in the same manner as the /return_transient_data endpoint,
with the exception that it returns matching items for all timestamp values in the table, i.e., it returns all items of the
given objectTypes in the transient data table.

/return_luas_data?luasStopCode=<luas_stop_code>

The /return_luas_data returns incoming / outgoing tram data for a given Luas stop, and is just a proxy for the Luas
real-time API. Since the Luas API returns data only for a queried station and does not give information about indi-
vidual vehicles, the Luas data for a given station is only fetched on the frontend when a user requests it, as there is no
information to plot on the map beyond a station’s location. However, this request cannot be made from the client to
the Luas API, as the Luas API’s CORS policy blocks requests from unauthorised domains for security purposes; this
API endpoint acts as a proxy, accepting API requests from the localhost domain and forwarding them to the Luas
API, and subsequently forwarding the Luas API’s response back to the client.

This endpoint requires a single luasStopCode query parameter for each query to identify the Luas stop for which
incoming / outgoing tram data is being requested.

11

http://localhost:5173
http://localhost:5173

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

/return_station_data?stationCode=<station_code>

The return_station_data returns information about the trains due into a given station in the next 90 minutes. This
data is only shown to a user if requested for a specific station, so it is not stored in a DynamoDB table. Like the
/return_luas_data endpoint, it too is just a proxy for an (Irish Rail) API, the CORS policy of which blocks requests
from any unauthorised domain for security purposes. It requires a single stationCode query parameter for each query
to identify the train station for which the incoming train data is being requested.

/return_punctuality_by_timestamp[?timestamp=<timestamp>]

The /return_punctuality_by_timestamp returns the contents of the punctuality_by_timestampDynamoDB table.
It accepts a comma-separated list of timestamps, and defaults to returning the average punctuality for all timestamps in
the table if no timestamp is specified.

/return_all_coordinates

The /return_all_coordinates endpoint returns a JSON array of all current location co-ordinates in the transient data
table for use in statistical analysis.

4.3 Serverless Functions

All the backend code & logic is implemented in a number of serverless functions, triggered as needed.

fetch_permanent_data

The fetch_permanent_data Lambda function is used to populate the permanent data table. As the data in question
changes rarely if ever, this function really need only ever be triggered manually, such as when a new train station is
opened or a new bus route created. However, for the sake of completeness and to avoid the data being out of date, a
schedule was created withAmazon EventBridge to run the function every 28 days to ensure that no changes to the
data are missed. Like all other schedules created for this application, the schedule is actually disabled at present to avoid
incurring unnecessary AWS bills, but can be enabled at any time with the click of a button.

Figure 4.3: Screenshot of the Amazon EventBridge schedule to run the fetch_permanent_data Lambda function

The fetch_permanent_data function retrieves Irish Rail Station data directly from the Irish Rail API, but Luas stop
data and bus data are not made available through an API; instead, the Luas stop data is made available online in a
tab-separated TXT file, and the bus stop & bus route data are available online in comma-separated TXT files distributed
as a single ZIP file. This makes little difference to the data processing however, as downloading a file from a server
and parsing its contents is little different in practice from downloading an API response from a server and parsing its
contents. The function runs asynchronously with a thread per type of data being fetched (train station data, Luas stop

12

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

data, and bus stop & route data), and once each thread has completed, batch uploads the data to the permanent data
table, overwriting its existing contents.

fetch_transient_data

The fetch_transient_data function operates much like the fetch_transient_data function, but instead updates
the contents of the transient data table. It runs asynchronously, with a thread per API being accessed to speed up
execution; repeated requests to an API within a thread are made synchronously to avoid overloading the API. For
example, retrieving the type (e.g., Mainline, Suburban, Commuter) of the trains returned by the Irish Rail API requires
three API calls: the Irish Rail API allows the user to query for all trains or for trains of a specific type but it does not
return the type of the train in the API response. Therefore, if a query is submitted for all trains, there is no way of
knowing which train is of which type. Instead, the function queries each type of train individually, and adds the type
into the parsed response data.

Additionally, the return_punctuality_by_objectID function is called when processing the train data so that each
train’s average punctuality can be added to its data for upload. Somewhat unintuitively, it transpired that the most effi-
cient way to request this data was to request all data from the punctuality by objectID data table rather than individually
request each necessary objectID; this means that much of the data returned is redundant, as many of the trains whose
punctualities are returned are not running at the time and so will not be uploaded, but it means that the function is only
ran once, and so only one function invocation, start-up, database connection, and database query have to be created. It’s
likely that if bus punctuality data were to become available in the future, this approach would no longer be the most ef-
ficient way of doing things, and instead a return_punctuality_by_objectType functionwould be the optimal solution.

The bus data API doesn’t return any information about the bus route beyond a bus route identifier, so the per-
manent data table is queried on each run to create a dictionary (essentially a Python hash table2) linking bus route
identifiers to information about said bus route (such as the name of the route). As the bus data is being parsed, the
relevant bus route data for each vehicle is inserted. Once all the threads have finished executing, the data is uploaded in a
batch to the transient data table, with each item timestamped to indicate which function run it was retrieved on.

This function is ran as part of an AWS Step Function with a corresponding Amazon EventBridge schedule (al-
beit disabled at present). A step function is an AWS service which facilitates the creation of state machines consisting
of various AWSmicroservices to act as a single workflow. The state machine allows multiple states and transitions to
be defined, with each state representing a step in the workflow and the transitions representing how the workflow
moves from one state to another and what data is transferred. Step functions have built-in error handling and retry
functionality, making them extremely fault-tolerant for critical workflows.

Figure 4.4: Screenshot of the get_live_data step function definition

13

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

The step function runs the fetch_transient_data function and then runs the update_average_punctuality function,
if and only if the fetch_transient_data function has completed successfully. This allows the average punctuality
data to be kept up to date and in sync with the transient data, and ensures that they do not become decoupled and
therefore incorrect. This step function is triggered by a (currently disabled) Amazon EventBridge schedule which
runs the function once a minute, which is the maximum frequency possible to specify within a cron schedule, and
suitable for this application as the APIs from which the data is sourced don’t update much more frequently than that.
Furthermore, the data from which bus data is sourced will time out if requests are made too frequently, so this value
was determined to be appropriate after testing to avoid overwhelming the API or getting timed-out. It is possible to
run EventBridge schedules even more frequently using the rate-based schedule schedule type instead of the cron-based
schedule schedule type but a more frequent schedule would be inappropriate for this application.

update_average_punctuality

The update_average_punctuality function runs after fetch_transient_data in a step function and populates the
average punctuality by objectID and average punctuality by timestamp tables to reflect the new data collected by
fetch_transient_data. For each item in the new data, it updates the average punctuality in the average punctuality by
objectID table according to the aforementioned formula:

x̄new =
(x̄old + c) + x

c+ 1

As the function iterates over each item, it adds up the total punctuality and then divides this by the total number of
items processed before adding it to the average punctuality by timestamp table, where the timestamp in question is
the timestamp that the itemswere uploadedwith (the timestampof the fetch_transient_data runwhich created them).

There are a number of concerns that one might reasonably have about using the mean punctuality for the average
displayed to users:

• Means are sensitive to outliers, meaning that if, for example, a train is very late just once but very punctual the
rest of the time, its average punctuality could be misleading.

• The punctuality variable is an integer that can be positive or negative, which could have the result that the positive
& negative values could cancel each other out for a train that is usually either very late or very early, giving the
misleading impression of an average punctuality close to zero.

• Considering the entire history of a train for its average punctuality may not be reflective of recent trends: a
train may historically have been consistently late, but become more punctual as of late and therefore the average
punctuality may not be reflective of its recent average punctuality.

These questions were carefully considered when deciding how to calculate the average punctuality, but it was decided
that the mean would nonetheless be the most appropriate for various reasons:

• The mean lends itself to efficient calculation with theO(1) formula described above. No other average can be
calculated in so efficient a manner: the median requires the full list of punctualities to be considered to determine
the newmedian, and the mode requires at the very least a frequency table of all the punctualities over time to
determine the newmode, which requires both additional computation and another DynamoDB table.

• Similarly, considering only recent data would destroy the possibility for efficient calculation: the mean could not
be updated incrementally, and instead a subset of the historic punctualities would have to be stored and queried
for each update.

• The outlier sensitivity is addressed by the sheer number of items that are considered for the mean: since this will
be updated every minute of every day, an outlier will quickly be drowned out with time.

• Finally, the average is being calculated so that it can be shown to the user and so that they can make decisions
based off it. The average person from a non-technical or non-mathematical background tends to assume that any
average value is a mean value, and so it would only serve to confuse users if they were given some value that did

14

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

not mean what they imagined it to mean. While calculating additional different measures of averages would be
possible, displaying them to the user would likely be at best not useful and at worst confusing, while also greatly
increasing the computation and storage costs. This aligns with the second of Nielsen’s famous 10 Usability
Heuristics for User Interface Design, which were consulted throughout the design process: “Match between the
System and the Real World: The design should speak the users’ language. Use words, phrases, and concepts
familiar to the user, rather than internal jargon”10.

For these reasons, it was decided that the mean was the most suitable average to use.

return_permanent_data

The return_permanent_data function is the Lambda function which is called when a request is made from the client
to the /return_permanent_dataAPI endpoint. It checks for a comma-separated list of objectType parameters in the
query parameters passed from the API event to the Lambda function, and scans the permanent data table for every item
matching those objectTypes. If none are provided, it returns every item in the table, regardless of type. It returns this
data as a JSON string.

When this function was first being developed, the permanent data table was partitioned by objectID alone with
no sort key, meaning that querying was very inefficient. When the table was re-structured to have a composite primary
key consisting of the objectType as the partition key and the objectID as the sort key, the return_permanent_data
function was made 10× faster: the average execution time was reduced from∼10 seconds to∼1 second, demonstrating
the critical importance of choosing the right primary key for the table.

return_transient_data

The return_transient_data function is the Lambda function which is called when a request is made from the client
to the /return_transient_dataAPI endpoint. Like return_permanent_data, it checks for a comma-separated list of
objectType parameters in the query parameters passed from the API event to the Lambda function, and scans the
permanent data table for every item matching those objectTypes. If none are provided, it returns every item in the
table, regardless of type.

Similar to return_permanent_data, when this function was originally being developed, there was no GSI on the
transient data table to facilitate efficient queries by objectType and timestamp; the addition of the GSI and updating
the code to exploit the GSI resulted in an average improvement in run time of∼8×, thus demonstrating the utility
which GSIs can provide.

return_punctuality_by_objectID

The return_punctuality_by_objectID function is invoked by the fetch_transient_data function to return the con-
tents of the punctuality by objectID table. It accepts a list of objectIDs and defaults to returning all items in the table
if no parameters are provided.

return_punctuality_by_timestamp

The return_punctuality_by_timestamp function is similar to return_punctuality_by_objectID but runs when in-
voked by anAPI request to the /return_punctuality_by_timestamp endpoint and simply returns a list of JSONobjects
consisting of a timestamp and an average_punctuality. It is used primarily to graph the average punctuality of services
over time.

return_all_coordinates

The return_all_coordinates function is used to populate the co-ordinates heatmap in the frontend application which
shows the geographical density of services at the present moment. It accepts no parameters, and simply scans the
transient data table for the newest items and returns their co-ordinates.

15

CHAPTER 4. BACKENDDESIGN& IMPLEMENTATION

return_historical_data

The return_historical_data function operates much like the return_transient_data function, accepting a list of
objectTypes or defaulting to all objectTypes if none are specified, with the only difference being that this function does
not consider the timestamps of the data and just returns all data in the transient data table. This function, along with
its corresponding API endpoint exist primarily as a debugging & testing interface, although they also give a convenient
access point for historical data analysis should that be necessary.

return_luas_data

The return_luas_data function is a simple proxy for the Luas API which accepts requests from the client and forwards
them to the Luas API to circumvent the Luas API’s restrictive CORS policy which blocks requests from unauthorised
domains. It simply accepts a luasStopCode parameter, and makes a request to the Luas API with said parameter, parses
the response from XML into JSON, and returns it.

return_station_data

Like return_luas_data, the return_station_data is a proxy for the Irish Rail API so that requests can be made as
needed from the client’s browser to get data about incoming trains due into a specific section without running afoul of
Irish Rail’s CORS policy. It also accepts a single parameter (stationCode) and makes a request to the relevant endpoint
of the Irish Rail API, and returns the response (parsed from XML to JSON).

16

Chapter 5

Frontend Design & Implementation

The frontend design is built following the Single-Page-Application (SPA)12 design pattern using the React Router11
library, meaning that the web application loads a single HTML page and dynamically updates content as the user
interacts with the application, without reloading the webpage. Since there is just one initial page load, the content is
dynamically updated via the DOM using JavaSript rather than by requesting new pages from the server; navigation
between pseudo-pages is managed entirely using client-side routing for a smoother & faster user experience since no
full-page reloads are necessary.

The web application is split into two “pages”:

• The home (or map) page, which is the main page that displays live location data & service information to the user.
This page is where the user will spend the majority of their time, and where the majority of the functionality is
delivered.

• The statistics page, which is used to deliver statistical insights about the data to the user. This page is for providing
deeper insights into the stored data on a collective basis, rather than on a per-service basis.

Theweb application follows theContainer/Presentational Pattern3, which enforces separation of concerns by separating
the presentational logic from the application logic. This is done by separating the functionality into two classes of
components:

• Container Components: those which fetch the data, process it, and pass it to the presentational components
which are contained by their container components, i.e., the presentational components are children of the
container components.

• Presentational Components: those which display the data it receives from the container components to the
user as it is received. This makes the components highly re-usable, as there isn’t specific data processing handling
logic within them.

React components are reusable, self-contained pieces of the UI which act as building blocks for the application13; they
can receive properties from their parent components, manage their own internal state, render other components within
themselves, and respond to events.

17

	Introduction
	Project Overview
	Problem Statement
	Background

	Document Structure

	Research
	Introduction
	Data Sources
	Similar Services
	Technologies
	Frontend Technologies
	Backend Technologies
	Project Management Technologies

	Conclusion

	Requirements
	Functional Requirements
	Non-Functional Requirements
	Use Cases
	Constraints

	Backend Design & Implementation
	Database Design
	API Design
	Serverless Functions

	Frontend Design & Implementation

